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Introduction

Matrix calculus is known to lend itself for mathematical investigation
into systems of discrete units, if the empirical functions describing the behavi-
our of the systems are linear or linearizable, as shown first by Acrivos and
Amunpson [1]. This method was applied in previous papers of the authors [2, 3]
for the determination of the number of theoretical stages of multistage counter-
current separation systems frequently used in the chemical industry.

The basicideain [2, 3] was that the diagrams of rectification, i.e. enthalpy
vs. concentration, and that of the solvent content vs. solute of countercurrent
extraction on a solvent-free basis are similar in structure and may be treated
in a similar way, was adapted from the papers of Ranpary and Lowerin [4].

In the first paper of the authors explicit formulae for the analytical
calculation of the number of theoretical stages with respect to the so-called
“general” extractor (with two feed solutions) defined in [2] (Fig. 1) were
presented for the case where — in addition to the assumption of linearity of
the operating line — the equilibrium curve too was approximated by a straight
line, or better by a straight sectioned chord polygon for suitably chosen con-
centration ranges, as a further development of the approximation first used
by TaormaN [5] and Kremser, BRownN and Sanpers [6, 7]. The results for
the case of the chord polygon approximation of the equilibrium curve were
identical with the formulae and with the sums cited by many authors. Decreas-
ing the distance between the vertex points the chord polygon turns into the
equilibrium curve and thus the following formula gives the number of theoretical
stages in the concentration range of the double feed countercurrent extractor:
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If the operating line g(x) is linear, this formula is valid for any equi-
librium curve f(x) that may be considered linear within one stage. The above
integral is a generalization of the formula given by Lewis* [8], valid for a
linear operating line and for a parallel linear equilibrium line [9].

In [3] a generalization of [2] is given for the case where the equilibrium
curve is approximated by a chord polygon as well, a non-linear operating
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Fig. 1. Diagram of the double feed *“‘general extractor” (concentrations on a solvent-free
basis)
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line is, however, allowed. The latter was taken into consideration approximat-
ing the diagrams of enthalpy vs. concentration in rectification, or the solvent
content on a solvent-free basis vs. concentration in countercurrent extraction
by chord polygon.

The idea of approximating the diagrams mentioned above by straight
lines to facilitate calculations originates from KirscEBAUM who supposed that
the equation of the curved operating lines can be written using the difference
of the heats of evaporation of the two components of binary mixtures if the
heats of solution and the sensible heat can be neglected. Also the calculation
of the operating line by BriLrLeT, reported by Kirscasauwm [10], is based on
this idea. For further details cf. [11].

The assumption of KiRscEBAUM can be demonstrated to be identical
with the idea applied in our work, namely that the enthalpy vs. concentration
diagram can be replaced by a straight line, or by straight seetions.

In [3] the heat of solution was taken into consideration by approximat-
ing the enthalpy curve by a chord polygon instead of a single straight line.

Systems of equations for the calculation of the number of theoretical stages
for the general extractor

The basic model chosen for the determination of the number of theoret-
ical stages is the so-called “‘general’” extractor with two feed solutions as
defined e. g. by TREYBAL [12] (see Fig. 1). In the extractor the raffinate phase

* With our symbols the integral of Lewis takes this form:

V= i d L
]\"“\ff(x)—g(x) 7
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A 4 C is in countercurrent contact with the extract phase B - C where C
is the substance to be extracted. The common countercurrent extractor, the
extractor with reflux and the rectification column are considered as special
cases of the general extractor.

To determine the number of theoretical stages the phase equilibrium
curve and the curves defining the phase amounts are given in co-ordinates
introduced by JAENECKE and PoNcHON-—SAVARIT by means of an interpolat-
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Fig. 2a and 2b. Approximation of the smoothed-out curves by chord polygons

ing formula describing the smoothed out curve passing through the experi-
mental points and these are approximated in the (x4, x,) range by a chord
polygon of (v -+ 1) linear sectioms connecting the points of abscissae x
(t=1,2,...,v) chosen adequate close to each other (Fig. 2 a, b).

Hence x,y=x, and xy,,, == x,.
Let
y = Kix + Kj (t=0,1,2,...,%)
Xoir1 < x < xy; and K % 0,

be the equation of the linear sections of the phase equilibrium curve obtained
in this way and
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B = Bjy + B} (t=0,1,2,...,%)
and b= bix -+ b} i=0,1,2,...,7%)

X4 = X X X
be the equations of the linear sections of the curves defining the phase ratios
of extractors. The number of theoretical stages p; (i =10,1,2,...,7) fixed

by each section is to be determined. For this purpose the following parameters
of the entire apparatus should be given:

Ly, To» by

T9 Xy bT

Voa Yoo Bo (01‘ Q}ﬁ,H)
Lm Xn

where L, is not known, but may be calculated. Symbols are defined in Fig. 1.

