HETEROGENOUS ISOTOPIC EXCHANGE AT THE INTERFACE OF STEEL SHEETS IN CONTACT WITH IRON CHLORIDE SOLUTIONS

II. EXPERIMENTS WITH IRON(III) CHLORIDE AND IRON(II) AMMONIUM SULFATE SOLUTIONS

By

J. FARKAS*, L. G. NAGY**, GY. VARSÁNYI**

Department of Physical Chemistry, Technical University, Budapest (Received October 7, 1968)

The first part of this paper [1] dealt with the surface preparation and surface qualification of steel sheets, used in our heterogenous isotopic exchange investigations. It tried to define the metal surface with regard to purity and the actual surface, to render thereby the evaluation of exchange processes possible.

This paper reports on the isotopic exchange experiments undertaken.

Experimental part

The plates, adequately prepared, were placed into 5 to 10 ml of aqueous ferric chloride or ferrous ammonium sulfate solution containing ⁵⁵Fe ions. Under intensive stirring of the solution, the isotopic exchange during various times of investigation was determined with an apparatus Model EKCO, using NaI(TI) X-ray crystal for detection. (Applied voltage 1150 V, at a discriminator bias of 10 V, measuring time 100 s, amplifier gain: $100 \times .$)

⁵⁵Fe (⁵⁹Fe) isotope was used for the experiments in form of FeCl₃ in 0.2 molar HCl solution. The specific activity of this solution was 20.5 mCi/gFe (5.4 mCi ⁵⁹Fe/gFe). 15 ml of this solution diluted to 50 ml represented that stock solution, with which the inactive solutions have been traced. Generally 0.001 or 0.1 m FeCl₃ or Fe(NH₄)₂(SO₄)₂ solutions were used as inactive solutions.

The detection of the 5.9 keV X-ray radiation of Fe⁵⁵ ions of a half life of 2.7 years with GM counter and with scintillation γ -crystal is of poor efficiency. We tried therefore a scintillation X-ray crystal and a through-flow GM counter for measuring the activity of the X-ray radiation. Our experiments showed the first approach to be more suitable. Further possibilities, such as a plastic scintillator or the measurement of the 1.1 MeV radiation of ⁵⁹Fe were not investigated.

* Ministry for Heavy Industries. *• Physical-chemical Institute of the Technical University of Budapest.

Activity was measured on both sides of the plate, and, under consideration of the decrease in radiation caused through absorption by the plate of given thickness, the actual activity on both sides of the plate has been calculated. First, this value was referred to the unit of geometrical surface (1 cm^2) , then the roughness factor of the surface measured was taken into account. Fe equivalents in mg, corresponding to the activity measured, were determined under identical experimental conditions by analytical methods.

Rejection of doubious values

As shown by way of example in Table I. the rejection of intensity measurements data was decided on the basis of the Chauvenet criterion. Intensity measurement was considered as »good«, if data obtained from 3 or 5 measurements fulfilled the Chauvenet criterion.

Table I

n	n	n _ n	f	Note
1418	$1416 \\ 1440 \\ 1364 \\ 1443 \\ 1426$	$\begin{array}{c} - & 2 \\ & 22 \\ & 54 \\ & 25 \\ & 8 \end{array}$	/1.42	good series $(c_5=1.64)$
1424	$1440 \\ 1387 \\ 1446$	$\begin{array}{r}16\\-40\\22\end{array}$	1.06	good series $(c_3=1.4)$
479	457 484 491 488 476	-22 5 12 9 -3	1.0	good series (c ₅ =1.64)
	$f = \frac{n - \overline{n}}{\overline{n}}$	$\sigma = \overline{n}$	$c_{5} =$	1.64

Application of the Chauvenet criterion

(c_5 is the value of the Chauvenet criterion, read from the diagram for 5 measurements)

Limit of detection

In course of the detection of ⁵⁵Fe radiation with an X-ray crystal, the increase in radiation with increasing Fe ion concentration was investigated (Table II). The data are reliable, so that it can be accepted as detection limit, if the level increases by 20 per cent of the background (which maximum

$\binom{n_k}{(b)}$	$\frac{b}{a} \cdot 10^{2}$
36.676	219
4.310	257
2.059	245
888	264
232	276
	$\binom{n_k}{(b)}$ 36.676 4.310 2.059 888 232

Table II

The intensification of the radiation for increasing Fe ion concentrations

is 460 cpm), that is to say, by 100 cpm. The quantity of iron corresponding to this value is:

$$\mathbf{x}_m = rac{5\cdot 10^3\cdot 100}{1375} \ 3.6 imes 10^{-4} \, \mathrm{mg} \ \mathrm{Fe}/100 \ \mathrm{cpm}.$$

This corresponds to 4×10^{15} Fe atoms.

The rejection of the measurement data of the actual exchange

After deciding on the rejection of the results obtained in the intensity measurements for each specimen, the evaluation of the reliability of surface isotope exchange data, calculated from these results, poses further problems. The degree of reliability is influenced by several factors, thus e.g. by the roughness of the surface, discussed in our previous communication [1], by the concentration, pH and temperature of the solution, by the efficiency of rinsing, i.e. the quantity of ions adsorbed on the surface. These variables can be taken into account and fixed only to a certain extent.

