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Introduction 

The stoichiometric constraints of the chemical reactions in closed systems 
exactly determine the changes of composition. If the composition is given as a 
point in the mole numbcr space spanned by the mole numbers of the partic­
ipant molccule species as co-ordinates, then the stoichiometric constraints 
determine the path of this composition point ("reaction path"). The coruposi­
tion can also be given not only by the mole numbers, but also by the mole 
fractions, as a point in the "mole fraction space". The dimension number of 
thc mole fraction space is smaller by one than that of the mole number space. 

In case of a single reaction with the analysis of the reaction paths it can 
be proved that they are forming a straight line set starting from a common 
focus point [4.]. This focus lies outside the composition range. In the case of 
fully or partially stoichiometric compositions, the reaction lines lie in subspaces 
of the mole number space. The fully stoichiometric subspace is a one dimen­
sional space, a characteristic reaction line. The points of intersection between 
the stoichiometric line and the boundary of the composition domain, repre~ 
sent two further characteristic points of the system. 

In the follo·wing the general propertics of the chemical reaction lines will 
briefly be summarized and the quite general derivation of the three main 
characteristic points ,,,ill be given. It will be shown that the locus vectors of 
these points can simply be formulated with the aid of the stoichiometric co­
efficients of the chemical reaction. 

1. The chemical reaction. Definition and invariants 

Chemical reaction is termed a process of transformation of some molec­
ular species into other molecular species leaving unchanged all the atoms 
(that is, nuclei) of the molecules. If the atoms are undergoing a change, then 
a nuclear reaction can be spoken of. In most cases, invariant parts can be not 
only single atoms, but also groups of several atoms. These invariant parts are 
termed the "radicals". Consequently, a radical may be a single atom. Any 
molecule can be considered as composed of such radicals. 

5* 
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In this sense the mole weight of the k- th molecule species lYh can he given 
as 

k-I" K ijI - ,-, ... , 

" :;; g = 1, 2, ... , G 
(la) 

where 1\1:;; IS the "radical weight" of the g-th radical (for a single atom 
the atomic 'weight) 

A:;;k the number of the g-th radical III the k-th molecule species, 
a positive integer. 

Considering geometrically NI,. as the k-tlz element of the K-dimensional 
vector M,c, lUg as the g-th element of a G-dimensional vector 1\1:;; and I.:;;,: as an 
element of the matrix A having G rows and K columns, (la) can be 'written in 
the form of a matrix equation 

where the matrix 5: is the transposed of the matrix A: 

c'" 
... , J",) (J.u 

A ). = : 
)·Gl, ... , ;'GK ;.1\1-

Matrix ).,named "radical-numher matrix" can be 

lying rectangle matrix, if 
quadratic matrix, if 
standing rectangle matrix, if 

G<K 
G=K 
G>K 

... 

... , 

(1 h) 

)'10 ) 

I~I\G . 

The quantity of components (molecular species) will be given h y the 
mole numbers 11". Then the vector llk with components I1k, characterises the 
composition of the system as locus vector of the "composition point" in the 
mole-number space. In a similar manner. 11:;;. the g-th "radical-number" gives 
the quantity of the g-th radical and llg vector with components I1g characterises 
the "radical (or atomic) composition" of the system. 

The relation between mole and radical numbers is given by the following 
vector equation: 

Ilg = A . Ili:' 

In closed sYstem two main halances can be formulated. 
The weight balance: 

1\:1" . dIl/i = O. 

(2) 

(3) 
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This equation means geometrically that the scalar product of the mole-·weight 
and of the mole number change vector is equal to zero, the two vectors are 
orthogonal. 

The invariance of the quantity of radicals can bl' formulated as follows: 

(4) 

what means: the displacement-yector of the composition point dnl; is orthog­
onal to all row vectors of the matrix A. 

The fore goings can bc illustrated by some simple instances. 
Let us haye three kinds of radicals (all three being atomic species) and 

let them form four molecule species: 

C, H, I 

CH4, CH:lI, HI, 12 

Giying indices in the ahoye order: 

1 
3 
1 

o 
1 
1 

(G = 3) 

(K = 4). 