Conecentrations and matevial flows referring to each stage are denoted
by double subscripts. The subsecript pair p,_;, » — 1 corresponds to the k-th
stage where the feed proceeds, while the subscript pair p,, » corresponds to
the last (n-th) stage, and the concentration with the subscript pair p;, i the last
stage of each group referring to a linear section is equal to the concentration
marked with zero subseript of the next group:

Xpii = Xoir1s Ypui = Youdrr (E=0,1,2,... ,¥).

The corresponding material-flow rates — whose values, of course, are
not known in advance — are L, = L LPi’i =Loit13 Vo= Voirr (i =
=0,1,2,...,%). Thus, the equations of balances for each group of stages,
are as follows.

Material balance of substance C:

Lg%y + VieY1o — VaoY20 = Lg%,
—Lyg%19 + Lag¥ag + Vao¥20 — VaoYso =0
—Lyg%aq + Lygag + Vao¥so — VioYso =0
—L pa-l,Oxpo—1,0+Lpo,0xpo,0 + Veooy 0™ Viyn =0
—L px—:,x—prx—z,x——2+ Ly, 1% TV 1Y 11— V2,x-—-1y pu—1 =0

" 1 - : —
'_pr..l—-l,x-lxpx-.x—l,x-—l [ pr—;,x—lxpx—-x,x——l 1 Vpx-x,x—l.ypx—x,x—l Vl,x.y Ix — TxT

"Lpu.x’,v_l,xpv~1,v—1+Ll,vx1,v + Vl,vy Ly VZ,vy 2, =0
1 —
- py—2,xaxpp—-2,v+Lp,r—1,vxpr—1,v TV oY1= VooV pow =0
‘pr-l,vxpp—l,v + 4 ,vypv,v = VO:YO_
— X
nwn

(1)
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Material balances of solvent B

Lyo(boxio + b5)  + Vie(Boyio + Bo) — Vao(Boyao + Bp) = Lo(bjx, + be)
— Lyo(bgx1o + b5) + Log(bo%ag + bg) +

+ Vao(Boyao + Bp) — Vio(Boyso + Bg) =
— Loo(bi¥ a0 + b5) + Lso(boxse + b5) +

+ VaolBoyso + Bg) — Vio(Boyso + Bg) = 0

Lpu—-l O(b()xpa—-l o+ bo) + LpoO(bOxpoO -+ bg) -+
+ Vo Boyp + B) — Viu(Biyn + Bi) =

- pr-—:,x—“l( ;—Expx-:,x—‘." + b"——z) + L r-—-l(bx——lxl x—1 T bﬁ_l) -+

+- Vl,%—l(B;—lyl,x—l + Biy) — Vo im1Y2x—1+ Br) =0

~pr—x—1 7—1(b/—1' px— %——l+b/—l) Lpr—:,x—-l(b::’—lxpx..x,x-—l I b::-—-l) +
+ I/px._x,x-—l(Bx——l.z PRty B:"—l) - Vl,x( ;3’1,7: + BZ) = T(b/c-—lx’]‘ Ey b”—1)

- Lpu—l’,u~1(bx'»—1xp,,—1,v~1 + b)) T+ L1 v(bllaxl,v + b,) +
+ ViuBoyr, + BY) — Vo oBiya, + BY) =0

- Lpu—z,v(bxlzxpu-z,u ':— b,:’:) '1‘— pr-l,v(bz,zxpu—l v + blxl') +
+ Vior1alBoY pm1o + B) — VB p,,n + BY) =0
- Lpp——l,v(bx,»xp;r—l,v - b”) pgv(vapp,v BZ) = , - n(bvxn + Z)
(2)
The quantity Q' on the right-hand side of the last equation in system (2)
refers — in the case of extraction — to the process producing the solvent and —
in that of rectification — to the vapour phase. In the case of

a) general extraction — Q' is the amount of solvent required to produce
the solvent phase ¥ in equilibrium with the phase L,:

Q" = VoBy

b) extraction with raffinate-reflux, —Q’ is the solvent content of the raffi-
nate-reflux L, — R in the solvent, i.e. extract phase; and



340 P. ROZSA and GY. SARKANY

¢) rectification — Q’ is the heat quantity transferred to the reboiler.
Hence, from the total enthalpy balance of rectification

Q' = D(Hyxp -+ HY) + M(hxy + k) — Thy + Lo[(H) — hi)xp - HJ — by

This has to be considered in the case of rectification where ¥ ;= 0.

