VARIABLE — LENGTH ENCODING

By

S. BENDE
Department of Mathematics, Technical University, Budapest

(Received June 24, 1969)
Presented by Prof. Dr. D. KrinIx

Introduction

This paper gives a theoretical treatment of several properties which
describe certain variable-length encodings likely to lend themselves for the
storage or transmission of information. An optimum encoding is sought for
by which every possible information can be encoded with the minimum pos-
sible of symbols, that is, using shorter sequences (code-words) for the more
frequent messages and longer sequences for the less frequent ones without
separating them by commas. This kind of encoding is called variable-length
comma-free encoding. The restriction that none of the sequence assigned to
a code-word is allowed to serve as the initial sequence of another code-word,
defines the encoding as to have the prefix property [1, 2].

All the encodings dealt with in the present paper are of the prefix type.

1. Fundamental concepts, terminology

Let be given a set 7 = {#;, %o - - - - £} With a finite number ¢ > 2 of
elements, usually called alphabet. The sequences ¥, 7, ... %, constructed
from the elements (letters) of y are called words. The words are denoted by
A, B, ... etc. The empty word without any letter is denoted by O, and the
empty set by O.

The number 1 = A(A4) of letters in a word A = Yadag -+ LAya) 1S tO
be understood as the length of A, its initial sequence of letters O; ya,; ... 4
is called the prefix of A.

If 4 is a prefix of B, we write 4 < B or 4 < B. The symbol < indicates
obviously a reflexive, antisymmetrical,—_transitive relation between the words.

The set of words forms a cancellative semigroup, its operation is the
juxtaposition of the words.

A and B are words not necessarily of the same length, their distance
o(A4; B) is equal to the number of corresponding pairs %, 45,3t =1,...
««+» Min {1(4), A(B)} for which y, 5= g,

For the distance thus defined

3 Periodica Polytechnica Ch, XIV/3—4.



]
B
(@]

S. BENDE
o(4; 4) =0

o(4; B) = o(B; 4)

always hold for arbitrary A, B, since the triangle axiom
o(4; B) + o(B; C) > o(4; C)

holds with the restriction that A(B) > Min {A(4); 4(C)}. It is easy to see that
o(A; B) = 0 holds if and only if 4 and B are comparable with respect to the
relation <. If for 4 and B g(4; B) >0 holds they will be called disjoint.

% n
3
43 =L00,100, 11111 =—=1}
0~=7, 0=—=7, A= 00 =%, A= 100=—=Y, A=1111=>7;
]4;—9-3"6 10 é—é?‘s ‘]‘]]@'5‘8
11 <——>X7
Fig. 1

An n-tuple of distinct words 4; (1 =1,2,...,n) is called a code and
it will be denoted by o, == [4,,..., An]. If the length of each code-word,
with 2 =1,2,..., (n— 1) is such that A(4;) < A1(4,,,) holds, the code (with
this property) will be denoted by of,.

The distance of an arbitrary word W from ofl, is defined by Min {o(W; A4,);

A; €fn} and denoted by oW oA,).

An arbitrary code o, can be represented as a rooted tree with n end
points and whose edges are labelled by the letters of alphabet 7.

There is a one-to-one correspondence between all prefixes of o, and all
the vertices of the tree I, with a root 7.

The representation is illustrated by the following example; of; =
— [00, 100, 111] (Fig. 1).

It is obvious that the degree of v, € I'; is at most g any other vertex is
at most g + 1. It is easy to see that any I, of the type given above with
appropriately labelled edges represents a code of,.
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2. Theorems and proofs

The following well-known theorem will be frequently used throughout
this paper: A code of, with the prefix property containing n > 2 words can
be constructed from the letters of the alphabet y = {4, ..., %}, ¢ >2 if
and only if the length of every code-word satisfy Szilard’s inequality

S <,
Ai€f,
If the equality (1)
q—’:'(Ai) =1

b

&

m
¢

An

holds, of, is called exhausted. By the next theorem it will be exhibited that
the exhaustion of a code can be defined by its other properties.

In this paper an arbitrary code is to be understood with the prefix
property.

Theorem 2.1. The following statements are equivalent

a) > ¢ =1.

A€,

b) No code ol exists-for which ol C oH,,, (n < m) holds.

¢) For arbitrary word w (whose letters are the elements of alphabet y)
o{w; ef,) = 0 holds.

