INVESTIGATION OF THE STRUCTURE OF ORGANOSILICON COMPOUNDS BY ω-TECHNIQUE, II

By

J. NAGY,* J. RÉFFY,* J. KREPUSKA,** G. POPPER** * Department for Inorganic Chemistry, Technical University, and ** Ministry of Heavy Industry, Budapest

(Received October 17, 1969)

In the previous paper of the authors [1] the energy matrices for the π systems of trimethyl-vinyl-silane (I), trimethyl-phenyl-silane (II) p-bis-trimethyl-silyl-benzene (III) and trimethyl-benzyl-silane (IV) have been given along with the block diagram of a computer program. In Tables 1 to 4 most important data obtained by computation using different values of ω are summarized. In the tables E means the energy of molecular orbitals, (which can be given in the form $E = \alpha + k \beta$; the tables only contain the value of k), Δm is the energy corresponding to the transfer of an electron from the highest filled molecular orbital to the lowest vacant molecular orbital in β units, Σe denotes the sum of the energy of electrons situated on the filled orbitals, and q the partial charges on the atoms (for the numbering of atoms see Fig. 1 in [1]). To the value $\omega = 0$ belong the data of the 0th approximation.

For any value of ω the calculations result in the molecular orbitals of minimum energy belonging to the given ω , owing to the application of the principle of energy minimum. In the 0th approximation, however, the interactions of electrons are not taken into consideration. The application of

ω									
1	0.0	0.3	0.5	0.7	1.0				
E_1 E_2 E_3	1.052459 0.967461 1.900238	1.054420 0.965548 1.904116	1.055741 0.964348 1.906633	1.057057 0.963182 1.909115	1.058809 0.961684 1.91278				
Δm Σe a.	$\begin{array}{ c c c c c } -2.019920 \ \beta \\ 2\alpha + 2.104918 \ \beta \\ -0.014010 \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{r} -2.020089 \beta \\ 2\alpha + 2.111482 \beta \\ -0.013827 \end{array}$	$egin{array}{c} -2.02039 \ eta \ 2lpha + 1.14114 \ eta \ -0.013768 \end{array}$	$\begin{array}{ c c c c } & -2.020493 \ \beta \\ \hline 2\alpha + 2.118618 \ \beta \\ & -0.013695 \end{array}$				
91 92 93	-0.012082 +0.026092	-0.007829 +0.021721	-0.005950 +0.019777	-0.004499 +0.018268	-0.002835 +0.016530				

 Table 1

 Data calculated for trimethyl-vinyl-silane

345	
298	
341	
558	
064	J
182	NAG
808	Y et
999 <i>B</i>	al.

Table 2							
Daʻa	calculated	for	trimethyl-phenyl-silane				

ω									
	0.0	0.5	07	0.9	1.0	1.2			
E_1	2.082172	2.078456	2.077597	2.076958	2.076704	2.076345			
E_2	1.138127	1.126145	1.122720	1.111982	1.118527	1.116298			
E_3	1.000000	1.012894	1.016955	1.020555	1.022208	1.025341			
E_4	-0.843840	-0.850970	-0.853437	-0.855763	-0.854491	-0.858658			
E_{5}	-1.000000	-0.987219	-0.983204	-0.979641	-0.977004	0.975064			
E_6	-1.789707	-1.789635	-1.789782	-1.790005		-1.790482			
E_7	-2.028825	-2.031742	-2.032921	-2.034093	2.034676				
∆m	-1.843840β	-1.863864β	-1.870392β	-1.876218β	-1.878899β	-1.883999β			
Σe	$6\alpha + 8.440600 \beta$	$6\alpha + 8.434990 \beta$	$6\alpha + 8.434544 \beta$	$6\alpha + 8.434660 \beta$	$6\alpha + 8.434878 \beta$	$6\alpha + 8.435968 \beta$			
q_1	0.012315	-0.012102	-0.012037	-0.011979	0.011952	-0.011900			
q_2	-0.153500	-0.121780	-0.112664	-0.104886	0.101373	-0.090005			
q_3	+0.065116	+0.046936	+-0.042239	-+0.038399	+0.036730	+0.033757			
q_4	-0.003726	+0.004412	+0.004976	+ 0.007059	+0.007475	+0.010831			
q_5	+0.043034	+0.031186	+0.028273	+0.025927	+0.024920	+-0.023111			
q_{6}	0.003726	+0.004412	+0.005976	+0.007059	+0.007475	+0.010831			
q_7	+0.065116	+0.046936	+0.042239	+0.039399	+0.036830	+0.033757			