If in the systems of equation (1) and (2), the I-th equation is replaced
by the sum of the I-th, (I + 1)-th, ...n-th equations ({ =1,2,...,n), and
if the equations:

Vi=L_,+ 6
Gl = 8II{T -+ I/‘0 - Ln °
o (1, if k—1>0
O == .
0, if k—1<0
as well as the equations y = Kyx + Ki; B = Bjy + B} and b= bx + b}

are substituted for (1) and (2), then — after rearrangement — the following
systems of equations are obtained:
(Lo, + G)Kyxy = Ly xg; + Txg + Vioye — Ly, — KiG; — KL,
— Ly, + (L + Gy) Ky =

= Tx; + Vyyo— L,x, — KiG, — KL, ; 3)
pr‘-—l,ixpi—l,i -+

-+ (Lpi—l,i + Gi)Kixpil,i = Txr + Vo'}’o — Lyx, — -K G; —

Ly
(Lo; + G)BiK;x,; = Lobixg; + Ty + Q" — L, (bx, + b)) —
- (B + BY)G; + (bf — BiK; — B)Lo; —
Ly by 4 Ly & GYBIK oy =
=Tby + Q' — ( on + by) — (BiKi + B{)G; + (b — BiK; — B})L,;

- Lp;—l,iblixpf——l,i T (Lpi-—l,i + Gi)Bli‘Kixp:i =
=Tbr+ Q" — L,(b'x, 1 b}) — (BiK’ + B{)G; + (b — BiK; — Bi)Lp 4 ;
i=20,1,2,...,v

In (3) and (4), the values of x; and Lj; are unknown (j =1,2,...,p;)
and the number of stages rought for: Xp; in the range (x,, x,) can be calculated
as a function of T, xr, by, Ly, 2, Vi ¥» %, The parameters K, K}, B}, B, b}
and b] (i =0,1,...,¥) required for the calculation can be taken from the
diagram (or calculated by computer).
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The calculation refers to the general extractor fed at the k-th stage
(cf. Fig. 1). The physical state of the feed is now defined by br (in the case of
extraction by is the content of substance B in the feed, in the case of rectifica-
tion its enthalpy hr). This quantity determines the partition of T between
the phases L and V. In [3] this partition was determined by the well-known
quantity g, according to which the following relationship holds between g and
br:
_Bler) —br_
B(xr) — b(xr)

It should also be underlined that for the sake of simplicity it has been
assumed that L, and ¥, are in a state given by the corresponding curve of
the solvent and enthalpy diagram, resp., i.e. the solvent content of L is

q:::

"

by = bgx, - by,

and hy = hjxy + hy ete.

Solution of the systems of equations

The systems of equations (3) and (4) are linear in the concentrations.
However, the coefficients L;; of the concentrations are also unknown. The
aim is to determine the number of equations in the systems. The solubility of
the problem is provided by the structure of these systems, namely they are
divided into v + 1 groups where the quantities characterizing each section of the
functions approximated by chord polygons, i.e. K;, Kj, B}, BY, b;, b, are
constant. The principle of the solution is as follows: from the systems of equa-
tions (3) and (4) written for each group of stages by eliminating the concentra-
tions xj;, a system of non-linear equations is obtained for the flow rates L.
From this system of equations, a fractional-linear recursive formula is obtained
for Lj;. Using this formula and taking into consideration that the concentra-
tions x,; at the end of the linear sections are known, the number p; of the
equations in each group can be determined explicitly.

Dividing each equation by the coefficient of concentration x;; and intro-
ducing the symbols

1

S1= o (&Tr + Voyo — L) S;=
. i
(t=0,1,2,...7)

and the nilpotent matrix L; = [l;;? ] of order p; in which all elements but

(8, Tbr + Q" — Lyby) »  (5)

o j=2,3,...,p;
i —hif__l_’ﬂ_ J )3, > Pi (6)

ML+ G)K, i=0,1,2,...,;

3 Periodica Polytechnica Ch. XVIIf4.
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are zero; further introdueing the vectors

=Ll G=1=| ol Q)

(Lj—1,: + GHK;
gi={gﬁ]=[__if:zi-—] j=L2...p
(Ljey,i + GHK; i=20,1,...7

and the unit vector e, whose first element equals 1 and the others are zero, the
following matrix equations are obtained for each group of equations in (3)
and (4):

Loixo;

(E - Li)xi = m € “lr Gi(sf - Icll)fz — K/lgl . (8)
(11 ) i

[P et = et e[S~ B+ B~
B; B; (Lo + G)K; B; (9)
B — b

—[&i+
B,

)gi (t=0,1,2,...9).

The unknown Lj; values occur — besides in the coefficient matrices of
the concentrations — in the components of vectors f; and g; as well.

[Making use of the fact that the molar flow rates above and below the
feed point are constant, Eq. (9) is identical with Eq. (8) because the diagrams
B and b defining the solvent content of the individual phases, and the two
enthalpy diagrams are two parallel straight lines, i.e. B} = b} and Hj; = h]
respectively.]