Proof: Condition b) is a consequence of a). Suppose that a code oA,
exists for which ofl; © of;. This implies that

S g 3 gl
Ai € O‘En A E Gqu

it contradicts to condition a). Condition ¢} is a consequence of b). Suppose that
a word 1 exists, for which p(w; c{,) > 0. Then none of the 4, is a prefix of w
and the union of oA, and w is a code oy, == oy U w with the property ofl, <
C ofl,,, which is a contradiction to condition b). Condition a) is a consequence
of ¢). Suppose that

2 q'“;'(Ai) < 1.

A€y

Consider the set ¥ comsisting of all the words of length I, | > Max {A(4));
A; €0} whose letters are in 7 (their number is ¢'). All the elements of °9

whose prefix is 4; form a subset of ‘P Jenoted by € (4,). The number of
elements in ©(4;) is ¢'~HA),

* The inequality of the form (1) has been published first by Leo Szildrd in his paper
on the Maxwellian demon (L. Szilard: Uber die Entropieverminderung in einem thermody-
namischen System bei Eingriff intelligenter Wesen. 7. Phys. 1929. 840—856.).

3+



228 S. BENDE

Since

AN CA) =0; i=j; Ay A;eof,

n
the number of elements in the set €= U C(d4,) is
i=1

2 ¢ =44, Now > q #* < 1implies that ¥ ¢/~#4) < 4.
A€ fly ) A€k A€o,
Hence ¥\ € is not empty. For an arbitrary W e\ € we have
o(W5eh,) >0 which contradicts to condition c).
Remarks The exhausted code with the minimum number of elements based on the
alphabet y is denoted by §, = [1.... ., z;]. Each code-word of §, is of length 1.
\?

={V,....V,;1 denotes the code with the maximum number of elements (based
on the alphabet /) In this code each code-word is of length 1.

Theorem 2.2. If oR, is exhausted and A, €ofln; A(A,) = Max [(4}):
£

A; €R,} is an element with the prefix A4 of length A(4,) — 1, then the words
Ay, Ay, 4y, are the elements of of,.

Proof: Since A(A4 y,) = A(4;) holds, 4 %, (j=1,...,q) is not a prefix
of any elements ofofl;,. On the other hand there isnot such 45 A(d,) << A(d ) =
= A(A;) which is the prefixof 4 7, (j=1,. .., q). since it would imply that A,
were the prefix of 4, too, and that is impossible for code words being mutually
disjoint. By theorem 2.l.c. 9(A y;;0f:) = 0 holds which implies 4 2 €My
G=1,...,9.

Corollary. In an exhausted code the number of code-words with maximum
length is a multiple of g¢.

Theorem 2.3. If oy = [4, ..., 4,] and &, = [B,, ..., B,] are codes,
thenofl, X &m = [y, o+ s Aneqgs AnB. A B,, ..., A,Bp] is a code too.

The latter will be exhausted if o1, and B, are exhausted.

Proof:Fori=1,2,...,(n—Dandj=1,2,..., mwehave Q(Ai;AnBj)
> o{d; An) >0, and for ks£j we have p(AnBy; AnBj) = o(dn; 4,) +
-+ Q(BA B,) >0, and so any pair of words of o, X &, is disjoint. If A, and
8B, are exhausted, we have

n i m ;
‘;/; q—/.(Ai) =1, Zq“/‘(g") =1,
=1 =1

Hence, denoting €, ,;n ;= ofln X By

-1
S q——/.(c) — Zq-—/.(Ai) __}__ g-ﬁ.(An) Sq-/ Bj) . Sq—F(A, =1

sy -
CECnem— =1 1~I z.-l

indicating that C,,,_; = ofl, X By is exhausted. The dual statement of
theorem 2.3 is
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Theorem 2.4. i n >k >> 2, and all the code words of ofl,, with the common
prefix A of maximum length A(A) == 0 are given by the sequence

A, yo=4B, A, ,. .= AB, ..., A,= AB,
then

o= [Ap Ay« ooy Anis AB, 4By oo, AB] =R, , | X &

If oAy is exhausted, both oy, and By are exhausted too.