~) . 
2 

(5) 

The inyariant radicals, howeyer, can be chosen also in a different way: 

In this ease some of the inyariant radicals are composed of seyeral atoms. 
Matrix A is in the latter case: 

A" (~ 
\0 

1 
o 
1 

o 
1 
1 

(6) 

The connection between the two sets of radicals can be expressed hy a trans­
formation matrix T: 

A' = T . A" (7) 

where 1 0 

~) 
(8) 

T ~ (~ 1 
0 

and (7) In a concrete form: 

G 
1 0 

~) (~ 
0 

~) (~ 
1 0 

~) . 3 1 1 0 1 
1 1 0 1 1 2 
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As a matter of course, no fragment of a composed radical must be taken into 
consideration either separately or together with another. The choice shall not 
be in contradiction with Eq. (1). 

A simple example for quadratic A-matrix is: 
Let us have four types of radicals: 

A, B, C, D (G = 4) 

Let them form four types of molecules: 

AB, AC, BD, CD (K = 4) 

These can participate in the reaction of type: 

AB CD = AC BD 

The matrix A is here: 

(~ 
1 0 

~) A 
0 1 

(9) 
1 0 
0 1 

In the case of first order reaction (isomerisation) the matrix columns are 
not independent, hecause of the atomic composition of the participant mole­
cules is the same: 

Matrix A can be written as a dyadic product 

(
'~ll (1, 1, 1, ... ) 
1'2 

1.3 

, . 

(10) 

(11) 

Be the atomes for example: C and H and the molecules: cyclopropane 
and propylene (C3H6) 

(1 1) 

The second memher of this product is a vector having only unity elements. 
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2. The stoichiometl'ic equation of chemical l'eaction 

The relation between the changes of different mole numbers due to a 
chemical reaction can be given by the stoichiometric coefficients 'Pk. 

Denoting the stoichiometric coefficients of the reactants by 'P~ and the 
coefficients of the products by 'P% (for the k-th molecular species) then the weight 
balance equation is: 

(12) 

A2=2A 

M=H4V 
;.\ = (2,1) 

v = r-/) 

-1 11.' 

Fig. 1 

Writing the chemical symbols instead of the mole ·weights, we have the 
stoichiometric equation. 

In the case of a single chemical reaction the set of numbers 1'~ or 1'% 
defines a K-dimensional vector (v' or v", respectively). 

We define the stoichiometric coefficient vector for the whole reaction: 

v = v" - v'. (13) 

The mass balance (12) can then be ,vTitten: 

(14) 

i.e., thc stoichiometric vector v is orthogonal to the mole weight vector MI( (see 
Fig. 1). 

The reaction co-ordinate. The stoichiometric constraints give relations 
between the changes of mole numbers d nk as follows 

dn l dll. 
--=----= = dnK = d~ (15) 

1'l( 
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where'; is the reaction co-ordinate, a common reaction parameter of the extent 
of the reaction. In the component (mole-number) space'; is a scalar. (15) can 
be written more generally as follows 

(16) 
and after integration 

v . .; (17) 

where n/(O) is the locus vector of the initial composition, and 

.; = 0 for t = O. 

(16) and (17) mean that the displacement of the composition point nk have the 
direction of the stoichiometric vector v. Because latter is a constant vector, 
the path of the composition point nr: is a straight linc parallel to v. 

Combining (4) and (16) 

dng A· (ll1/; = A . v . d .; = O. 

Upon chemical change: 

(18) 

(18) expresses the invariance of radicals and represents strict constraints for 
values p/;. Geometrically: the vector 'i must be orthogonal to all row vectors 
of matrix A (Fig. 1). 

It follows from (18) that if a matrix can be written as a product with a 
first factor (from left) the vector v, then after multiplication by matrix A 
(from left), the product vanishes. 

(18) can be visualized by the following example: 
Radical species (atoms): C, H, I 
Molecular species: CH.!, CH3I, HI, 12 
Chemical reaction: 

The stoichiometric coefficient vector: 

HI 
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One can prove the product to vanish: 

1 
3 
1 

o 
1 
1 

73 

In the same manner there exists an orthogonality 'I-ith matrix taken from (6). 