The efficiency of rinsing, or better the quantity of ions adsorbed on the surface of germanium has been already investigated in this Institute [14]. According to these investigations and other pertinent data in the literature, in the case of adequate rising a monomolecular adsorbed ion layer, that is to say, a quantity of about 10^{15} ions/cm² is to be expected. (In the case of K⁺ ions and Ge surface, the adsorption of $1 - 5 \times 10^{13}$ K⁺ ions per each cm² is the most probable value.)

A time of the order of 60 minutes is required for the adsorption equilibrium to establish.

Before the actual measurements, the test specimens were rinsed for 1-2 minutes in distilled water, and then dynamically sprayed with a water jet for 2-3 minutes and dried. Thus, the source of error, due to adsorbed Fe ions, could be minimized.

Evaluation of experimental results

Some experimental results are shown in Tables III to XXI. These tables contain data on the solutions used in the experiments, the geometry of the plate used, exchange times, the activity measured and that referred to unit

Table III

Isotopic exchange in 0.001 molar FeCl₃ solution Solution: 20 ml of 0.001 m FeCl₃ + 0.17 ml of active FeCl₃ Activity of the solution: $1.23 \times 10^{6} 3.32 \cdot 10^{5}$ c/100s; c/100s/mg Fe

Plate No.	Geometrical surface (cm²)	Time of exchange (investiga- tion)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange refer- red to the geo- metric surface (x · 10 ⁻⁴ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange refer- red to the actual surface $(x \cdot 10^{-4})$ mg Fe/cm ²	Re- mark
1.	2 · 2.55	50 sec	874 879	232 232	7	0.85	28	0.25	
1/a	2 · 2.55	0.5 min	827 756	$\begin{array}{r}187\\137\end{array}$	5.6 4.1			$\begin{array}{c} 0.20\\ 0.14\end{array}$	
		6 min	$\begin{array}{c}1419\\1419\end{array}$	375 375	11.3			0.40	
2.	2 · 2.8	50 sec	629 635	150 155	4.5	0.45	15	0.30	
2/a	2 · 2.8	0.5 min	540 556	$\begin{array}{c}112\\124\end{array}$	3.4 3.7			0.23 0.25	
		6 min	$\begin{array}{c}1425\\1432\end{array}$	$\frac{342}{348}$	10.2			0.68	
3.	2 · 2.8	0.5 min	394 394	96 96	2.9	0.75	24	0.12	
4.	2 · 2.55	0.5 min	525 525	$\begin{array}{r}140\\140\end{array}$	4.2	0.30	10	0.42	

surface, the exchanged quantity of Fe in mg, referred to the geometrical surface, data on the fineness of the surface of the plate used (measured Ra value, calculated roughness factor), and Fe exchange in mg referred to the actual surface. Under consideration of these factors, in 0.5 to 30 minutes 0.1 to 1.5×10^{-4} mg of Fe is exchanged on the actual surface. $(1 \times 10^{-4} \text{ mg})$ of Fe corresponds to $1.08 \cdot 10^{15}$ atoms.)

For a further evaluation, the number of the Fe atoms (ions) on 1 cm² of the actual surface has to be determined. Starting from the body-centered lattice structure of steel, and taking as the atomic diameter of Fe 2.5Å, the space requirement of one atom will be $\frac{3 \times / 2.5 \times 10^{-8}}{2} = 5.4 \times 10^{-16}$ cm².

Therefore, $1/5.4 \times 10^{-16} = 1.85 \times 10^{15}$ Fe atoms/cm² will be accomodated on 1 cm² of the actual steel surface. According to this calculation, for the total exchange of the atoms on 1 cm² of surface 1.7×10^{-4} mg of Fe/cm² is necessary. Values obtained in our investigations are generally below this value. Also measured data shown in Fig. 1 prove that in 30 minutes the exchange is

Table IV

Isotopic exchange in 0.001 molar FeCl₃ solution

Solution: 20 ml of 0.001 m $\text{FeCl}_3 + 0.15$ ml of active FeCl_3 Activity of the solution: 1.23×10^6 c/100s

Plate No.	Geo- metrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange refer- red to the geo- metric surface $(x \cdot 10^{-4})$ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange referred to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)
5	$2 \cdot 2.4$	1 min	458 368	152 81	4.6 2.4	0.93	31	0.15 0.08
	1	2 min	935 907	272 245	8.2 7.4			0.26 0.24
		4 min	$\begin{array}{c}1424\\1400\end{array}$	407 387	12.2 11.7			0.4 0.38
6	2 · 2.7	l min	692 702	174 177	5.3			Plate treated with cc HNO ₃ for 1 min

2 Periodica Polytechnica Ch. 13/4

Table V

Isotopic exchange in 0.001 molar FeCl₃ solution

Solution: 10 ml of 0.001 m ${\rm FeCl}_3+0.07$ ml of active ${\rm FeCl}_3$ Activity of the solution: 5.32×10^5 c/100 s