Proof. By supposition, none of the words A4,, 4,,..., 4,_ has the pre-
fix A, or is a prefix of 4. By the transitivity of the relation <, such a code
word would be namely the prefix of the words 4B, AB,, ..., 4B, too, which
is impossible since each pair of the code words is disjoint. It follows that the
pairs of words of A4,, A,, » An_1, A are disjoint and therefore form a code
HAnokey = [4....,, ne ks A]

It follows from the fact that cach pair of the code-words of o, is disjoint
and by the identity

o(d,_p=i3 An_yij) = 0(4ABy; AB)) = 9(B;; B))

that the pairs of words B, B,, ..., By are disjoint and form a code &B; =
= [By, By, ..., By]. If A, is exhausted,

—k
1= 2 q"7~(-‘\s) 12“ q—‘H J 4 g AA). 2‘ q-ﬂ’-(Bz)g Zq"’-(Ai) <1
"“ME Tu =1 B;E»)-l Aieﬁn—}:ﬁ-l
hence
3 q“‘;"(Ai) —
Aiéﬁ——k+)
and also

= gHB =1,
H

which is sufficient for ofln_jy, and By to be exhausted.

By Theorem 2.2. we get:

Corollary. An exhausted code o, (n >>¢) can be written in the form
Hp = fn_gsq K I, where oly_,,, is an exhausted code.

As an example to theorem 2.4 let us consider an exhausted code repre-
sented by

. = [00, 01, 10, 110, 1110, 1111]

. = [00, 01, 1] x [0, 10, 110, 111]

. = [00, 01, 10, 11] x [0, 10, 11]

. = [00, 01, 10, 110, 111] x [0, 1] = [00, 01, 10, 110, 111] x 3,

g‘)l Scn S \—Q«z
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Theorem 2.5. If of, is exhausted, the number of its different prefixes

is ,nil_:l_ .
g—1

Proof: It is clear that the number of the prefixes of ofl; is equal to the
number of vertices of the tree I, representing of,. It can be easily seen that
if oK, is exhausted, then except the n end-points, precisely ¢ directed edges
start from each vertex, and except the starting point y, to which no edge is
directed, just one edge runs to each vertex. If the number of vertices is ¢ the
number of edges starting from the vertices of I'; is (0 — n) ¢. Since in each
tree there is always one vertex more than edges, (¢ — n)q = ¢ — 1, thus
G == Il—g:—il— holds. In [1] the same result for the binary case (g = 2) is given.
The f%llowing result is known (see e.g. [7]).

Theorem 2.6. The necessary and sufficient condition for the existence of
an exhausted code with n words (constructed from the letters of the alphabet
7= {dp---» %} (g>>2)) is that n is an integer of the form r(¢—1) - 1,
r>1.

Proof: The necessity of the condition follows from theorem 2.5.

For an exhausted code we have ng — 1 = 0 (mod ¢ — 1) and all positive
solutions of this congruence are the integers n, = r(¢— 1) + 1, when r =
= 0,1, 2,...The sufficiency may be proved by induction as follows. If r = 1
by remark 1 of Theorem 2.1 the code I, = o/, is exhausted. Suppose that
oA, ., 7> 1is exhausted, then, by Theorem 2.3, the code o, =of, X §,
is exhausted too.

Corollary. If ¢ = 2, for any natural number n > 2 there exists an exhaust-
ed code with n elements. In the following, n, always denotes the integer
(rgq—1) + 1.

If ¢ > 2 (non-binary encoding) and » words (1 < r <{ g — 2) are omitted
from the code-words of maximum length of the exhausted code of, (r > 1),
the code Qf(‘n,.-v thus obtained having n,—v code words is called quasi-
exhausted. This follows from the corollary of theorem 2.4.

Theorem 2.7. The quasi-exhausted code off, , (1<v <qg—2, 1 >1)
can be constructed in the form

HAnp—v = [A1s - s Ane—go Ass Ailps - - - 447.4;-1-] =
= [Ah MR Anrﬁlﬁ A] X [2’1’ Has « - Zq—-v] = Qf(’”:w—l X3q~r

where (ﬁnr—L is an exhausted code.