The mole number change of a reaction 

The scalar product of vector v with the "summing vector" 

(1, 1, ... ) 

gives the moll" number change of the reaction: 

(1, 1, "')('1'1)' 1( 
l'~ ...,., .... ==..:. VI( 

: , k=l 

(19) 

First order reaction (18) follows from the radical number balance too. 
Combining (11) and (18) 

Equivalent chemical reactions. Two reactions will he told stoichiometrically 
equivalent when any of quotients 

(20) 

are the same in the two reactions. 
For example, the multiplication of the whole reaction by a constant 

number <X leads to an equivalent reaction (The "multiplicative arbitrariness" 
of chemical reactions). 

V 
The transformation 

<x'v 

1 
(21) 
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is the inversion of the reaction. Such transformations leave invariable the rela­
tions (14) and (18). 

Geometrically, the multiplication of vector by a scalar results in a 
simple stretching of vector leaving invariable its "direction" and therefore 
all orthogonality relations (14, 18). This can be proved in a single manner: 

Mk . X • 'V =x . Mk . 'V = X • 0 = 0 

J..·x·'V=x J..·'V=x,O=O 

Another equivalent transformation is the permutation of components 
(the change of their sequence). This transformation is equivalent to the multi­
plication of vector 'V by a permutation matrix P [2]. 

(22) 

In this case the same transformation is to be made on matrices Mk and J.. 

Mic = P . ltIIe 
-J.. = J...p (23) 

The invariance of orthogonality relations (14) and (18) can be proved by 
making use of the relationship 

(24) 
(E: the unity matrix) 

v . M" = (P v) . P . IVIIc = V . P . P . IVI!; = v . Mic 

):v = J..·P·P·'V = J...E·'V = J.. 'V O. 

It is permitted to permutate the sequence of the radical species, or to 
transform in agreement with 1 by multiplying matrix J.. by a G-dimensional 
permutation matrix or a non-singular matrix T (from left): 

(25) 

The invariance of Yector Mk demands then the transformation of vector ltIg : 

(26) 

where T -1 is the reciprocal matrix of T. 



CHE-1IICAL REACTIOS PATHS 75 

Such transformation of A (any multiplication from left) does not affect 
orthogonalities (18). 

Be, for example, the sequence of components at the reaction in the for­
mer example 

instead of: 

HI, CH.I, I 2, CH3I 

CHI' CH3I, HI, I2 

The change of sequence is equivalent to the transformation by the permuta­
tion matrix: 

o 
o 
o 
1 

The new stoichiometric coefficient vector: 

1 
o 
o 
o 

0 0 1 

~)(J) vd V~(~ 0 0 
0 0 
1 0 

and the transformedA matrix: 

'1 1 0 
o (0 1 0 

~) ):=A'P= (4 3 1 ~) ~ 0 0 
,0 1 1 0 0 

0 1 

Checki.ng of (24): 

r 1 0 

~)(; 
0 1 

~) (~ ~ 0 0 0 0 0 
p.p =; ~ 0 0 0 0 

0 1 1 0 

and the orthogonality of v and A: 

h~(: 
1 0 

U (=!) (~l 4 0 
0 2 

( =!) 

(~ 
1 0 

~J 4 0 

.1 0 2 

0 0 

~) ~E 1 0 
0 1 
0 0 

0 
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The rank of the matrix J-... 

The rank of a matrix J-... is equal to the dimension number of the space 
spanned hy its row or column vectors. Algchraically, the rank is the number of 
linearly independent rows or columns. Consequently, the rank cannot be 
greater than the number of rows or columns. A vector has a single column, 
its rank is therefore one. For example 

Rank (v) = 1 (27) 

Rank (J-...) can he maximum equal to G (lying matrix, G < K) or to K (standing 
matrix, G> K). Rank (J-...) can be calculated in the following manner: v and 
culumns of J-... are vectors in the K-dimensional space (composition space). 
According to (18), every row vector of J-... is orthogonal to the vector v, they lic 
in a (K I)-dimcnsional suhspace orthogonal to v. In that sense, in the ease 
of a single reaction 

Rank (J-...) = K - 1. (28) 
At first order reaction 

Rank (J-...) 1. 

This is in accordance with (11), expressing the fact that J-... can he 'written as a 
single dyaclic product. As known [2], the rank of a matrix is equal to the 
m.inimal numher of dyadic products. 

According to (28), the rank (J-...) in (9) can he proved to equal three. 

3. The chemical reaction lines 

Reaction lines in the mole number space. As mentioned, the compOSItIOn 
of a K-component system can he giyen as a point in the K-dimellsional mole 
number space. The vector nk is the locus vector of this composition point. 