Premultiplying Eq. (8) with matrix (E — L;)~1, the expression obtained
for x;, and substituting it into Eq. (9) vields a single system of equations
(with p; unknowns) where the L values are the only unknowns. Taking into

pi—1
consideration that L; is a nilpotent matrix and hence (E — L)~ = 3 L,
me==0

it is seen that

E— bi Li) (E - Ll_)—-l — _IQ_E!T _Bi’___:_b’_(E — Li)——l
'- B; B;

i

and the following system of equations is obtained for the Lj values:

[ bi E _%__ Bi " bi (E . Li)—-l:l l:__.._‘meo—l_ €, ._ll_ Gi(si —— K:)f[ —— K:gl] B

B; B, Lo — GK;
L 7 NN % T T (K + u} g
B} (Ly; + G)K; B; B;
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After arrangement premultiplying with matrix (E — L;) and introducing the
symbols

and
Ag; = (B} — b)) Ki + (B: — b)) (11)
after rearrangement the following equation is obtained:
(B ) e G (B — b = (12)

=L;[4xg + Gib; + Axg) €]
Since in the first row of the nilpotent matrix L; all elements are zero and all

but the first element of vector e, are zero, too, the first equation of the system
(12) becomes:

(B: — b) Lossor + GiB; + (BY — b)Loy = 0 13)

This equation relates the known x, and the unknown L values.*

Taking into consideration the structure of matrix L; (cf. Eq. (6)), a
recursive formula is obtained for the Lj; values from the other equations of (12)
owing to the fact that the elements of matrix L; are identical with the elements
of vector g; if the first element of the latter is omitted. Since the non-zero
elements of matrix L; lay immediately below the main diagonal, the vectors
L;g; and Lf; are obtained in the following form:

Lgi = [gjigj—l,i]o(g—-1,i =0) } j=012,...,p;—1
L = [gifj-1.1]s (f=,i = 0) i=0,1,2,...,.

Thus the other equations in the system (12) are:
GiEifji + (B — b,;)gji = gji[AK{gj—Li + Gi(l;i + -AK;)fj—l,i] .

Replacing fj; and g;; by the Lj; values according to (7), the following relation is

obtained:

GiBi + B;’ — b = AK;“LJ'—-—LI' + Gi(bi =+ AK{) , j= 1,2,... VP — 1.
(Lj—1,i + GHK;

ji
Introducing the symbol

A; = Ag; — KB} — %) (14)

* Eq. (13) can be obtained from the material and solvent balance (enthalpy balance)
for the column part between the i-th and n-th stage, i.e. from the comparison of the correspond-
ing equations in (3) and (4) too.

3%
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the following fractional-linear recursive formula is obtained:

_ i i (15)
L K L K
G:B; G:B; B,

Since there is a simple explicit relation for solving linear recursive formulae
by using appropriate transformation, Eq. (15) should be linearized. This is
done by a simple shifting. Introducing the expression

_1.__ instead of L
L Ly
G:B; G:B;

1 _ A, . B . 1
Ly L K, +wd, (K;+wd) L_,;

GiEi GiBi Bi(Ki ‘T u]Ai)
Choosing w to satisfy the equations:
_ K; -+ w(b, + A4)

w e (16)
B{(K; + wd,)

a linear recursive formula is obtained for the expression

_— 1____
j_l - W
G;B,
namely
b,
1 4 3 1
=t = : 17
L] . Ki ":" 1044,‘ (I{l ":“ ‘lUAi)“ Li—-l,i :
e - W = 7 W
G:B; G;B;
From Eq. (17), the value of w is
. 1 7 B VT SO 2 23
wE = TiF [b; — KB; + A4; + V(b; — K;B, + A - 44,K.B]. (18)

The dependence of w on ¢ and that of u and v in (19) will not be referred to
in the following. Eq. (17) is a linear, first-order difference equation with con-
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stant coefficients. Its solution can be given by considering some simple matrix
relations. Writing the difference equation in the form of system of linear
equations and introducing the symbols

BiKi x
— - - = - s
B(K, — w* A
A; -
e ), (19)
I<i - 10';4’1[
1
Zj e Y
L, .
L
GB;
neglecting the superscript - for the time being, the system of equations (17)
can be written in the form
=ulv — 1)+ vz, . (17
Introducing the unit matrix E of order (p; — 1), the nilpotent matrix N = [n,;]
of the order (p; — 1) whose all elementsbut n,, ;, =1(z=2,3,...,p; — 1)
are zero, the unit vector e; of (p; — 1) order, the vector e with elements solely
1 and the vectorz = [z;] (j = 1, 2,..., p; — 1), the system of equations (17)

takes the form

(E — oN)z = vzye; + u(v — 1e.