Remark. Sinee ¢ —v > 2 and 8;_, = [ . . -+ %4-»] Is quasi-exhausted, for any integer
n > 2 there exists an exhausted or quasi-exhausted code with n code-words (constructed from
the letters of the alphabet y).
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Theorem 2.8. a) If ofl; is quasi-exhausted, then for an arbitrary word

W with A(W) < Max {A(4;); A; €A} we have o(W;of,) = 0.
i
b) If for a code ofl; we have for every word W with A(W) << Max {i(4)):

A; €n} that o(W;efl,) = 0, then ofl, is exhausted or quasi-exhausted.
Proof: Both statements of theorem 2.8 are trivial for n < ¢. Consider
n > q. Let us denote by ofl, the code obtained by arranging the word lengths
of oflx into a monotonically non decreasing sequence. Assuming ofl,; to be
quasi-exhausted, applying Theorem 2.7 with n, — v, we get An = Of{‘n,_‘ X
X J;-\» Now we have for each word W with A(W) < Max {i(4;); 4; €An}
the identity '
o Wi M) = o(W;5 Rn) = o(W;soAl

ne—s)

and since o, _ is exhausted the statement a) follows by Theorem 2.1.
Let us assume statement b) to be proved i.e. for each word W, with
HW) < Max {4(4;); A; €ofln} the distance o(W;ofn) = 0. Consequently, no

word of shorter length exists than Max {4(4): 4; €oXn} which is disjoint

from the code-words of ofn. Thus ofl,, is either exhausted or such that maximum
g — 2 words of length Max {A(4,); A; €ofla} with are disjoint from the code-

words of ofln, 1.e. ofl; is quasi-exhausted.

An algorithm for the construction of codes will be presented. Let be
given 4, < 4, <...<C A, the lengths of the elements of ofl,, and s >1
(I =1,...,r) the number of elements of length 2;, obviously

s;=n holds.

b~

s

Ssagi<1
=1

is supposed to hold.
Let us give n rational numbers 2 (k) I=12,...,rand k=1,2, ..., 5
as follows if =1, 2(1;k) = (k— 1) ¢ ™ (k=1,...,s) and if I >1

[-~1
w(liK) = (k=1) g + 3 siq7% (=12, .. ..5)
j=1

By this definition it is obvious that
Lemma 2.1. (i) 2(151) =0
(i) awls B+ 1) =al; k) +q¢" k=1,2,...,(s—1)
(i) el + L, D) =al;s) +q¢7™ I=12,...,(r—1)
(iv) «(l; k) < 1

Let 0; be the digits of the ¢g-nary number system, then
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Lemma 2.2. The g-nary fractional form of x«(l; k) contains at most / |
non-zero digits i.e.

x(l;k)_—;jéiq”izo,ﬁlaz...5;,,. : ‘

f==1

Proof: For «(1;1) = 0, the statement is trivial, for any other x(I; k) |
it is easy to see using the inequality ¢7% < «(l; k) < 1 implied by (ii), (iii),
(iv) of lemma 2.1. o

Lemma 2 3. In the fractional forms of two different numbers, namely '
x(ly k) = 0, 8,0, ...0; and (l'; k') = 0, 6165 . . . 8}, it does not hold for each
i=1,2,...,Min {}.1; }.1/} that 5l~ = 5,’

Proof: «(l; k) and «(l'; k') are different if at least either I = I" or kt == k'
does not hold. Thus, without loss of generality, let k, k&’ be arbitrary if I > I

and let us assume, contrary to above statement, that foreachi=1,2, ..., 4,
5, == 6] holds.
Sinee 0 < af{l; k) — (I’ k") <1,
a(li k) — (I3 k) = 0,89 ”_9 Osp s Oapyy - - - Oy
2p digits
holds.

This is impossible because of the inequality

-1
AlK) - AlK) = 3 scq b (b= g (K =1 g =g

i=r
where I > 1', £ >k’ holds.

Theorem 2.9. Considering the digits 4, = 4, 0y...0;, 0; — including
any possible digit 0 at the end of the fractions — being in fractional parts of
the numbers «(l; k) = 0, 6,0, . . . §;, the sequences 4, form a code ofln. ofl;; has
the s; prescribed number of elements of length A,

Proof: Lemma 2.2 implies that by the defivition of o, it has exactly
r
s; elements of length 2, where X's;=n and s; > 1, and by lemma 2.3 the
=
sequences A, consist of disjoint pairs of words. Thus, according to our state-
ment of,, is a code.

Remark. For algorithmic construction of binary codes see [1], [2]. [6].

For sake of illustration we present the binary code constructed by means of above
algorithm over the letters of the English alphabet. This is an opportunity to compare it with
the Huffmann type code which is also given below (Table 1).