According to (16) and (17), thc path of the composition point is always 
a straight line parallel to the vector v. The reaction lines cannot cross or touch 
each another, two lines any close are unattainable one for another. This 
unattainahility follows from thc closeness of the system. The different lines 
belong to different quantities of radicals which are invariable in closed system 
during the chemical change (nuclear reactions excluded). 

Reaction lines can be plotted in a plane only in case of a two-compo­
nent system. 
Let us take a reaction of the type 
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The molecular species are: A2 and A 
The single invariable radical: A 
The mole weight Yector: 

lVI = MA (2) 
I, 

Matrix :A: :A = (2, 1) 

Vector v: v 

77 

Two reaction lines belonging to different initial conditions are seen III 

Fig. 1. 

Reaction lines in the mole fraction space 

In tht~ mole fraction space the situation i::: somewhat different. 
The definition of the mole fraction (XI;): 

and of the mole fraction yector: 

1 
x =---. n, .. 

'" • n 
~n/( 

/( 

The range of mole fractions: 

From definition (29): 

(1, 1, ... ) 
1 

(29a) 

(29b) 

(30) 

what means that the mole fractions are not independent. The number of 
independent mole fractions is (K -1). 

The mole fraction space has therefore a dimensionllumber less by one 
than thc mole number space. The domain of real compositions represents a 
K -1 dimemional simplex with vertices in the points: 

(1, 0, ° ... ), 
(0, 1. 0, ... ), 

and so on. 
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Fig. » 

This suhspace is in the case of 

K 
K 
K 

2 
3 
4 

an interval (Fig. 2) 
a regular triangle (Figs 3-4.) 
a tetrahedron (Figs 5-8.). 

The path of the composition point in the mole fraction space is the appro­
priate projection of the reaction line in the mole numher space. 

A=B+2C 

Fig. 3 
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The vector equation of the mole fraction - reaction lines can be derived 
as fo11o'ws: 

Making a summation of (17) (scalar multiplication by the summation 
vector) 

I 
I 

! 

8-C stoichiometry 

/ 
/ 

/ 
/ 

/ 

! 

,A 

~----~------~c 
I I \ 

\ I I \ 
3'\---.),..4---d3 __ .i,.... M=3 

A 1 / \ 
2,\--..L--7'2 ~L1v=2 

\ 1 I \ 
\ I / \ 
\ I / \ 
\1 I 

, 'l!1 0-6 ----1'\1- ----06 
I \ 

/ \ 

-,1).1=1 

I \ 
I \ 

I \ 
I \ 

I \ 
/ \ 

I \ 
I \ 

cl5' '05 

Fig, ·1 

x' 

B-D stoichiometry 

Fig,5 

and combining with (17) and (29) 

(31) 

B 

x' 

C-D stoichiometry 

(32) 
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A 

\ 
\ 
\ 
\ 
\ 

\ 
\ 

\ 

B 

\ 
\ 

\ 
\ 
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A= B+C+2D 

Fig. 6 

A-B stoichplane 

\ 
\ 

\ 
\ 

D 

I 
I 
I 
I 
I 
I 
I 
I 

\ 
\ 
\ I 
\ I 
\ Ix" 

A 

A+B=2C+D 

Fig. 7 

\ 
\ 
\ r 
\~ 

\ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 
I 
\ 

D 

\ 
I 
I 
I 
\ 



and 

where 

x 

C'--+-I -9""::t...-.J.--t--D 
I 
I 
I 
I I / / 
I I / ' 
I /' / 
I / / / 
I /11 
I / / 
I ',f 
I 'It 
IV 
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LIp· ~ ~ 
x = x(O) + v . ---
~n,,(O) ~ndO) 

" k 

1 
x(O) = . n,,(O) 

'" ..;;;;.; n,,(O) 

" 

A+8 = 2C+D 

Fig. 8 

represents the initial composition point. 
After further rearranging 

.:::Jl'.~ 
X - x(O) = --- (x* -x) 

n,,(O) 

where 

. 1 
x'" =--. v 

LI')} 

81 

(33) 

(34) 

(35) 

(34) gives the vector equation of the reaction paths in the mole fraction space 
and x* is the normalized stoichiometric coefficient vector. 