Table 3						
Data calculated for	bis-trimethyl-silyl-benzene					

ω								
	0.0	0.1	0.5	0.8	1.0	1.4*		
E_1	2.146437	2.145782	2.144205	2.143756	2.143682	2.1441		
E_2	1.285115	1.279047	1.259612	1.248752	1.242783	1.2331		
E_{3}	1.000000	1.005942	1.025722	1.037439	1.044163	1.0560		
E_4	-0.700689	-0.70494	-0.717084	-0.724403	-0.728518	-0.07354		
E_5	-1.000000	-0.994057	-0.974344	-0.962562	-0.955837	-0.9440		
$E_{\mathfrak{g}}$	-1.683950	-1.683353	-1.681729	-1.681065	-1.680825	-1.6807		
E_7	-1.887822	1.889297	-1.894908	-1.898865	-1.901398	-1.9060		
E_8	-2.043235		-2.045692	-2.047194	-2.048193	-2.0498		
∠1m	-1.700689β	-1.710436β	-1.742806β	-1.761842eta	-1.772681eta	-1.7914β		
Σe	$6\alpha + 8.863104 \beta$	$6\alpha + 8.861542 \beta$	$6\alpha+8.859078\ \beta$	$6\alpha + 8.859894 \beta$	$6\alpha + 8.861256 \beta$	$6\alpha + 8.8664 \beta$		
q_1	0.0011358	-0.011340	-0.011270	-0.011220	-0.011189	-0.0110		
q_2	-0.112340	-0.107498	-0.091562	-0.082301	-0.077067	-0.0680		
q_3	+0.061849	+0.059419	+0.051416	+0.046761	+0.044128	+0.0398		
q_{A}	+0.061849	+0.059419	+0.051416	+0.046761	+0.044128	+0.0398		
q_5	-0.112340	-0.107498	-0.091562	-0.082301	-0.077067	-0.0680		
q_{0}	-0.011358	0.011340	-0.011270	-0.011220	0.011189	-0.0110		
q_7	-+-0.061849	+0.059419	-+-0.051416	+0.046761	+0.044128	+0.0398		
q_8	+0.061849	-+-0.059419	0.051416	-+-0.046761	+0.044128	+-0.0398		
-								

* Calculations were only made to four places of decimals

 ω -technique consists in the empirical consideration for electronic interactions, in this case the energy of electrons has to increase owing to mutual repulsion. The sum of the energy of electrons occurring on the filled orbitals of compound II, III and IV were plotted as function of ω (Fig. 1). The electron energy

ω								
	0.0	0.3	0.5	1.0	1.4			
E^1	2.996888	2.995827	2.995378	2.994895	2.994778			
E_2	1.951346	1.951440	1.951505	1.951658	1.951790			
E_3	1.00000	0.999544	0.999297	0.998810	0.998486			
E_4	0.961837	0.962409	0.962723	0.962723	0.963758			
E_{5}	-0.980336	-0.979708	-0.979378	0.978733	0.978306			
E_{6}	-1.000000	-1.000461	-1.000702	-1.001195	-1.001515			
E_7	-1.787994	-1.789373	-1.790316	-1.792730	-1.794670			
$E_{\rm s}$	-2.003400	2.003688	-2.003885	-2.004389	-2.004806			
$E_{\mathfrak{g}}$	-3.453541	-3.451191	-3.449821	-3.446852				
∆m	-1.942173β	-1.942117β	-1.942101β	-1.942069eta	-1.942064β			
Σe	$8\alpha + 13.820142 \beta$	$8\alpha + 13.818440 \beta$	$8\alpha + 13.817806 \beta$	$8\alpha + 13.816398 \beta$	$8\alpha + 13.817624 \beta$			
q_1	-0.007027	-0.006995	-0.006976	-0.006933	-0.006900			
q_2	-0.078526	-0.071320	-0.067181	-0.058567	-0.052217			
q_3	+0.090663	+0.083099	+0.078754	+0.069708	+0.063041			
q_4	+0.004388	+0.003345	+0.002847	+0.001967	+0.001506			
q_5	-0.003637	-0.002881	-0.002542	-0.001915	-0.001645			
q_6	+0.000187	-0.000151	-0.000269	-0.000468	-0.000460			
q_7	-0.002595	0.002063	-0.001823	-0.001409	-0.001220			
$q_{ m s}$	+0.000187	-0.000151	-0.000269	0.000468	-0.000460			
q_9	-0.003637	-0.002881	-0.002535	-0.001915	-0.001645			
					1			