It may be remarked that this code is exhausted.
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Tabie 1
. : |
Letter | gy | Codewword ; e L
Space 3 000 000
E 3 001 Lo101
T 1 0100 0010
A 1 0101 0100
0 4 0110 0110
I 4 0111 1000
N 4 1000 1001
S 4 1001 1100
R 4 1010 1101
H 4 1011 1110
L 5 11000 01010
D 5 11001 ~ololl
v s 11010 11110
c s 11011 1
F 6 111000 . 001100
M6 111001 001101
v ! 6 111010 001110
Y 6 | 111011 ©o001111
P 6 | 111100 011110
G 6 111101 011101
B 6 111110 011111
v 7 1111110 0111000
K 8 11111110 01110010
X 10 1111111100 0111001100
J 10 1111111101 0111001110
Q | 1¢ 1111111110 0111001101
z 10 1111111111 0111001111

3. Minimum redundaney encoding

Let us assume the sequence of informations ai € %A, of the set ¥, =
= {a;, Qg+ . -, Gn} With n > 2 elements to occur in the sequences a;a; . ..
with the probability

I
Pi :P(a1)=P2 :P(ag)e cee Pp = P(%)éEPi =1.

i=1
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The codeofl, over the alphabet y = {7, ..., 74} will be called a minimum

redundancy code with respect to the probability distribution P, = {p;, p,, . . .

.» Pn} briefly, P,-minimized, if for any code ofl; over the alphabet y we
have

MIPsot,] = 3 pAA) < M[Bsotil= 3 pi4).
A€fy, A"-Ec*?.,',
The necessary and sufficient condition of minimum redundancy encodin
will be determined by six lemmas. In the non binary case let n, = r(g — 1) -+

and

1

i, if oflnis exhausted
n = . . .
n,~—v, if ofl,is quasi-exhausted

where ofl, = ofl,_ X J,

g = {Cb if o, is exhausted

g—v, if oA, is quasi-exhausted.

Using the former notations the corollary of theorems 2.4 and 2.7 implies
Lemma 3.1. The exhausted or quasi-exhausted code HAn with r > 1 can
be constructed in the form of, = Hn,_, X é?q., where ‘ﬂn,_x is the exhausted
code and J, = {7, .. -, %o} (@' > 2).
Lemma 3.2. Let an ol = ofln_ X J, (r >1) be exhausted or quasi-
exhausted code and Pn = {p;, ps, . . . , pn} the probability distribution. Then
for

7
'Pn,-—1= Pis - - -7Pn—q'7 an-—q'-l—i
: i=1
the identity

. ; N 9.
M[F R, ] = M[F, K, 1+ > Pn—g'+i
i=1
holds.
Proof: Since
oA A,,_, ><<°§q' =[4, .. A4, ] ><8q' =

n — Y,
=[dpAg Ay o An a0 Ane K - A, 7q]

and n — ¢’ -+ 1 = n,_, it is easy to see that
. n—q* q'j
AI[R.: O)(‘n] = 2 Pi ;(Al)+{)(‘4nr—1)+1} ' 2 Pn—g+i=
i=1 T=1

v
== ] I[R"_,; O)znr—z] -+ an-—q'-H
=1
holds.
Lemma 3.3. If the code ofl,; is Pp-minimized, then it is exhausted or quasi-
exhausted.



VARIABLE-LENGTH ENCODING 235

Proof: If, contrary to the above statement, the P,-minimized code of,
is not exhausted or quasi-exhausted, by theorem 2.8 a word W; (W) <
/\Ia\ {A(A4)); A; €An} exist for which o(W;ef,) > 0. If a code-word of

maximum length in ofl, is replaced by W, for the code obtained o/, contrary
to the fact that of, is Py-minimized,

M[Pné Q}Z;] < -‘T‘I[Pn; dzn}

holds. P, denotes a probability distribution P, whose probabilities p; (i =
=1,...,n-—1) are arranged into monotonically non-increasing sequence
Le. p; > iy _

Lemma 3.4. If ofl, is Pp-minimized, then with A; ¢, A(4,)) < A(4,) <
<. < HAR).

Proof: Assume that contrary to our statement, there exist such 4; and
A; (3 <@ < j < n) that AAy =>4 ) holds. By exchanging in of,, the w ord A;
and 4, we get the code offj, with 4] = A;; A7 = A, (4], 4] €A}) and because
of the inequality p; A(4]) + p; 2(-11) = p; .(- ) T P /.(-4,) < p; MAy) +
+ p; A(4)) holding for p; > p; >0 and A(4,) > A(4)) >0 we find, contrary
to the fact that o, is Pnr-minimized, that

MI[P,; Al <M[P,;oR,].