Hence, since

1 .
v 1
pi—2 v* v 1
E—oNt=SeNr=|" .
m=0 . . .
| prim2 ypid 1

the following expression is obtained for the elements z; sought for:
5= (u + s/ —u, G=L2,....,p;— 1. (20)

Resubstituting the symbols (19), the unknown values of Lj; as functions of
L,; can be obtained in explicit form, while knowing x, values of L; are cal-
culated from Eq. (13). The numbeér of stages in each stage group, i.e. the
values p; are required. The first equation of any group of stages can be written
as the last equation of the preceeding group, i.e. the points dividing the equi-
librium curve and the other diagrams into linear sections may be considered
as belonging to the section to their left or to their right. If the system of
equations (17) is completed by a p;-th equation in which L,; = L., and the
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latter is calculated from Eq. (13) by means of x,;,;, then the solution of the
system of equations (20) is augmented by a p;-th relation:

Zp = (U + 5P —u. (21)

A simple relation existing between z, and L, ;, p; can be derived from Eq. (21):
P g 7 pui» P q
In 2" 2 T Z

u -+ z
piz.__I_L. (22)
In v

Expressing Ly; from Eq. (13) and substituting this into the formulae for z,
and z,, then, introducing the symbol

4; = (Bi — bi)xy; + (B — b)) . (23)
the expressions
1
Zy = ]
w— PR —
4;
and
S 1
pi T o
wF — 1 . i+1 Gi+1

Ai+1 El Gi
are obtained. Substituting them into Eq. (22), using the symbol

B, ¢

EH~1 Gi—}—l

and performing some transformations, the following equation is obtained:

Hwi + {J crdig — 1] (w*d; — 1)
\ u=

e

In 1 -
[[wi +— J 4; — IJ(wirA[.H —1)
u®
pi= " . (24)
Ino=
Consider that from Eq. (18) )
K, +w*d; = —2‘%—“ [5:' 4+ KB+ A4; + )(_51 + KB;+ A;)* — 4K;Bb;]
i
and
1 1

= = [Ei + I<i§i +4;F V(l;i + K;B; + AP — 4KiEi5i] >
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hence:

1B
I(i —: 'lUiAI' 1—{1‘5[

(K; +w*4); (25)

then, substituting these into Eq. (19):

vE = b + KiB; + A4; T (b; + K;B; + A — 4K;Bb, (26)
b+ KB, + A+ V(b + KB, + A — 4K,B}b,
and since — also from (19) —
R
1 B, (K;+w*d4)y
ll;i .4.1' - ’
K+ w*4,
utilizing Eq. (25), we obtain
— = wF — w*.
u=
Substituting this into the expression (24) for p,,
In (w*d; — D(wrd;,, — 1)
wird, ., — DwF4;, — 1 -
pi = ( +1 )( ) (2 ()

Inv*

is obtained. The expressions of v~ and w™ as well as 4, are given in the formu-
lae (26), (18) and (23). Further symbols occurring in these formulae are given
in (11), (10) and (5). From Eq. (27), the uniqueness of the result is evident
since it is identical irrespective of the value of the roots in expressions for
v* and w™ being chosen positive or negative.

The number of stages in the column section above the feed point is
given by

#—1
k= 3pi, (28)
i=0
the number of stages in the column section below the feed point by
n—k= EP,- . (29)

fe=2

Applications of the results for numerical ealculations

Introducing the symbols
@; = (b; + K:B; + A4 — 4K.Bb; (30)
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and
0;=b; + K;B; + 4, (31)
Eqgs (18) and (26) can be written in the form:
1 . — —
lui TR e bi it I{lB ';— _41‘ ":“ /[ i
2A,-B,~( i + V)
vi . 0; “T‘ 1@
o+ Vo

noting that Eq. (27) can only be used for ¢; >> 0, but neither for ¢; < 0 not
for B} — b; — 0.
If ¢; << 0, Eq. (27) can be written as follows:

— oy
ar th 2 A —arth I'e SiE
b, — KB, + 4, —:-A'—-i% b; — KB, + A; —T
;= i+1 i (32
r 7o (32)
arth — a
b+ K;B; + 4;

It is obvious that for g; < 0 the function ar th hecomes arc tan, leading to
the expression

. /| — .
arc tan V=9 A B arc tan I ! 515
b—K.B,-~4,— :Tll b,—K;B;+A4,— -T
., A,
P,‘ — I+1 ! . (33)
aro tan — 1 — O
b;+KB;+ 4;

In this expression it is effective to calculate the sum Xp; by increasing the
number of chords to a value where the difference between two successive
sums is less than one theoretical stage. At the beginning of the calculation,
the number of chords has to be chosen so that no chord intersects, or is tangen-
tial to the operating line, since this would yield infinite number of theoretical
stages.

Considering the case where the difference B; — b; is zero and substitut-
ing (18) and (23) into {27) we obtain

0i+ /_—; ’ 7 + 1_ ’ 7 +
| T L L
n :
Ve, , 0. Vo,
atlon 1 p opyor, ST owywr
2B, ' 2B
pPi= ' : = : (34)

In vf
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where
Ve,
oF — 1 [(91' Vo K,-} x,~———K§]
B L\ 2B,
(35)
i(0; TV,
F= ! UQ’ _hp' — Ix,] x; — K
B — 5 Ll 2B,
Considering that
9 —_VE 1= 2(B; + {_{il;i —;_Qz) ) (36)
2B, o;— 2B, + Vo,
and
B, + Kb; — 0; = (B — bi)(s; — K;s; — KJ) (37)

the expression in the numerator can be reduced by the difference (B} — b7),
to lower terms and hence, using the symbols