Plate No.	Geo- metrical surface (cm²)	Time exchange (investiga- tion)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange refer- red to the geo- metric sur face (x · 10 ⁻⁴ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)
7	$2 \cdot 1.1$	27 min	1670 1670	1040	22.4			the plate decolour- ized, became ,,rusty"
			1260 1418	680 960	$\begin{array}{c} 14.6\\ 20.5\end{array}$			Decolourization, ,,rust" removed
		10 min	$1211 \\ 1272$	722 800	15.5 17.2			9
			277 363	120 273	2.6 5.9			Surface layer dis- solved in 1 : 1 HCl, 30 sec
			129	74	1.6			Etched in 1 : 1 HCl. 30 sec

Table VI

Isotopic exchange in $0.001 \text{ molar FeCl}_3$ solution

Solution: 10 ml of 0.001 m $\text{FeCl}_3 + 0.12$ ml of active FeCl_3 Activity of the solution: 1.25×10^6 c/100s

Plate No.	Geo- metrical surface (cm²)	Time ex- change (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange refer- red to the geo- metric surface $(x \cdot 10^{-4}$ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)
8	$2 \cdot 1$	33 min	5048 4792	3570 3080	76 66			the plate decolouriz- ed, corroded
		73 min	72.019 70.713	49.500 46.963	1050 995			

about 80 per cent of the total exchange of the calculated surface. Presumably, the exchange proceeds at the active sites of the surface, repeatedly mentioned in the literature on adsorption.

This statement is contrary to the opinion, stated also in the book of HAISSINSKY [8], according to which, notwithstanding the small self-diffusion a relatively great number of atomic layers participate in the exchange. For example, in the 0.001 molar solutions of most of the metals several times 10 atomic layers participate for about 10 minutes in the exchange, and several

Table VII

Isotopic exchange in 0.001 molar FeCl₃ solution

Solution: 10 ml of 0.001 m $\text{FeCl}_3 + 0.10$ ml of active FeCl_3 Activity of solution: 9.91×10^5 c/100s; 4.65×10^5 c/100s/mg Fe

Plate No.	Geo- metrical sur- face (cm ²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange refer- red to the geo- metric surface $(x \cdot 10^{-4}$ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, <i>u</i> m)	Rough- ness factor calcul- ated	Exchange to the actual surface $(x \cdot 10^{-4} \text{ mg Fe/cm}^2)$
9	2.1	7 min	680 786	460 565	9.9 12.1			N ₂ introduced during exchange into the solution
	-		600	400	8.6		-	Decolourization wiped off
			276 252	201 155	4.3 3.3			Decolourization polished off

Activity of the solution: 9.58×10^5 c/100 s

	10 min	816 766	590 483	12.7 10.4	
		734 720	463	9.9	Decolourization partly wiped off
		198	125	2.7	Etched in 1 : 1 HCl, 30 sec
		67	42	0.9	Etched in 1:1 HCl, 30 sec

hundred, if the solution concentration is 10 times higher. After the initial exchange, the process slows down, and becomes "irreproducible". The exchange of 10 and 100 surface atom layers has been observed by several authors, without however giving a logical explanation of the phenomenon, or eliminating the inconsistency with the known fact that the self-diffusion of metals is very low at this temperature (Table 21). Concerning the rate of heterogeneous exchange processes, HAISSINSKY [8] mentions that the rate determining step is either the exchange process proper, or the diffusion of one of the components. If one of the components is a solid, the overall rate will be determined usually by the self-diffusion. (Investigations of WAGNER, ZIEMENS.)

Why would the case of metal surfaces be exceptional?

At room temperature, atomic translations in solids are determined essentially by the degree of irregularities, i.e. by the number and presence

Table VIII

Isotopic exchange in 0.001 molar FeCl₃ solution

Solution: 20 ml of 0.00	m $\text{FeCl}_3 + 0.15 \text{ ml}$	of active FeCl _a
Activity of the solution	: $1.23 imes 10^6$ c/100 s	•

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange referred to the geometric surface (x · 10 ⁻⁴ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)
10. (CORR-5)	2×3.05	0.5 min	232 232	51	1.5	0.58	19	0.08
		8.5 min	375 351	79	2.4			0.12

Activity of the solution: $6.7 \times 10^5 \text{ c/100s}$ Solution: 10 ml of 0.001 m FeCl₃ + 0.08 ml of FeCl₃

11. (CORR-5)	2 imes 0.9	51 min	170 143	148 89	4.5 2.7	0.42	14	0.32 0.19
		6 h	216 169	194 - 95	5.8 2.9			$\begin{array}{c} 0.41 \\ 0.21 \end{array}$

Solution: see that of plate No. 10

New York Research and Article Providence Control of the Providence Con	Nor the contract of the second s	and the second difference of the second second second	Concernance and the second s	the second	and the sector was a sector of the sector of	 	and the second se	
	;	1	3	1		1	1	
10	10.45	1 5	000	97	1 1	1	1	
14.	1 4×4.0	1.5 mm	204	31	1.1	1	1	
01 1	1		0.00	00	1.0		1	
Glass plate	2	1	263	39	1.2	· · · · ·		
orace prace			-00		~·-	1		
		1	-	1		1		

of lattice defects according to SCHOTTKY and FRENKEL [8]. Neither can this be the explanation for the exchange of several times 10 or 100 atomic layers.