Lemma 3.5. If the code ofl,, = Ay, X 3 (r > 1) is exhausted or quasi-
exhausted and P,-minimized, then the e\hauated code ofln_ is P, _ -mini-
mized with respect to the probability distribution

p
-
—Pnr_x = {Ple Pas - - '7Pn—q'7 ‘Z Plz—ql+i}

i=1

which may be obtained by summing over the ¢’ terms of Pp.
Proof: Assume that, contrary to our statement, of, __ is not Pp_ -mini-

fg P—t
mized. Since for given n,_, the equation > ¢~* = 1 has only a finite number
=1
of solutions in the positive integers 2, Ay, ..., A, this implies that there
is a finite number of exhausted codes consisting of a sequence of n,_, words.
Thus, by lemma 3.3, there exists an exhausted code &,  which is P, _ -mini-

mized and for which by our indirect assumption

"I[ Ny x nf"l] "I[ Ty— 1 Hr—x]
holds (i).

Consider the code & = bn,_| X J,; making use of Lemma 3.2, one can
obtain by the inequality (i),
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i= l

_ q
M[P,: &,]=MI[P, &, 1+ 2 Prg+i <<

¢ _
;"{[ 1 lr—l] -+ Epn-—q'+i =M [Pn; Q)Ln]

=
contrary to the fact that ofl,; is P,-minimized.

Lemma 3.6. Let be

nr_ {Pl A 2P5-~1 >P525—:—1Z cee 2Pnr—1}

and o, = [dy; Ay .., Ay ] P,,r~1-mini~mized. Moreover be p, = p, -+
+ P, & -« + pg, such a partition of p; € Pn_ (ps—; > p;) for which

pn = {p12 c 2p5—1>P3+1_>_ e __>_Pr:rr—, 2ps12P522 zpsq/}

then it holds for the code
c}z'n = {"417 R *4s~15 ‘45-%1’ SRR ‘/4h‘r~~x’ As] ng'; (-’11 S C’}—cnr-q)

that it is P,-minimized.

Proof: Assume, contrary to our statement, that of, is not P,-minimized.
In the proof of Lemma 3.5 it has been shown that for given n, the number of
exhausted codes is finite, thus, for given n, the number of quasi-exhausted
codes constructed over a set of n — v words is finite. Hence, Lemmas 3.3 and
3.4 imply that a &, code exists which is P,-minimized and because of our
indirect assumption, we have

"I[ n* -0n] < RI[ n] : (1)

Considering the probability distribution

er—q = {Pl’p‘.’.'f -+ Ps—y1s Ps+as - - '7pnr—x'/ps} (Pieﬁrlr—.x)

and by Lemma 3.2 &, = By X I, and ofly, = ofln _ X J, where A, =
= [dy, Ay oo oAy Agips oo An_, A] inequality (i) implies, that

(ii) M [Pnr It Ob 1] M [Pm & ] — Ps <
< M([P,, R, ~ ps=M[PB, ;A

Tly—1 nr—.J

If by CC'C"H_.L = [B,, ..., Bs_] where B;¢®B,__ one obtains

‘%r,u_x == [Bls e Bs——lv Bllr—-l’ Bs: cees Bnr-—,vl]
then

11[ n—r* ggnrq] =M [1511,-“:; 5(3;11‘1]




VARIABLE-LENGTH ENCODING 237

hence, considering that
jVI [Pnr—17 G}("ﬂr 1] - ‘/I[ nr—-x’ Q){n,»..l]

using (ii) one can obtain that contrary to the fact that of, _, is Pn,_x-mini-

mized,

M [Pnr—-1 conr ] < ‘/I[ nr—1; Jcnr_,]

holds.
Corollary. Lemma 3.4 implies oA = oHa.

Theorem 3.1. Letbeny = k(g —1) + 1 —v (k >1; 0 <»r <<gq—1) and
P, = {p®. p L ply

the probability distribution. Let be
P, = {P(r) > P(r) N P(r;Z}

the probability distribution forr = k —1,k-—2, ..., 1 wheren, = r(g —1)+
-+ 1 obtained by arranging the terms of the distribution

+1 1 (r+1
Pn,-: {P({ )’ .. 1P$;,- )—-q ) > Pn,-l)—q i

into a monotonically decreasing sequence where
, g—v, ifin P, r=k
7= s B
g , ifin P, r<k.

