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1. Introduction 

Interferometry is a relatively simple and very suitable method for the 
determination of the real part of the complex refractive index. RAMADIER
DELBES was the first to propose this method for the investigation of liquids 
in the infrared spectrum range [I]. She used a Fabry-Perot etalon made from 
an optical material of high refractive index as interferometer. Her results were 
developed by VINCENT-GEISSE and LECO;\ITE [2]. A very important suggestion 
hy KAGARISE andNIAYFIELD was to make the interferometer of germanium [3]. 
This material has a very high reflectivity and its absorptivity is practically 
zero over a large spectrum range. It is a hard one and after polishing its surface 
is smooth and resistant. 

In the present paper the optical properties of the empty Fabry-Perot 
etalon will be dealt with. The phenomenon of the interference occurring in the 
etalon has been interpreted up to now by the Airy's formula deduced for the 
case of a single thin plane parallel plate [4] of the form: 

1 
(1) T=----'--'---

where T is the transmittancy of the non-ahsorbing plate, l' is the reflection 
coefficient of the surface (ratio of reflected to incident amplitudes) that 
may be calculated from the refractive index n of the optical material by the 
following expression: 

{~}2 n+1 
(2) 

The connection between the reflection coefficient l' and reflectivity .§l., 

of a surface (ratio of reflected to incident intensity) is given by .§l., = 1'2. 

The transmission coefficient is defined as: 

(3) 
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The phase difference 0 involves the layer thickness D, the frequency v, 
the refractive index of the layer, n, and the velocity of light in vacuum, c. 

D 
0= 4;"lnV--

c 
(4) 

The expression for the maximum and minimum transmittancies of the 
interference fringes derived from Eq. (1) are: 

Tmax = --- = 1 , {1_r2}2 
1-r2 (Sa) 

Tmin = ---{
I r2}2 
1+r2. (5b) 

In reality, the Fabry-Perot etalon consists of two thick plane parallel 
plates and the internal ref1ection among the four surfaces is left unconsidered 
in the Airy's formula. This formula is only suitable for the calculation if the 
etalon is of a low-reflectivity optical material. Especially the ratio of maximum 
to minimum transmittancy (so called contrast factor) may closely be approxi
mated in this case. It must be noted that according to Airy's formula, the 
layer thickness D in Eq. (4) corresponds to that provided by the spacer, the 
refractive index n, however, to that of the thick plates material. The KRS-5, 
Si and Ge have very high reflectivities in the infrared range, so the effect of 
the internal reflection can not be neglected. 

In the following chapters an expression in closed form will be deduced 
for the transmittancy of a single thick transparent plate, and an infinite series 
for that one of the Fabry-Perot etalon, using two assumptions: the light beam 
is incident perpendicularly on the surfaces and the absorptivity of the material 
may be neglected. 

2. The transmittance of a single thick plate 

Let us consider a plane wave incident perpendicularly on the surface of 
a thick plate. The resultant wave (wave-front) consists of an infinite number 
of plane waves each having a phase difference b with respect to the adjacent 
one. The phase difference 0 is due to the internal reflection. The wave-front 
has the following form [4] 

+'" 
1f1 = Eo {}2 e- i (wt-d/2) :z r2k eik a (6) 

k=O 

from which the transmittancy of the plate is given by multiplication with the 
complex conjugate of function (6) 
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(7) 

There is a very important difference between the effects produced by 
a thin and a thick plate, since in the case of a thick plate the average of the 
transmittancy function (7) can only be recorded by a spectrophotometer. This 
average is: 

(8) 

", 

where the frequency interval .:Iv is comparable to the resolution of the instru
ment. 

It is clear that in expression (8) only those members differ from zero for 
which indices k equal I. The result is an infinite geometrical series, the first 
member of which is (1 - r2)2 according to Eq. (3), the quotient equals r4. 
From the series the following simple formula may be deduced: 

(9) 

Note that the reflectivity ~ of a surface is not equivalent to the reflectivity 
of a plate, R arising from the internal reflection. This latter quantity may be 
calculated from the transmittancy by the trivial relationship R + T = 1. 

The transmittancies of some optical materials calculated by Eq. (9) 
and (2) are in good agreement with the measured data (Table I). 