According to ERBACHER, the exchange is confined to a single atomic layer, if the metal has been kept previously in an identical solution. According to Haissinsky, this may diminish, or alternatively, increase the exchange [8].

IMRE [7] explains the phenomenon by the so-called pseudo-diffusion mechanism. According to this concept, at certain spots of the surface ions are formed and as a process opposite to dissolution, also ion adsorption, and precipitation by ion capture, incorporation takes place. In this way, it can be assumed that the tracer atom gets into the atomic layers of the deepler lattices of the metal surface. This concept gives an explanation for the phenomenon observed, it may be assumed, however, that the structure of the layer formed in the secondary process is different from the original structure of the metal. In this case, no isotope exchange on the surface can be spoken of since an isotope layer comented out is present.

In our investigations, the attack on the metal surface soon begun due partly to the strong acidity of the solution. In 10 to 15 minutes, visible discol-

Table IX

Isotopic exchange in 0.001 molar FeCl₃ solution

Solution: 5 ml of 0.001 m $FeCl_3$ + 0.1 ml of active $FeCl_3$ Activity of the solution: 1.04×10^6 c/100s; 5.38×10^5 c/mg Fe

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange referred to the geo- metric sur- face (x · 10 ⁻⁴ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)	Remark
13	2×2.27	0.5 min	130	91	0.75	0.25	8	0.09	
		1 min	223 195	119 143	0.98 1.17	1	**************************************	0.12 0.15	
		2 min	522	366	2.95			0.37	
		4 min	524	368	3.12			0.39	,
	-	9 min	733	520	4.26	A		0.53	
		36 min	1209 1017	950 589	7.8 4.8			0.98 0.60	
			96	68	0.56				Etched in 1:1HCl, 10 sec

Table X

Isotopic exchange in 0.001 molar FeCl₃ solution

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange referred to the geo- metric surface (x · 10 ⁻⁴ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface $(x \cdot 10^{-4}$ mg Fe/cm ²)	Remark
13/a	22 imes .27	1 min	298 437	160 353	1.3 2.9		-		Pretreat- ment: 1 : 1 HCl, 3 min
	ver of the second se	26 min	632 806	$\begin{array}{c} 340 \\ 680 \end{array}$	$\begin{array}{c} 2.8\\ 5.6\end{array}$				
		86 min	$\begin{array}{c}1387\\1438\end{array}$	980 1150	8.0 9.4			· · · · · · · · · · · · · · · · · · ·	
		206 min	2230	1570	12.8				

Table XI

Isotopic exchange in 0.001 molar FeCl₃ solution

Solution: 5 ml of 0.001 m $FeCl_3$ + 0.1 ml of active $FeCl_3$ Activity of the solution: 9.10×10^5 c/100s; 4.98×10^5

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange refer- red to the geo- metric surface (x · 10 ⁻⁴ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)
14	2×2.27	0.5 min	127 177	67 146	0.6 1.3			Pretreatment: in 10 ml of 0.001 m FeCl ₃ , 1 hour
		1 min	248 217	190 132	1.7 1.2			
		2 min	294	206	1.8			
		8.5 min	635 465	510 280	4.5 2.4			
		24.5 min	753 675	582 322	5.2 2.9			Oxidized, decolour- ized surface
	•		$\begin{array}{c} 274\\ 244\end{array}$	208 153	$1.8\\1.4$			Etched in 1 : 1 HCl, 5 min
			120	85	0.75			Etched in 1 : 1HCl, 3 min
		12 min	$\begin{array}{c} 441\\ 415\end{array}$	319 276	$\begin{array}{c} 2.8\\ 2.4\end{array}$			

ouration, a corroded layer was formed on the surface. Therefore, surfaces worked mechanically, change quickly, owing to dissolution and etching, so that the surface isotope exchange of plates kept longer in the solution, was difficult to evaluate. In our measurements, we tried to remove these surface formations. Else (e.g. in Tables 19 and 20), exchanges involving several atomic layers are to be expected. The dissolution of the surface in the test solution can have either of two effects: it may a) smoothen or b) coarsen the surface. This circumstance may be important for the evaluation of results shown in Table 16. With longer contact periods, the difference between the roughness factors decreases, partly explaining for the great difference between the actual exchanges. Though investigations described in the literature referred also almost without exception to acid solutions, little consideration was given to the effect of these solutions on the metal surface except the statement that in general, the rate of the exchange increases with increasing acidity.