The necessary and sufficient condition for the exhausted or quasi-exhausted
code off,,, to be P, -minimized, is that the equality:

_ kg
(A') M [P ; C‘/‘{m] = /\ \pgr)-q’—;#

holds, where Pr(rrr)—q’+i € 13,1r (i=12,...,¢.

Proof: The following two statements are obvious.

(i) For any probability distribution P, = {p,,..., py} the code of, is
P,minimized if and only if A(4;) = 1; 4, €of; holds. This implies for of, if

P, -minimized,
1

v p =1

lva

M[FE,; R, ] = M[Fy; 9,] =

since n, == q.
(ii) If the code ofl, is P,-minimized the code of,, consisting of its code-
words arranged into a sequence of monotonically non-increasing word lengths,
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is lsnr-minimized, where 13”, is the monotonically non-increasing sequence of
terms in P, .

Assuming now q)Z _to be Pn ~minimized, by Lemma 3.5 in the case where
r=kkE—1,..., (by (i), (ii) and Lemma 3.2) make the validity of the
equations

g~y

M[Prys Tl = M[Pos Rl ]+ 30l .

M [ﬁm ; K] = >pP

’lﬁl\/a

H

obvious. (A) can be obtained by summing these equations.

The prove the sufficiency, let be given a probability distribution Pn
Oue can construct from P, the proba}nhty distributions P, Pn;,-_g cees Pn,
for these distributions the equality (A) holds. Making use of (i) one can begin
with the ﬁm-minimized code J,, to apply Lemma 3.6 and its corollary. The
code off,, obtained by using the procedure (k-—1) times is P, ,-minimized.
Proof of the sufficiency of (A) of theorem 3.3 implies a method based on Lemma
3.6 for the construction of P,-minimized codes. The algorithm is illustrated
by an example. The example is that of a binary code, the algorithm, however,
works also when the code is (ith g-nary alphabet. Let be given the probability
distribution P,, and construct the table of the probability distributions
139, ﬁsv SN 132 as follows

P R R P, R P P R

03 03 03 03 03 F

0.2 02 02 F 0.3 ”E /-
0.1 0 F ;@ 02 / 02}/ 03

01 01 0, o1 Aoz / o8l

006 008] /04 01 011/ 0‘12}

006  foos [ o008 [ o1 |/ oy

005 /006 / 006]/ 008

005 / 005/ 006

0.041/ 005

004

Beginning by the P,-minimized code of, = &, = [0, 1], the procedure to
ebtain of, . from of, is to omit from of, the word A; € o, corresponding to p;
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in the encircled position of P, and by putting the words 4; 0, 4;1 after the
remaining code words of Ar- By this procedure one can obtain the following
P,-minimized of, codes r=2,...,10):

A2 A3 4. #s Rs A7
o [00] 01 01 01
1T JOO 01 1 11
o Jo ¥
|11 000 001 100 N\
001 \J100 101
\%01 «J0000
0001
)@B }9 }ZIO
01 01 01
1 1 1
[f00]_ 101 101
101 >~ 0000 0000
0000 S 0010
0001 ~ 0010 0011
\J0010 0011 - 1000
0011 [1000 T 1001
k 1001 . Jo0010
{0001
%
35/\
T
[5 1
%
%
-a.é 1
L.
i3

Fig. 2

In a graph representation, the P ;-minimized code is obtained as follows.
Let the tree I, correspond to P, with two end points of I', corresponding to

P, = {p, pP}. Tree I'; corresponding to P, is obtained by drawing two direct
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edges from the vertex y, ¢ I', corresponding to the encircled element p{? of P,.
The end points of I’y correspond to the elements of P, by that the lengths of
the paths running from y, to the end points y,; 3,3 ¥4 corresponding to the
elements p{® > p{® > p{ of P, yield a monotonically non-decreasing sequence.
Iterating this procedure in a similar way, the tree I, corresponding to P,; will
be of the form in Fig. 2.