Table 4

Data calculated for trimethyl-benzyl-silane

increases with ω , reaches a maximum at a singular value (ω_{max}), and thereafter decreases. It seems probable that the optimum value of ω lies near ω_{max} . The electron energy is in fact twice the sum of the energies of the filled orbitals, so the shape of the curve is determined by the change of the energies of the orbitals with ω . In Fig. 2 the energies of the four molecular orbitals of compound II are plotted against ω . As shown by the curves, the energy of some orbitals increases, that of others decreases with increasing ω . The same is shown by Fig. 3 in connection with the five molecular orbitals of compound IV. Thus the sum of the energies of filled molecular orbitals can be described by a curve passing through a maximum with the exception of compound I containing a single filled molecular orbital, thus the energy increases monoto-

Fig. 1. Variation of total electron energy as function of ω. 1. trimethyl-phenyl-silane; 2. p-bistrimethyl-silyl-benzene; 3. trimethyl-benzyl-silane

Fig. 2. Variation of the energies of the molecular orbitals of trimethyl-phenyl-silane as function of ω

Fig. 3. Variation of the energies of the molecular orbitals of trimethyl-benzyl-silane as function of ω

Fig. 4. Variation of the partial charges of p-bis-trimethyl-silyl-benzene as function of ω

nously with ω . With the three other compounds ω_{max} ranges from 0.6 to 0.9, the average being 0.8.

Curves similar to the former are obtained when partial charges are plotted against ω (Figs. 4, 5). The partial charges belonging to the silicon atom (q_1) decrease slowly with increasing ω .

The change of the linear coefficients (c_1) is presented for three different values of ω , on the example of trimethyl phenyl silane (Table 5). The bond orders (p_{ij}) calculated on the basis of the linear coefficients are summarized in Table 6 for a single ω . The change of these data is similar in the case of the other compounds studied.

The data in the table show that the bond orders, eigenvalues change slightly with ω . The electron transfer energies Δm and the linear coefficients

		Linear	coefficients	of trimethy	l-phenyl-silar	le	
$\omega = 0.5$	<i>c</i> 1	¢2	c3	с,	с ₅	C ₆	c7
E_1	0.041594	0.480764	0.417536	0.377275	0.365774	0.377275	0.417536
E_2	0.065734	0.574244	0.222586	0.328798	-0.592129	-0.323798	-0.222586
$E_{\mathfrak{d}}$	0.000000	0.000000	0.502644	0.497342	0.000000	-0.497342	-0.502644
E_4	0.189691	0.545535	-0.349306	-0.240096	0.554155	-0.240096	-0.349305
E_5	0.000000	0.000000	0.497339	-0.502646	0.000000	0.502646	-0.497339
E_6	0.769613	0.082152	-0.214813	0.309772	-0.341673	0.309772	-0.214813
E_7	0.60430	-0.372685	0.329053	-0.307986	0.299401	-0.307986	0.329053
$\omega = 0.7$							
E_{I}	0.041179	0.476047	0.417508	0.379044	0.368387	0.379044	0.41508
E_2	0.065753	0.574205	0.226733	-0.326339	-0.591738	-0.326339	0.226733
E_3	0.000000	0.000000	0.503150	0.496830	0.000000	-0.496830	-0.503150
E_4	0.190464	0.547706	-0.346456	-0.241802	0.553843	-0.241802	0.346456
E_5	0.000000	0.000000	0.496830	-0.503150	0.000000	0.503150	-0.496830
E_6	0.779760	0.073160	-0.208432	0.304746	-0.337630	0.304746	-0.208432
E_7	0.591557	-0.368984	0.332662	-0.314700	0.307427	-0.314700	0.332662
ω=0.9							
$\overline{E_1}$	0.040797	0.4719400	0.417415	0.380619	0.370668	0.380619	0.417415
E_2	0.065765	0.574200	0.230341	-0.324203	0.591305	-0.324203	0.230341
E_3	0.000000	0.000000	0.503496	0.496479	0.000000	-0.496479	-0.503496
E_4	0.191055	0.549477	-0.343923	-0.243334	0.553700	-0.243334	-0.343924
E_5	0.000000	0.000000	0.496482	-0.503494	0.000000	0.503494	-0.496482
E_{6}	0.774528	0.077783	-0.211716	0.307391	-0.339749	0.307391	-0.211715
E_7	0.598176	-0.370993	0.330790	-0.311241	0.303256	-0.311241	0.330790
	1	l					1