Isotopic exchange in 0.001 molar FeCl₃ solution

Solution: 10 ml of 0.001 m $\text{FeCl}_3 + 0.2$ ml of active FeCl_3 Activity of the solution: 1.68×10^6 c/100s; 4.98×10^5 c/100s/mg Fe

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange refer- red to the geo- metric surface $(x \cdot 10^{-4}$ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)	Remark
15	$2 \times 2,27$	0.5 min	127 175	$\begin{array}{c} 65\\145\end{array}$	0.6 1.3	0.67	22	0.03 0.06	
		1 min	$\begin{array}{c} 308\\242\end{array}$	$\begin{array}{c} 248\\ 133 \end{array}$	$\begin{array}{c} 2.2 \\ 1.2 \end{array}$			$\begin{array}{c} 0.10\\ 0.05\end{array}$	
		$2 \min$	383	269	2.4			0.11	
		7 min	598 712	370 550	3.3 4.9			$\begin{array}{c} 0.15\\ 0.22\end{array}$	
17	2×2,27	0.5 min	124 154	68 126	$\begin{array}{c} 0.6\\ 1.2 \end{array}$				Plate coated with sul- fur-oxide layer!
		1.5 min	$\begin{array}{c} 221\\ 254 \end{array}$	134 198	$\begin{array}{c} 1.2 \\ 1.7 \end{array}$				
		6.5 min	204	142	1.25				
		36.5 min	330 383	194 300	$1.7\\2.7$				
		2 h	640 1111	190 1040	$1.7 \\ 9.2 \ 5.4$				
	1	{ 	ł						

The corrosion of metals is not a necessary precondition of the exchange, nevertheless, it favours the process by the "disintegration" of the surface. It follows from all this that some kind of "decomposition", loosening up, of the metal surface would be the possible explanation for the apparent multilayer exchange, while on the metal surface exhibiting the original metallic structure the surface layer can only take part in the exchange. This assumption seems to be supported by the fact that the exchange rate is also affected by the nature of the anions. The exchange is accelerated by a chemical effect of the anion on the metal [8]. The investigations of SCHWABE [12] on anion adsorption serve as indirect proof. According to these investigations, the probable reason of the slow uptake of anions by metal surfaces (Pt, Ni, Fe) may be the penetration of the anions into the "interior" of the metal, which proceeds along the crystal grain border. When SO_4^{2-} ions are adsorbed on nickel sheet, the sheet with the finest crystal grains exhibits the greatest adsorption. Adsorption on the border of the crystal grain was made visible by autoradiography. According to these findings, if the "penetration" of anions and the

Table XIII

Isotopic exchange in 0.001 molar FeCl₃ solution

Solution: 10 ml of H_2O + 0.3 ml of active FeCl₃ Activity of the solution: 2.82×10^6 c/100s; 6.40×10^5 c/100s/mg Fe

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchang red to th metric s (x · 10 mg Fe/	e refer- ae geo- surface D ⁻⁴ cm ²	Surface rough- ness measur- ed (Ra, //m)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10-4 mg Fe/cm ²)	Remark
18/a	2×2.27	0.5 min	886 820	660 640	$4.55 \\ 4.42$	4.5	0.15	5	0.9	Polished
18/b	2×2.27	0.5 min	$\frac{1105}{1133}$	742 821	5.12 5.66	5.4	1.6	53	0.1	Lapped
18/a		1 min	$\begin{array}{c} 1406 \\ 1224 \end{array}$	$\frac{1100}{742}$	7.60 5.12	6.4			1.3	
18/b		1 min	1665 1744	1100 1280	7.60 8.84	8.2			0.15	
18/a		3 min	3543 2967	2820 1720	19.45 11.90	15.7	•		3.1	
18/b		3 min	3587 3675	2460 2630	$\begin{array}{c} 17.0\\ 18.15\end{array}$	17.6			0.32	
19	2×2.27	0.5 min	536 697	376 500	2.59 3.45					Polished (one side), lapped (other side)
		l min	$\frac{1105}{1235}$	780 880	5.39 6.06					

"penetration" of several atomic layers of isotope into the metal surface is accepted, this also means that a structural decomposition or transformation of the metal surface must be assumed, which can be considered as the beginning of corrosion process.

In our investigations, no significant or evaluable difference was found between the isotope exchange in ferric chloride solutions and that in ferrous ammonium sulfate solutions. (Roughness factors of adjacent surface areas of 1 cm^2 of a given plate, are more different.) Presumably, in the true surface isotope exchange the role of the anions is unimportant.)

When plotting our measuring results (Fig. 1), and connecting values belonging together, curves of the same shape are obtained, as those measured by. IMRE [7] in the exchange of ¹¹¹Ag ions on a silver surface, and in that of ⁶⁴Cu ions on copper surface.

Table XIV

Isotopic exchange in 0.001 molar FeCl_a solution

Solution: 20 ml of 0.001 m $\text{FeCl}_3 + 0.2$ ml of active FeCl_3 Activity of the solution: 1.28×10^6 c/100s; 3.00×10^5

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange referred to the geometric surface $(x \cdot 10^{-4} \text{ Fe/cm}^2)$	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ n g Fe/cm ²)
21/a	2×2.73	1 min	142	86	1.05	0.64	21	0.05
21/b	2×3.1	1 min	$\begin{array}{c}148\\200\end{array}$	45 166	0.5 1.8	2.7	90	0.02
21/a		6 min	294	178	2.2			0.1
21/b		6 min	442	270	2.9			0.03
21/a		16 min	686	400	4.9		-	0.24
21/b		16 min	1110	500	5.4			0.06
21/a 21/b		76 min	$614 \\ 626 \\ 1200$	400 540	4.9 5.8			0.24 0.064
21/a		256 min	540 600	400	4.9			0.24
21/b	-	256 min	$\begin{array}{c}1505\\1620\end{array}$	785 1110	8.45 11.95			0.11