The edges of Iy, are directed from the root y, and are labelled by 0 and 1.
The paths leading from y, to the end points of [, when arranged into a mono-
tonically decreasing sequence of lengths, correspond to the code-words of the
P, ,-minimized code of;, In our example the code-words of of,, are

A, =00
A, =01
A, = 100
A, = 1010
A, = 1011
Ay = 1100
A, = 1101
Ag = 1110
Ay = 11110
A= 11111

One can ohserve that the algorithm of theorem 2.9 gives the same code for

the parameters

=2 Fy = iy =4 Ay=35
Sl::?.. $y == 33:5 54:2

4. Suppression of noise effects

The method described below permits the error detecting and correcting
procedures developed for binary (n; k) — codes (block codes) to be applied to
comma-free, variable-length binary encoding. For the description of basie
notions of protection against noise effects see references [4] and [5].

Let us assume the sequence of information 9, to be encoded by the words
of the exhausted code, ofl, and the distinct lengths of the code-words are given
by the positive integers 4, <{ 4, <{ ... </, and the number of words of length

;
Jy(p=1,2,...,r)isdenoted by s, > 1 where ' s, = n.Let 4, = 6,8,... ¢
ve=l

where A; €ofly; A(A;) = 2y and 6 is either 0 or 1 and let the first subsequence

Vi X Ay Vi = 0,8, ...0; of length 2, be termed the prefix of order one
and the subsequence V, = 03,1020 of length 1, — J; the prefix of
order two etc., finally the suhsequence Vie= 065, 5105 2.0, of length

Ayp — 2, _; the prefix of order k of A,. Denotmfr the set of all of the words of
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lengths 233 2, — A;3.. .3 A4 — 4,_, formable from 0 and 1 by 9,3 ¥,; ..., ¢
taking 2, to be zero. The sequence 9, (» = 1,2, ...,r) has 2% %~ elements.
The 9, are exhausted codes and also A, — A,_, dimensional vector fields over
the residueclass-field Mod 2.

Considering the direct product ¥, ® ¥, ® ... & VY, it is obvious that
any word A; of length A in the code of,; is an element of the direct product
Y% P % ... R V. Conversely, the vectors of direct products 9, 9, ®
@V oo, % ®@% ® ... ® ¥, are usually not code-words. A weaker, but
from practical point of view, an important theorem is

Theorem 4.1. If oA, is exhausted, there exists for each ¥V, ¢V, (1 <
<r<r; 1<j< 2" ) some A; €, whose prefix of order v is V,.

Proof: When » = 1, the statement is trivial since o%, is exhausted. For
y > 2 let us choose the code o’ — ofl, obtained from oA, by omitting the ele-
ments longer than 4, _;, a word W of length 2, ; for which o(IF;cU') > 0.
Such W always exists, otherwise the elements of of; with maximum length
/,—; would give an exhausted code; thus by theorem 2.1.b. of,; could not have
any element of length 2, whereas by definition of,; has s, > 1 elements of
length 7,. Let us consider the word WV, ; by theorem 2.1.c. we have o( WV, ;
Ap) = 0, hence AWV,)= 12, </ implies WV, < A4, at least for one
A; €A,

Consider the block-codes AU (Ls ), Ws(lys 2o — A1), o+ o5 M (b3 20 — 203
it may be observed that AU ({l,; 2, — 2,_,) is of order 2%~ thus, V, e%v,.
U, e, : vV, < U*’; 1<j< 2;”—;'—”‘) can be used to construct a one-to-one
correspondence ¥, < U, (v =1,2,...,7). The correspondence V, «— U,

implies a similar one-to-one correspondence between the words 4; = V"-l Voo
.V (4;€M) and A7 = U, U, ... U,. The A% form a code of) having
n code-words for which A; «— AT; A, €olp; AT €A (= 1,....n) holds.

If the elements of the sequence of information 2, are encoded by the words
of of}, the erroneous bits occurring in the prefix of the code-word A} =
= U, U, ... U, of order » can be detected or corrected by methods of error
detection or correction applicable to the block code U,. If the noise effects
do not appear uniformly but are more frequent in a sequence of code-words
ranged in the interval of prefixes of order », a more effective error correction
can be used for the prefix of order ».

Ii the basic code ofl;, is Pyp-minimized, the most frequently occurring code
words of the corresponding code of} have the property that the maximum
order of their prefixes is at a minimum.
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Summary
Necessary and sufficient condition is given for a code to be minimized. An algorithm

is presented to construct minimized codes. FError correcting variable-length encoding is
illustrated by an example.
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