2B,

{

and

i p— —=
o = V¢; — 2B;

the final result is written in the following form:
| Uf £ 0L b0F Wi V]
UF +(Bi— )P, Wi+ ¥F

p- _— ! - . (39)
0; & V‘Pi

The advantage of Eq. (39) is that it is suitable for numerical calculation,
however small the difference B; — b} be. Obviously for B; — b; = 0, the final
result will be

In —-———~—W’i + -éi
x =
= PR (40)
In vf

This expression is identical with the result published in a previous paper [2]
of the authors.
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Substitution of the approximating sum by integral

The sums (28) and (29) obtained for the number of theoretical stages
can be substituted — under certain conditions — by definite integrals, this
being an advantage for the numerical calculations. When the number of
stages is large enough to consider the phase equilibrium curves and the curves
determining the phase conditions i.e. the operating lines as straight lines
within one stage, it is sufficient to consider the first term alone when expand-
ing in series the above logarithmic functions. The expression Xp; may be
regarded as an integral approximating sum and replaced by the integral.

In the foregoing the sign - referring to the ambiguity of the square
root has been indicated. This ambiguity — as already pointed out — is, how-
ever, ostensible only. In the following none the less the minus sign is used only
since then the limit of the integral approximating sums can easily be obtained.

Thus, from the numerator of (39) leads to the approximative formulae

Ll PO — i) A
14 P B o B #0000 (1)
UG + (B — b)ois) UL+ (B — 0ol
and
Y- i) 1
1n[1 B Mkl > } ~ @O — W) <0, (42)
W) L P W) P : !
Introducing the symbol x; — x;,, = 4dx
M[Ug—m + (1 — K)dx]
(Bi — b)(@{ — D) _ B — b}

(=) 1 (Bh— p)DIT) Y ?
VR B e L BV e 1 (- K, — K]
Bf — b

(43)
and since W = Fl_bT - U, where U is the conjugate of the expres-
P 0
sion Ug")., hence
Biz b [Udx + (1 — K;)dx]

PO v B b ”

P Lpey b —

PEAET o+ SR 00+ 0 - Kpe— K]

i— b

(43) and (44) being each other’s conjugates if ¥ = x; = x;, ;. Therefore summing
over i in (34) and taking the limit of it, the integrand obtained is a fraction
whose numerator is the difference of complex conjugate expressions for
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@ < 0, i.e. a pure imaginary one and its denominator is a pure imaginary one
as well, hence the integrand is a real one.
The imaginary part of the right-hand side of Eq. (43) is:

/o,
Im Ui = - —1‘&’
introducing
B; — b

the following expression is obtained for the difference of (43) and (44):

ey
a; - lﬁﬁ 1 — K, + a,K)Adx

i

D b p. (1-Lqa. S " Y ot . ‘1
Bt Kby 4 g a0 =Kl o _op)+ af1—Kpe—K7)
B; B,
(45)
Since the denominator of (39) for ¢ < 0 is
0; Vo, — o,
ln 9i 1 P: = 927 are tg'—& , (46)
V—‘Pz @i

reducing by 7 it yields the following form for the integral approximating sum:

< 1K + aK) — 9, - dx
— Jp—
are tgy%ﬁ{(s—Ki%K JB —b)(L+ax) —o1+ax)(Kw+Ki—x)+  (47)
+ B(Kx + Ki — )| a(Kix + K; + x) + 2]}

For p; > 0, a similar formula is obtained:

> (L — K+ aK)lp - 4=
1o 2 ;i I {5 — Koo — KB — b1+ a) — o1+ am)(Kert Ki—2)+  (48)
+ B{Kp + K;— x)[af{Kx + K} + x) + 2]}

Taking the limit of (47) and (48) for dx — 0, the quantities occurring
in these integrals can be interpreted on the basis of Fig. 3 as follows. Increasing
the number #x; of the dividing points, the limit position of the chords of the
curves y = f(x), B = B(y) and b = b(x) become the tangents of the curves
at the corresponding points
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and
B=B(y)—(y—s)(B)—S
b = bx) — (x — s)(b’) — S
y =fk) =K -2+ K;y=K; K=y—y -x (49)

Il

0

Y —8) 4 (B~ S) — by —5) —yBlx—s)
p =g — 4y’ Bb

can be substituted. Following integrals are obtained from (47) and (48):

R ek -
1 e ¢ dx, (50)
2 V=9 G—S)y—29—(B—S)x—s)
v arctg ————
Xn Q

and

J 2 2 dx (51)
Letly E=S—9—(E— S

% )

If B’ = b’ then the expressions for p and for ¢ = p> — 4 KBb take the form:

B+yb+ (B —b)[y(s—x—(s—y] and

p=0"—4y Bb=B -y bP+2B+y by (s—=2— (52
— (s =B =)+ (B = bP[y'(s — %) — (s — 3)P.