The exchange process time can be described by the empirical kinetic equation

$$\lg x = a \cdot \lg t + b,$$

where x is the exchange of Fe ions referred to unit surface, t is the time of exchange, and a and b are constants depending on the system (Fig. 2). A similar relationship was obtained on lead surface for the exchange of lead ions in 10^{-3} m PbCl₂ solution (pH 5.05) at various temperatures, and in the exchange Bi/Bi³⁺ in the bismuth salt solutions of various anions (Cl⁻, NO₃⁻, SO₄²⁻) [8].

Presumably, the rate determining step is the liquid phase diffusion (ion diffusion). This is supported by the results of experiments in otherwise identical conditions, in which smooth and rough plates were placed simultaneously into the solution (see e.g. Table 16). Owing to the almost four times as great actual surface area (having presumably a proportionally greater number of active spots), it was to be expected that in these experiments the

Fig. 2. Log diagram of the isotope exchange on the surface vs. exchange time

Table XV/a

Isotopic exchange in 0.001 molar FeCl_3 solution

Solution: 20 ml of 0.001 m $\rm FeCl_3+1$ ml of active $\rm FeCl_3$ Activity of the solution: 4.97×10^6 c/100s; 3.00×10^5 c/100s/mg Fe

Plate No.	Gcometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange the geome: (x · 10 ⁻⁴ r	referred to tric surface ng Fe/cm²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)
22/a	2×3.12	1 min	$\begin{array}{c} 540\\ 460\end{array}$	$\begin{array}{c} 410\\186 \end{array}$	$\begin{array}{c} 4.4\\ 2.0\end{array}$	3.2	0.64	21	0.16
22/b	2×3.26	1 min	$445 \\ 537$	$\begin{array}{c} 164 \\ 431 \end{array}$	1.7 4.8	2.8	2.7	90	0.03
22/a		6 min	$\begin{array}{c}1180\\1025\end{array}$	960 400	10.3 4.3	7.3			0.35
22/b		6 min	$\begin{array}{c}1510\\1543\end{array}$	900 920	9.2 9.4	9.3			0.10
22/a		18 min	$1992 \\ 1714$	1440 880	15.4 9.5	12.8			0.64
22/b		18 min	$\begin{array}{c} 2420\\ 2472 \end{array}$	1460 1490	14.9 15.2	15			0.17
22/a		32 min	2590 2185	2040 890	21.8 9.5	15.7			0.78
22/b		32 min	3341 3176	2260 1700	$\begin{array}{c} 23.1\\17.4\end{array}$	20.2			0.22

31	1

Plate No.	Geo- metrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange refer- red to the geo- metric surface $(x \cdot 10^{-4}$ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual sur- face $(x \cdot 10^{-4}$ mg Fe/cm ²)	Remark
22/ a		124 min	3522 3472	2180 2100	$\begin{smallmatrix}23.3\\22.6\end{smallmatrix}$			1.14	
22/b		124 min	$\begin{array}{r} 4735\\ 4472 \end{array}$	3200 2380	$\substack{36.0\\24.2} 30.1$			0.33	-
22/a		259 min	4743 4429	$\begin{array}{c} 3100\\ 2475 \end{array}$	$33.2 \\ 26.4 $ 29.8			1.5	
22/Ь		259 min	5280 4510	3510 2720	$\begin{array}{c} 39.5\\27.6\end{array} 33.5$			0.40	
22/a	· ·	168 h	23700	18260	1952	-			
22/b		168 h	$\begin{array}{r} 22800\\ 15400 \end{array}$	17380	1781				
22/a		Annual	2520 3156	1551 2816	$\begin{smallmatrix}16.6\\30.1\end{smallmatrix}23.3$				
22/Ь			3400	2618	26.8				The oxide layer polish- ed off, and etched in taric acid solution

Table	XV/b
-------	------

Isotopic exchange in 0.001 molar FeCl₃ solution

magnitude of the surface ion exchange will be about its four times. Nevertheless, our measurements showed the magnitude of ion exchange, referred to geometrical unit surface, to be almost identical. This phenomenon may be explained for by the fact that initial isotope exchange is governed by ion diffusion, which is identical for identical geometric conditions. On the other hand, with advancing time, surface areas, owing to etching by dissolution or to refinement by the dissolution of the peaks, tend to become of identical surface fineness, proportional to their geometry.

The rate determining role of ion diffusion is supported also by experimental results obtained in solutions of various concentrations. In general, investigations were carried out on 0.001 molar Fe(III) solutions, but also the exchange values measured on 0.1 molar solutions (Table 18) are identical. During the same unit time, a greater isotope exchange was found for solutions of higher temperature. (See e.g. in Table 19 experiments at 97 °C.)