The refractive index of KRS-5 published in the literature concerns a 
material consisting of 50% TlI + 50% TlBr. 

Table I 

.l. 
~ 

T T 
tu] "20 o~ caIe. expo 

NaCI 3.00 1.5243[5] 0.0431 0.917 0.915 

KRS-5 3.00 2.3876[6] 0.1678 0.713 0.725 

Ge 10.00 4.00[7] 0.3600 0.471 0.470 

3. The transmittance of the Fahry-Perot etalon 

Let us consider a plane wave lPo which is incident perpendicularly on the 
first surface of a Fabry-Perot etalon consisting of two plates with the same 
thickness H. The plane wave 1f1o is divided into two parts on the surface. One 
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of them, £lPo is reflected and the other, {)/fJo is transmitted. This latter one is 
separated into an infinite number of waves characterized by their optical 
paths in the etalon. These individual plane 'waves may be obtained in the 
following form: 

(10) 
where 

Opq = ~ {(2p+2)nH+(2q+I) D} (ll) 
C 

in which (c/w) Opq is the optical path. 
An optical path characterized by p and q may be realized by one or more 

different ways. In the follo'wing these ways will be called paths. Both the 
number of internal reflections (I?) and the transmissions through the surfaces 
(T) may be different in the case of paths corresponding to a given pair p, q. 
The coefficient cpq in relation (10) has the form of 

(12) 

where A~$ is a weight factor equivalent to the number of the paths having 
common g and T. It is evident that the sum of the A~; gives the number of the 
paths in an investigated optical path. 

According to the above statement, on the last surface the ,\-aye-front is 
a superposition of the individual plane wave (10) 

The transmittancy of the etalon is: 

T ="'i :i'cp'Q'cpqexpi{6pq-Op'q} 
q=O p=o 

q'=O p'=O 

Expression (14) may be transformed into the following form: 

where 

(13) 

(14 ) 

(15) 

(I6a) 
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~ = I q-q'\ (16b) 
and 

(16c) 

(16d) 

By analogy to Chapter 2, it is valid to the relationship (15) that in the 
series those and only those members are averaged by the spectrophotometer 
which contain the thickness H. Using a simple trigonometrical transformation, 
the ayerages are: 

~ cos 
1 2 Cl) " f 2(1) 7 -cos--;D cos--l;nHdv 

.dv c C ~ 0 
1'1 

for I; = 0 
(17a) 

for I; =/= 0 

"'2 

1 2(1)" 9(1) 
--sin--~DJ sin~l;llHdv=O 
.dv c c (17b) 

"I 
where frequency interval .dJ) is comparable to the resolution of the instrument. 
In this interyal the first slowly changing factor may be considered constant. 

Using the above results, the expression of transmittancy is: 

T = 'y Cc cos .- -
;=0 

2(1) 
~D 

C 
(18) 

neglecting the unnecessary index 1;. 
lf the distance D is very large, the relationship (18) must be averaged 

further to yield: 
T=co' (19) 

The maximum and the minimum of the transmittancy is given by the 
following expression: 

+0;; 
2(1)"D 2 N 1'. 1 ",' for --.; =7C1 (20a) max = COl ..-;.. C~ 

;=1 C 

+cc 
2cI) "D 2 (N + 1 ) Tmin = Co 2'c~ for --; =7C.l - (20b) 

;=1 C 2 

where N is the order of interference. 

The coefficients A~~ may not be given by a closed or a recursion formula. 
In the following chapter a relatively simple method is presented for deter
mining the coefficients A~~ based on the graph theory. 
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4. A method for determining the paths in a given optical path 

Let us consider the four surfaces of the etalon as four vertices of a directed 
multiple-graph (digraph) numbered from 1 to 4 in the direction of the light 
travel. 

The following conditions are to be met: Only adjacent vertices can be 
connected directly by the edges of the digraph. All edges of length D must 
be between vertices 2 and 3. Odd number of edges must be put between ver
tices 1 and 2, and 3 and 4, respectively. The direction of the edges must be 
choosen so that by one more edge start from a vertex in the direction of the 
light travel than arrive to the same vertex from the opposite direction. Natu
rally, vertex 4 is an exception. Uniting vertices 1 and 4 creates a pseudo
symmetric digraph, where the outdegree and indegree of any vertex is identical. 