Substituting these into (50) and (51), the generalized Lewis integral applied
in (2) and (3) is obtained.

By expanding in series the first factor of the integrands in (50) and (51)
or ¢ — 0, formulae suitable for calculation are obtained.

Il

f

Application to countercurrent extraction, refluxed extraction and rectification
(Specifying conditions)

In the simple extractor (Fig. 3a) the molar flow rate of phase E (extract
phase) on a solvent-free basis is V. This flow consists of pure solvent, when
B(y) = oc, or of recovered solvent containing 4 and C, but in the latter case
— according to the assumption made — the point representing is lying on the
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curve B(y). This is described by
Q"= VoBy= Vo(B,yo + B)

i.e. the solvent contains the substance C to be extracted at a concentration y,.
Applying pure solvent Q" may be substituted into the definition formula of S;.

(Phasek) (PhaseR) I
‘/7:5’7? i1y, Xg Condenser
Sotvent | V_ )
recovery D | [_Cooling
s — ooy
Vi —£
0 i
i ; ZL/M7
,vl—wl. 2
i
! | L A Barersirss
i
f T, X1 & %7 X
I £
- 1
i
b

o
[—g’z—' 'L,, Q'{Phasefj (PhaseR)
)

|

]

2

Fig. 3a. Simple countercurrent extractor
Fig. 3b. Extractor operating with extract and raffinate reflux
Fig. 3c. Rectification column

Following conditions have to be considered for the calculation of the theoretical
stage number:
T=0; Q =VyBy + B);
— Voyo — Ly ; S — Q" — Ly(byx, + b)) )
Vo— Ly Vo— Ly ’
A; = (Bi — 0)Ki + (1 — Kj)(Bi — by);

by="bs+b—S; B;=Bs+BI—8.

S

Calculating with the integral, 4 vanishes; b(x), B(y), ¥ = f(x) and their deri-
vatives, as well, are obtained by interpolation formulae fitting the experimental
data as closely as possible. Hence ¢, o, B(y) and b(x) can be calculated from
Eq. (49).
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Since L,, encountered in the formulae for s and S, is usually not given,
its value has to be calculated from the material balances referring to the
total extractor.

Extractor operating with raffinate reflux and extract reflux (Fig. 3b)

Conditions:
%n(= yo) = %} Vo=1L,—R;
X == Y10 = XE} V=L, + E;
Q' = VBl + BY).
The value of L, being unknown, ¥V, is unknown as well, therefore no
direct substitution of the above expressions can be applied. Calculations can,

however, be performed making use of the material balance of substance B
over the entire apparatus, using the relationship:

Qs = VB, yo + By) = Vie(Boyio + Bo) + Ln(byx, + b5) — Lo(boo + bg) — Thr

and the definitions of s and S:

s

— &, Txy + (L, — Rjxg — L,xp _ |3E above the feed point
&, I+ (L,—R)— L, xr below the feed point

_ 8, Tbr + Vio(Boxz + By

&.T + (L, — R) — L,
1 Lalbysg + ) — Tor — Lolbyeg + bg) — Li(biwp + b3) _

&,I'+(L,—R)y—L, :
_ (8, — DTby + (Ly — E)4x, + E(bgx + bp)
T—R

The values of A;, b; and B; are obtained from Eqgs (14) and (10).
Using integral (50), the remark on page 353. is valid for the calculation.

Rectification
Conditions:
Xy = Xpr3 Vo=0; L,=M;
Xp=Y10 = %D Vie=Lo+D.

The heat Qp transferred in the reboiler is calculated from the enthalpy
balance (see page 340.): '

Q= (Lo + D)Ay, + D(kiep + b)) + M(bip + k) — Thy .
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Thereby the values of s and S corresponding to the expressions for the refluxed
extractor are obtained in the form:

s | %D above the feed point
x5 below the feed point

(&, — D)Thy + (Lo + D)4y, + D(hgxp 4 hy)
T — M

S =

@
Oin
The values of 4;, b; and B; are obtained from Eqs (14) and (10).

The remark concerning the calculation with the integral is valid here, too.

Example for the application of the integral

Calculating the number of theoretical stages of a simple countercurrent
extractor using the integrals (50) and (51), the system A, B, C is not real,
the diagrams characterizing the system are arbitrarily chosen typical curves.
The calculation refers exclusively to the “geometry” of the problem, i.e. in

Fig. 4 — in addition to the curves — the valuc of S and its abscissa was
15
10
51
0= P
P
06 L/ < /A

o/
02 /
o/

0

0 o1 02 03 0Ot 05 06 07
Fig. 4. Graphical solution of the example
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chosen arbitrarily as well, to eliminate using values for the initial flow rates.
Specifying the data on countercurrent extractor on page 352. as follows:

Initial concentration of the raffinate

(on the binodal curve) x4 = 0.200,
Final concentration of the raffinate x, = 0.020,
Ratio of flow rates characterized by S = —17.00
Extraction with pure solvent, i.e. s = x,

the interpolation functions of the curves in Fig. 4 are (for explanation, cf.
Fig. 2a):

B=B(y) = —15.00 y -+ 15.00 (straight line within the range calculated)
b= b(x) = 0.363 e™3155*"
y= y(x) = 1993 20908 ___ 3 450 x2-371

The detailed data of calculations are presented in the following table:

1=
S (b— S)y — s} — Integrand
x 4 L | pm— S
arc tan T—¢ — (B S)=—s)

x, = 0.200 31.810 --30.130 1.0098 0.31338 51.25
0.190 32,387 | —20.484 1.0093 0.29839 34.77
0.180 32,939  —28.828 1.0088 0.28340 58.63
0.170 33.468 —28.200 1.0083 ) 0.26879 62.78
0.160 33.975 —27.634 1.0079 0.25490 67.17
0.150 | 34.461 —27.157 1.0076 0.24207 71.72
0.140 ! 34927 | —26.796 1.0073 0.23062 76.28
0.130 | 35.376 —26.571 1.0070 0.22085 80.65
0.120 35.809 —26.501 1.0069 0.21304 84.62
0.110 36.229 —26.604 1.0067 0.20746 87.90
0.100 36.637 ~26.897 1.0066 0.20433 90.25
0.090 37.039 —27.397 1.0066 0.20387 91.44
0.080 37.438 —28.129 1.0067 0.20624 91.37
0.070 37.840 —29.124 1.0067 0.21154 90.04
0.060 38.255 —30.431 1.0069 ? 0.21984 87.60
0.050 38.696 —32.130 1.0071 : 0.23108 84.32
0.040 39.186 —34.358 1.0074 0.24502 80.56
0.030 39.770 —37.371 1.0078 0.26117 76.73
0.020 40.547 —41,703 1.0084 0.27838 73.44

Integral calculated using the method of Simpson, yields the number of theoret-
ical stages

n = 13.997.
A value between 14 and 15 is obtained graphically.
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Summary

Following a definition of the double fed *“*general extractor” given in [2] the multistage
countercurrent extractor, the countercurrent extractor operating with raffinate and extract
reflux and the binary mixture rectification apparatus are considered as special cases of the
general extractor. For the numerical calculation of the number of theoretical stages or plates
an integral approximating sum is derived. In the present paper the restriction that the opera-
tion line is a straight one, is omitted and a general analytical method of caleulation is given for
the determination of the number of theoretical stages of the countercurrent separation methods
mentioned above. The assumption is made that in the case of extraction the equilibrium dia-
grams and the diagrams describing quantitative phase conditions on a solvent-free basis, or
in the case of rectification, the equilibrium and enthalpy diagrams are known. An example was
given for a suitable interpolation formula describing the diagrams.

Symbols

A Solvent carrying the substance investigated

B Extracting solvent

Cc Substance to be extracted

Aot Bmot:Cmel Quantities of 4, B and C in mols

B Molar ratio of substance B in phase V on a solvent-free basis
Molar ratio of substance B in phase L on a solvent-free basis

B(y) and b(x) Interpolation functions describing the quantities of substance B in the extract
phase and reffinate phase, respectively

H(y) and h(x) Interpolation functions describing the enthalpies of the vapour phase and liquid
phase, respectively

by Molar ratio of substance B in the feed T on a solvent-free basis

D Molar flow rate of the destillate

E Molar flow rate of the extract

H Molar enthalpy of phase I”

h Molar enthalpy of phase L

k Number of feed stages

L Molar flow rate of the phase where the concentration of the substance of intex-
est decreases (raffinate phase expressed by A-C)

M Molar flow rate of the distillation residue
n Number of theoretical stages
Q’ Amount of substance B required to produce phase ¥ (in the case of rectifica-

tion, amount of heat transferred in the reboiler)

q Fraction of feed joining L

R Molar flow rate of raffinate at outlet

T Molar flow rate of feed

V Molar flow rate of the phase where the concentration of the substance investi-
gated increases (extract phase expressed by 4+C)

x Mol fraction of the substance investigated in L

¥ Mol fraction of the substance investigated in

y = f(x) Interpolation function describing equilibrium conditions
y = g(x) Operating line

8 , e 1 for £ — [ > 0 function of unit jump

LA 0 fork—1<0

E Unit matrix

e, First unit vector

4 Periodica Polytechnica Ch. XVIT/4.



358 P. ROZSA and GY. SARKANY

List of indirect symbols

Page No. of formula
4; 343 (14), (1)
B, b 343 (10)
4; 346 (23)
G; 340 —
i 346 (24)
Sirs; 341 5
o 343, 347 (19), (26)
w; 344 (18)
K, K’. —
B’ B } 337, 338 -
bi, bf -
U W; | 340 (38)
o, P, o (35)
a; s i
o; 347 (30)
0; 348 (31)
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