Table XVI

Isotopic exchange in 0.001 molar FeCl₃ solution Solution: 20 ml of 0.001 m Fe₃Cl + 1 ml of active FeCl₃ Activity of the solution: $4.96.10^6$ c /100s; 3.00×10^5 c/100s/ mg Fe

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange the geomet (x · 10 ⁻⁴ n	referred to ric surface ag Fe/cm²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)
23/a	2×3.99	1 min	1158 1108	680 645	5.7 5.4	5.6	0.47	16	0.35
23/b	2×3.8	1 min	1330 1188	900 700	7.9 6.2	7.1	2.7	90	0.08
23/a		6 min	2860 2820	1720 1700	14.4 14.2	14.3			0.9
23/b		6 min	3100 3000	1880 1820	16.7 16.1	16.4			0.18
23/a		18 min	3976 3564	2860 1750	23.8 14.6	19.2		· · · · · ·	1.2
23/b		18 min	4062 4054	2490 2480	22.0 22.0	22.0			0.25
23/a		35 min	5350 4925	3700 2530	30.9 21.1	26.0			1.6
23/b	- -	35 min	6062 6152	3670 3740	32.5 33.0	32.7			0.36

Exchange investigations on stainless steel plates of type KORR-5 showed that no substantial isotope exchange took place even after 6 hours with 20 per cent of the surface atoms.

Our results indicate that further development of isotope exchange investigations will furnish a method suitable for the evalution of the corrosion behaviour of metals. In our further work, also the behaviour of activated steel plates in the solution of their own ions will be investigated.

Table XVII

Isotopic exchange in 0.2 molar HCl solution

Solution: 20 ml of 0.2 m HCl (inactive)

Plate No.	Geometrica l surface (cm ²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange referred to the geometric surface (x · 10 ^{- t} mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	n 314 factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)
23/a	(redissolv- ing)	(initial activity)	5350 4925	3700 2530	30.9 21.1	26.0		
23/Ь	(redissolv- ing)	(initial activity)	6062 6152	3670 3740	32.5 33.0	32.5		
23/a		1 min	$5050\\4256$	3650 1756	30.5 14.7	22.7		
23/Ь		1 min	5408 5556	3080 3580	27.3 31.7	29.5		
23/a		6 min	3480 3518	2110 2140	17.6 17.8	17.7		
23/b		6 min	4036 4423	1980 3120	17.5 27.6	22.5		
23/a		20 min	$2285 \\ 1465$	1360		11.4		1
23/a		20 min	2728 3198	1200 2480	10.6 21.9	16.2	-	
23/a			1760	1060	8.8			· · · · · · · · · · · · · · · · · · ·
23/b			1972 2121	970 1530	8.6 13.5	11.0		

Table XVIII

 $\begin{array}{c} \mbox{Isotopic exchange in 0.1 molar FeCl}_3 \mbox{ solution}\\ \mbox{Solution: 20 ml of 0.1 m FeCl}_3 + 1 \mbox{ ml of active FeCl}_3\\ \mbox{Activity of the solution: } 4.42 \times 10^6 \mbox{ c/100s; } 51.50 \times 10^4 \end{array}$

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (c/100s)	Activity calcul- ated (c/100s)	Exchange referred to the geometric surface $(x \cdot 10^{-4} \text{ mg Fe/cm}^2)$	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual surface (x · 10 ⁻⁴ mg Fe/cm ²)
24/a	$2 \times 2,0$	10 min	223 192	167 122	16.2 11.8	0.64	21	0.77 0.56
24/b	2×2,38	10 min	404 348	340 219	27.8 17.9	2.7	90	0.31 0.20
24/a		35 min	720 660	560 400	54.4 38.8			2.6 1.85
24/b		35 min	$\frac{1341}{1224}$	1000 800	81.7 65.4	-	-	0.91 0.73
24/c	2×3,8	l min	221 231	157	8.0	0.67	21	0.38
		13 min	1139 1211	750 905	42.4	· .		2.0
		280 min	1427 1009	865	44.3			2.1
24/d	2×2,97	280 min	1139 855	940 442	$\begin{array}{c} 61.6\\ 28.9 \end{array} 45.3$	0.64	21	2.15

Table XIX

Isotopic exchange in 0.001 molar FeCl₃ solution Solution: 10 ml of 0.001 m FeCl₃ + 0.5 ml of active FeCl₃, at 97 °C Activity of the solution: 2.24×10^6 c/100s; 2.39×10^5 c/100s/mg Fe

Plate No.	Geometrical surface (cm²)	Time exchange (test)	Activity measur- ed (100s)	Activity calcul- ated (c/100s)	Exchange referred to the geo- metric surface $(x \cdot 10^{-4}$ mg Fe/cm ²)	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual sur- face $(x \cdot 10^{-4}$ mg Fe/cm ²)	Remark
25	2×3,7	1 min	2079 1885	$1570 \\ 1180$	$\begin{array}{c} 17.8\\ 13.4\end{array}$	0.48	16	1.1	
		11 min	$\begin{array}{r} 3363\\3040\end{array}$	2520 1940	$\begin{array}{c} 28.5\\ 22.0\end{array}$			1.8 1.4	
		41 min	16000	11200	127.0				
			2319 1778	1940 1474	22.0 16.7			$\begin{array}{c} 1.4 \\ 1.0 \end{array}$	Slimy rust layer dis- sol ve d