For a given pair p, q, p + 1 different graphs may be sketched. Our prob
lem is to determine the possible distinguishable paths interpreted on these 
digraphs such a way that in the building of a path each edge is used once and 
only once. The number of internal reflection (Q) and transmission er) belonging 
to these paths must also be determined. 

These edges will be denoted by two numbers representing the starting 
and the arriving vertex, respectively. The possible paths may be built up from 
the edges in the following manner. The first edge is always one of the 12, the 
last one is one of the 34. The other edges must be placed between the above 
two ones in such an order that the first number of the edge is identical with 
the second one of the previous edge. From a given set of edges, in general more 
than one diffeJ ent paths can be constructed by applying a systematic trans
position. 

In the case of a path built up in this way, the number of internal reflec
tion (Q) is equivalent to the possible number of pairs formed from the adjacent 
edges of opposite direction, the number of transmission (T) to the number of 
pairs formed from the adjacent edges having identical direction, plus 2 cor
responding to the transmission through the first and last surfaces. For a given 
pair p, q the sum of Q and T is constant. 

It must be noted that these paths are not identical to the so called Euler's 
paths belonging to the same digraph [8], since several Euler's paths are indistin
guishable in our edge notation system corresponding to our optical problem. 

Consider an example for our method: Let 2p + 2 = 6 and 2q + 1 = 3. 
Three different graphs may be sketched (Fig. 1). The follo·wing possible paths 
may be derived from these digraphs using our theorem: 

a) {12,23, 32, 23, 34,43, 34,43, 34} 

{12,23, 34,43,32,23,34,43, 34} 

{12,23, 34,43,34,43, 32, 23, 34} 

T=4 

T= 6 

T=6 

(}=6 

Q=4 

(}=4 
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4 4 4 

OJ b, CJ 

Fig. 1 

b) {12, 21, 12, 23, 32, 23, 34, 43, 34} 1:=4 Q=6 

{12, 23, 32, 21, 12, 24, 34, 43, 34} 1:=6 Q=4 

{12, 23, 34, 43, 32, 21, 12, 23, 34} 1:=8 Q=2 

c) {12, 21, 12, 21, 12, 23, 32, 23, 34} 1:=4 Q=6 

{12, 21, 12, 23, 32, 21, 12, 23, 34} 1:=6 Q=4 

{l2, 23, 32, 21, 12, 21, 12, 23, 34} 1:=6 e=4 

The pictures of the internal reflections may be seen in Fig. 2. 
Some constants Ag/ of significant "\V-eight applied in the calculations are 

presented in Tables Ha, b, c, d and e. 

L ,,, I il 
fHq iHH 

11':1 
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ili)i 
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I I 

I I 

HtH TH+I HTL 
I III II 

r 
I 

c) 

Fig. 2 
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Table IIa 

2q + I = I 

'~; i ~ i 
T+!? ~ ~p -i- ~ I 0 2 4 

"_"_,/1> _____ ._ . 

i 
;I 2 I 0 0 0 0 
6 -l 0 2 0 0 0 
8 6 0 0 3 0 0 

10 8 0 0 0 4 0 
12 10 0 0 0 0 5 

Table IIb 

2q + 1=3 

r+p 
i~ 

4 10 12 
!1p X 2 ~----

----
, , 

"-----" ---'-"----1-"----

6 2 1 0 0 1 
0 

8 4 ' 2 2 0 0 I 0 I 

10 6 I 6 0 0 ! 0 

12 8 0 4 11 4 0 0 

14 10 0 0 9 18 5 0 

16 12 0 0 0 20 20 6 

Table IIe 

2q + 1 5 

~ Q I 

1"-:-Q 
2p 2~! 4 10 

,---

8 2 I 0 0 0 

10 ,1 4 2 0 0 

12 6 6 12 3 0 

14 8 3 17 22 4 

Table IId 

2q + 1 7 

I~I I 
T+!? 