The focus point 

Two main consequences can he deduced from Equation (34). At first, 
the reaction paths are straight lines in the mole fraction space too. Secondly, 

6 Periodica Polytechnics Ch. XJ.V/l. 
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all of these lines are diverging from a common point given by the vector x*. 
This characteristic point can be termed the "focus point" of the system. The 
components of the vector x* are the normalized stoichiometric coefficients. 
x* depends only on the vector '11 and the mole number change LIt' and is indepen­
dent of the initial conditions. 

The focus point lies in the mole fraction space but outside of the range 
of realizable compositions (Fig. 3) because of vector '11 always has at least 
one negative element. The focus point is therefore unattainable. So the reaction 
lines are unattainable for each other in the mole fraction space, as well as in the 
mole number space. 

If the mole number change of the reaction vanishes, 

Llv = 0 
from 34 

~ x - x(O) = ---- . '11 

.:E n,(O) 
(36) 

k 

that is, the reaction lines "will be parallel to each other and to the vector '11 

and the focus point will be in the infinity. 
Stoichiometric reaction lines. A mixture is told (fully) stoichiometric 

when the mole numbers of the reactants or products fulfil the requirements 

n~ n~ -=-= (37a) 

~ = n; = 

vf v; 
(37b) 

'where 
~ = ;~ if nf = n~ = ... = 0 

; = ;~ if nf = n~ = ... = 0 
and 

A stoichiometric initial composition remains stoichiometric during the chemica 
change. 

The vector equation of the stoichiometric reaction line can be derived 
as follows. 

Equations (37 a) and (37b) can be written as vector equations for the 
reactants and products 

nk = '11' (; - ;~) 

nZ = -'11" (; - ;~) 
(38) 
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The mole number vector Dk is 

(39) 

and the sum of mole numbers 

(40) 

From (29a) 

x[(~'v~) (~ - ~~) - (2'vk) (~ - ~o)] = v' (~ - ~~) - v" (~ - ~~). (41) 
k k 

Rearranged: 

Let 

hence: 

x = x' if ~ = ~o 

X = x" if ~= ~~ 

x' = ( d vJ . v' 
k 

x" = ( d v
k 

) . v" 

k 

and the vector equation of the fully stoichiometric reaction line: 

(42) 

(43) 

(44a) 

(44b) 

(x x') (~v~) (; - ~~) = (x - x") (~Vk) (; - ;0)' (45) 
k k 

Eqs. (44) define two further characteristic points in the composition space, 
namely ",-here the stoichiometric line pierces the boundary of composition 
domain (Fig. 3). 

According to (44), these characteristic vectors are the normalized v' 
and v" vectors, on the analogy of the focus point x* being the normalized v 
vector. In contrary of x*, x' and x" belong to realizable compositions. 

Analogously, one can define further characteristic points as normalized 
row vectors of matrix A. These vectors are orthogonal to vectors v and x*. 

Introducing~~n "normalized reaction co-ordinate" instead of ~, defined as 

(46) 

6* 
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(4.5) can be written as 

In that case 

From (35) and (44) 

;n = 0, if x = x' 

;n = 1, if x = x" 

t;n = 00, if x = x*. 

(x* - x') (~v~) = (x* - x") (~vZ) 
k k 

and the proportion of the two distances: 

Ix* - x'l 
Ix* -x"I 

The number of relationships in (37) is 

K-2. 

The dimension number of the mole fraction space being 

K-1 

(47) 

(48) 

(49) 

consequently, the dimension number of the (fully) stoichiometric system is 

K-1-K+2=1 

that is, a straight line section. The fully stoichiometric system behaves there­
fore as a simple first order reaction, having as "reactant" a mixture of the 
reactants in a composition given by 'V' and as single "product" the mixture 
of the product components in a composition given by 'V". 

Partially stoichiometric systems 

If the number S of the constraints in (37) is smaller than (K - 2), 

then the reaction lines lie in a suhspace having a dimension number 

K-S-1 
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4. Examples 

a) Reaction lines in a three-component system 

A chemical reaction between thr('(' molecular species can always he 
written in the form 

A=vBB veC (48) 
with radicals 

Band C 
molecules 

A = BVB CVe, B and C. 
In that case 

A = (VB 
1 ~) Vc 0 

and 

( 1 
v ~ -;;) (49) 

(48) can he regarded as canonical form for the reaction of three molecular 
species. 