Table 5 inear coefficients of trimethyl-phenyl-silane

show a greater change, while partial charges change remarkably with ω . In consequence of the last-mentioned fact the calculated values of dipole moments highly depend on ω . Bis-trimethyl-silyl-benzene has no resultant dipole moment. For the other three compounds σ dipole moments have been calculated by the modified method of DEL RE [2], the dipole moment

	Bond orders of trimethyl-phenyl-silane								
	$\omega = 0.5$	$\omega = 0.7$	$\omega = 0.9$						
$p_{12} \ p_{23} \ p_{34} \ p_{45}$	0.115488 0.657110 0.668652 0.665376	0.114718 0.657888 0.668484 0.665484	0.114032 0.658514 0.668384 0.665572						

	Table				
1	c		.1. 1	1	

Table 7							
Calculated	and	experimental	dipole	moments			

		μcalculated (D)							
Compound	$\omega = 0$	0.3	0.5	0.7	0.9	1.0	1.2	1.4	µexperimental (D)
I II III	0.129 0.741 0.495	0.106 0.487	0.097 0.622 0.452	0.090 0.583	0.546	0.083 0.529 0.411	0.494	0.080	0.229 0.250 0.550
	 +0,10 +0,08		x				q, 1, q, 1 - 0,0	। ५. <i>५</i> १ 100	1
	+0,05 +0,04 +0,02						0,0 0,0 0,0	01 02 03	
- - - - 	0,00 -0,02 -0,04 -0,06		 		× ×	$\begin{array}{c} \begin{array}{c} q_{,6} \\ q_{,7} \\ q_{,5} \end{array}$	0,0 0,0 0,0	04 05 06 07	
	-0,08		3 0,5	1	0	1,4 ω	-0,0	08	**

Fig. 5. Variation of the partial charges of trimethyl-benzyl-silane as function of ω

of the π -system on the basis of the results of computations with different ω values, and the resultant dipole moment by the vectorial addition of the two vectors (Table 7). In Fig. 6 the change of dipole moments with ω is presented. The dipole moments of all the compounds studied decrease as ω increases. From the plots in Fig. 6 the dipole moments belonging to any value of ω can

Fig. 6. Variation of dipole moments as function of ω . 1. trimethyl-vinyl-silane: 2. trimethyl-benzyl-silane; 3. trimethyl-phenyl-silane

Fig. 7. Average deviation of calculated and experimental dipole moments as function of ω

be read. By taking the average of the differences between experimental and calculated dipole moments at different values of ω for the three compounds (Table 8) and plotting the averages against ω (Fig. 7), a curve having a mini-

		-				
	$\omega = 0$	0.3	0.5	0.7	1.0	1.4
I	-0.100	-0.123	0.132	-0.139	0.146	0.149
II	+0.391	+0.441*	+0.372	+0.333	+0279	+0.214*
III	-0.055	-0.084*	-0.098	-0.114*	-0.139	-0.154
		5				

Table 8 Differences between experimental and calculated dipole moments in (D) units

* Data obtained by interpolation from Fig. 6.

mum at $\omega = 0.9$, i.e. near ω_{max} was obtained. This indicates that best results are obtained in the case of organosilicon compounds when calculating with $\omega = 0.8 - 0.9.$

Summary

Computations have been made using the ω -technique LCAO-MO method for trimethylvinyl-silane, trimethyl-phenyl-silane, p-bis-trimethyl-silyl-benzene and trimethyl-benzyl silane. Calculated π -bond orders and Δm electron transitions are the least sensitive, while partial charges the most sensitive to the changes in ω . The total energy of the electrons on the filled orbitals has its maximum in the range = 0.6 to 0.9 attributable to the empirical consideration for electronic interactions.

References

1. NAGY, J.-RÉFFY, J.-KREPUSKA, J.-POPPER GY.: Periodica Polytechnica, CH (in press) 2. NAGY, J.-RÉFFY, J.-KUSZMANN-BORBÉLY, A.-BECKER-PÁLOSSY, K.: J. Organometal. Chem. 17, 17 (1969)

Prof. Dr. József NAGY	Pudanast VI	Callánt tán	4	Hungan
Dr. József Réffy	Dudapest AI.,	Genert-ter	±,	itungary

János Krepuska	Budapest	V.,	Markó	utca	16,	Hungary
György Popper						