I 2p,2 " ",1 t_ 10 

10 
I 2 1 0 0 

12 I 4 6 2 0 I 

14 
I 6 13 17 3 
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12 

1-1 

Table lIe 

2q + 1 = 9 

5. Experimental 

1 

8 

10 

o 
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The transmittancy of the Fabry-Perot etalon made of NaCl, KRS-5 
and Ge, respectively, were investigated. The NaCl and KRS-5 plates were 
usual cell windows (produced by C. Zeiss, Jena). The Ge plates made from 40 
Q cm, n-type polycrystalline germanium were 40 x22 x6 mm and had a high 
polish. These ones were obtained from Tungsram Inc. Budapest. 

Two spectrometers, a Zeiss UR-20 instrument equipped with KBr, 
NaCl and LiF prisms and a Rilger H900 one employing a NaCl prism and grat
ing comhination were used to ohserve the interference fringes. 

6. Results and discussion 

In the first step the transmittancy of the etalon of great layer thickness 
was investigated. Data ohtained in experiments and calculated hy our theory, 
respectively, may be found in Table IlIa. 

Table illa 

i. T T 
[uJ ca!. expo 

-_ .. _._----

NaCI 3.00 0.847 0.840 

KRS-5 3.00 0 .. 569 0.560 

Ge 10.00 0.302 0.290 

There is a very good agreement. 
The shape of the interference fringes was approximated by the following 

finite series: 

TNa(:1 = 0.8470 + 0.0198 cos 0: 0.0009 cos 20: (21a) 

TKRS - 5 = 0.5380 + 0.0645 cos 0: + 0.0136 cos 20: + 0.0041 cos 30: (21b) 

Tue = 0.3020 + 0.0741 cos 0: + 0.0323 cos 20: 
+ 0.0082 cos 4x 0.0054 cos 5x 

0.0141 cos 3x 
(21c) 
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where 
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20) 
Cl( = --D. 

e 

The constants of the series were calculated by the expressions (12), (16) 
and the data of Table Ha, b, e, d, e. The fourth and fifth constants in the series 
(21c) were determined by extrapolation using an empirical relationship of the 
form: 

I "9 b - = a~-+ . 
e< 
" 

(22) 

The maximum and minimum transmittancies of interference fringes may be 
seen in Table IHb. Unfortunately, our KRS-5 plates, with a refractive index 
corresponding to that of the composition 50% TU and 50% TIEr, have not 
the surfaces required for good interference effects. The refractive index of the 
plates with adequate surfaces, however, was unknown. Therefore, the reflec
tivity of the plates was calculated from the transmittancy of the single plate 
using the expression (9). Naturally, this fact increases the error of the cal
culation. 

Table I1Ih 

). Tmax Tmax Tmln Tmln 
[u] ca!. expo ca!. expo 

NaCl 3.00 0.368 0.860 0.826 0.825 

KRS-4 2.00 0.620 0.640 0.456 0.425 

Ge 10.00 0.436 0.440 0.168 0.170 

Table HIe contains the contrast factors T max/T!1lin calculated by the Airy's 
formula, our theory and the measured data, respectively. 

Table me 

). Tmax/Tmln Tma:tJ'Tmin TmaxlTmln 
[u] Airy ca!. expo 

NaCI 3.00 1.19 1.05 1.04 

KRS-5 2.00 2.08 1.36 1.5] 

Ge 10.00 4.52 2.60 2.59 

Despite the fact that the convergence of the light beam of the spectro
photometer was neglected in our model, what is more, both the flatness of 
the surfaces and the plane paraIlelity of the layer may not be perfect, the 
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agreement between the experimental and calculated data is very good. The 
results according to our theory are more satisfactory than those from the Airy's 
formula which gives e.g. T max = 1.000, T mill = 0.228 for Ge. The error may 
be reduced by taking into account more coefficients A~~ than are found in 
Table Ha, b, c, d, e. 
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Summary 

A new calculation method is presented for the determination of the transmittancy of 
a single thick plate and the Fabry-Perot interferometer. For the single thick plate a short, 
closed formula and for the Fabry-Perot etalon an infinite series were deduced. The determination 
of the constants of the series is based on the graph theory. The transmittancy was investiga
ted in the case of three optical materials, NaCl, KRS-5 and Ge, respectively. The agreement 
between the experimental and calculated data is very good. 
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