The characteristic points in the mole fraction space 

x' = (~l; x" = (~Bl 1 
VB + Vc 

0. Vc, 

(50) 

('-~Bl' VB + Vc -1 
. ·ve 

x*= 
1 

(51) 

The reaction lines can be plotted on a triangular diagram (Fig. 3), x' com­
position point being the vertex A, x" lying on the base line B-C. 

Point x* lies in the range 

XA <0 
XB > 0 

xc> 0 

The focus points belonging to the same mole number change Llv lie on 
the common straight line parallel to B-C, the spacings being inversely propor­
tional to the mole number change. 

The focus points belonging to the same P4!VB ratio lie 011 the straight 
line passing through point A. 
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The reaction lines of reactions ,dthout mole number change form a 
parallel line set. These lines are easy to construct ,dth the aid of the character­
istic points x' and x", former being point A, and latter the point dividing the 
base line B-C in a ratio VAIVB. 

In Fig. 4 some types of reactions are plotted. The reactions are as follows: 

1.: A= B+- C 
2.: A = B +- 2C 
2'.: A = 2B +- C 
3.: A = B +- 3C 
3'· A = 3B +- C 
4.: A = 2B +- 2C 
5.: 2A = B 2C 
5'· 2A = 2B +- C 
6.: 2A = B +- 3C 
6'.: 2A = 3B + C 

(A = 1/2 BC) 
(A = B + 1/2 C ) 
(A = 1/2 B 3/2 C) 
(A 3/2 B + 1/2 C) 

b) Reaction lines in a four-component system 

In that case the mole number space has four, the mole fraction space 
three dimensions. The composition range of the mole fraction space is a tetra­
hedron having vertices in distances of unity from the opposite planes. 

With four components there are two canonical reaction types. The first: 

A = VB B + Vc C -T- VD D. (52 ) 

Reaction lines can be plotted by means of two projection planes, for 
example planes A-B-C and A-B-D. These projections are typical tri­
angular diagrams (Fig. 6). 

The focus point lies in the range 

XA <0 
XB > 0 
xc> 0 
XD> 0 

outside of the tetrahedron, but inside the three-dimensional space. The fully 
stoichiometric line passes through the focus and vertex A. The partially stoichio­
metric lines lie in planes. There are three such planes (Fig. 5): 

B-C stoichiometry: plane A-D-x* 
C-D stoichiometry: plane A-B-x* 
B-D stoichiometry: plane A-:-C-x*. 
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The stoichiometric planes intersect one another in the stoichiometric line. 
In Fig. 5 the reaction lines of the reaction are plotted: 

A = B + C 2 D. 

The second reaction type: 

A +VB B = 'Vc C + 'VD D. 

The focus lies in the range 

XA <0 
XB <0 
XC> 0 
XD> 0 

(53) 

outside the tetrahedron. The fully stoichiometric reaction line connects the 
base lines A-B and C-D. The two stoichiometric planes are: (Fig. 7) 

stoichiometry A-B: plane C-D-x* 
stoichiometry C-D: plane A-B-x* 

The characteristic points x' and x" are on the lines A-B and C-D dividing 
them in the ratios 'VA/"'B and VC/VD, respectively. 

The visualisation of the reaction lines can be made with the aid of two 
projection planes orthogonal to the lines A-B and C-D. The projections can 
be plotted on tringular diagrams. 

F1.gs 7 and 8 show the lines of the reaction 

A+ B = 2 C + D. 

Summary 

The geometry of reaction paths is analysed in the composition space in the case of a 
single chemical reaction. The reaction lines form a straight line set. In the case of stoichio­
metric composition, the reaction lines lie in subspaces of the composition space. The fully 
stoichiometric subspace is a single line. The set of reaction lines have in the mole fraction 
space three main characteristic points, all lying on the stoichiometric line. These are: the 
"focus point" and the two piercing points ,vith the boundary of composition domain. 

It is shown that the locus vectors of the characteristic points can be simply formulated 
with the aid of the stoichiometric coefficients of the chemical reaction. 

In some examples the reaction lines, stoichiometric subspaces and characteristic points 
are .isualized in the cases of two, three and four component systems. 
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