Table XX

Isotopic exchange in 0.1 m $Fe(NH_4)_2(SO_4)_2$ solution

Solution: 20 ml of 0.1 m Fe(NH₄)₂(SO₄)₂ + 1 ml of active FeCl₃ Activity of the solution: 3.78×10^6 c/100s; 4.40×10^4 c/100s/mg Fe

Plate No.	Geo- metrical surface (cm²)	ex (Fime change (test)	Activity measur- ed (100s)	Activity calcul- ated (c/100s)	Exchange refer- red to the geo- metric surface $(x \cdot 10^{-4} - mg Fe/cm^2)$	Surface rough- ness measur- ed (Ra, µm)	Rough- ness factor calcul- ated	Exchange to the actual sur- face $(x \cdot 10^{-4})$ mg Fe/cm ²	Remark
26/a	2×4.83	1	min	411 439	274 316	12.9 14.8	0.48	16	0.8 0.9	
26/b	2×3.68	1	min	495 400	395 227	$\begin{array}{c} 24.4\\ 14.0 \end{array} 19.2$	3.0	100	0.2	
26/a		19	min	890	630	29.7			1.8	
26/b		19	min	1273 1605	705 1290	$\begin{array}{c} 43.5\\79.8 \end{array} 61.6$			0.6	· · · · · · · · · · · · · · · · · · ·
26/a		54	min	900	640	30.0			1.9	
26/b		54	min	1205 1305	800 955	49.5 59.1 54.3			0.54	
26/a		96.0	60 min	830 670	717 514	33.8 24.2			2.1 1.5	The "rust" pickled in tartaric acid solu- tion
26/b		96.0	60 min	570 673	422 580	26.1 35.9			0.3 0.4	

Table XXI

Self-diffusion of metals

Metal	Мр., °С	Temp., °C	D cm²/s	E kcal/g
a Fe	1555	800	3.1×10^{-13}	73.2
γ Fe	1520	1058	$4.3 imes 10^{-12}$	74.2
Co	1495	1150	$2 imes 10^{-11}$	67
Cu	1083	839	$1.05 imes10^{-10}$	47.15
Ag	960	936	$4.6 imes 10^{-9}$	45.5
Hg	38.9	23	$1.79 imes10^{-5}$	1.16

Hevesy-Groh at 250 °C $\rm D_{Pb}$ 0.0001 $\rm cm^2/day$

Summary

The isotopic exchange has been measured on pretreated (mechanical and short alkaline treatment) commercial low-alloy steel surfaces, in aqueous ferric chloride and Mohr's salt solutions, at room temperature, in function of time. The surface fineness of the plates used in the investigations has been determined experimentally, and from these values conclusions were drawn on the basis of proportionality of the magnitude of the actual surface. It was established that isotopic exchange without a change in the metal surface (structural transformations. corrosion, etc) takes place only over a certain percentage of the actual metal surface, and involves not more than a monomolecular surface layer. The exchange vs. time can be represented by the kinetic equation $\lg x = a \cdot \lg t + b$. Presumably, the rate determining process is the diffusion of iron ions in the solution.

References

- 1. FARKAS, J., NAGY, L. G., VARSÁNYI, G.: Periodica Polytechnica M. (In the press)
- 2. PANETH, F.: Z. Elektrochem. 28, 113 (1922)
- 3. HEVESY, G.: Phys. Z. 16, 52 (1915)
- 4. HEVESY, G., BLITZ, M.: Z. Phys. Chem. B. 3. 271 (1929)
- 5. ROLLIN, B.: J. Am. Chem. Soc. 63, 86 (1940)
- 6. COFFIN, C., TINGLEY, I.: J. Chem. Phys. 17, 502 (1949) IMRE, L.: Acta Physica et Chimica Debrecina 11, 7, 47 (1965) HAISSINSKY, M.: A magkémia és alkalmazásai (Nuclear chemistry and its applications) Akadémiai Kiadó, Budapest, 1963
- 9. ROBERTS, R. W.: Brit. J. Applied Phys. 14, 537 (1963) 10. NAGY, L. G., FARKAS, J., ZÖLD, E.: Periodica Polytechnica M. 9, 1 (1965) 11. NAGY, L. G., FARKAS, J.: Periodica Polytechnica M. 10, 3 (1966)
- 12. SCHWABE, K.: Chemische Technik 13, 275 (1961)
- 13. WAHL, A. C.: Radioactivity Applied to Chemistry J. W. New York, 1958
- 14. GIBER, J., NAGY, L. G., FÜLÖP, M., SZEKRÉNYESI, T.: Ionadszorpció Ge felületen. I. (Ion adsorption on Ge surface, I.) Acta Chim. Acad. Sci. Hung. (In the press)

Prof. Dr. György VARSÁNYI dr. György Lajos NAGY Jenő FARKAS

Budapest, XI, Budafoki-u. 8, Hungary