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The phase-plane methods are among the most used ones for the dynamie
analysis of nonlinear systems. The phase-plane methods help to answer the
following questions:

1) Has the system steady state or states?

2) Which states are stable and which are unstable ones?

3) Has the system limit evele or cycles?

4) Are these limit cycles stable, semistable (dependent on the direction
namely) or unstable? (Some special phase-plane methods are capable of the
semi-quantitative description of the time function of the system [1].)

Now some phase-plane methods, described by the technical literature
are examined from the aspect of what is the group of differential equations
where they can be used in answering the listed questions.

1) Has the system steady state or states?

Now the task is to resolve the system of equations
Plx,y, 04, .02,) =0

Q(;‘C,;Y, AT .O'.n) =0
where

x, y are the variables of the differential equation system,

z; are the parameters.

If there is no differentiating as to parameters in the equation, the task is
to resolve a normal system of equations with two variables. These methods are
not to be discussed here,

2) Which steady states of the system are stable and which are unstable
ones? ,

The stability test of simple special points can be done by the first method
of Liapunov [2]. This method, however, is suitable for examining but a restrict-
ed group of differential equation systems, e.g. a simple system of equations

D
like the following one cannot be treated by it:
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9 2
Q=nx—y

both Liapunov-determinants equalling zero, Various graphic methods can be
utilized at a wider range, of which now the method of isoclines [3] (i.e. that of
approaching the trajectories by linear portions) and the method of Lifxarp
[4] are mentioned here. Common advantage of these methods is that they can
be widely used; their disadvantage is. however, that their results cannot be
generalized, moreover accurate calculations of a single trajectory is a tedious
computational and graphical work and many of them are necessary
for the total phase-diagram. Another common disadvantage is that not only
the numerical value, but the character of the resultis highly influenced by
the accuracy of the calculations. For example, inaccurate determination of the
common point of intersection of several curves can result in several different
points of intersection.

3) Has the system limit cycle or cycles?

There are not known necessary and sufficient conditions of the existence
of limit eycles, several methods exist. however, that vield sufficient condition
of the non-existence of the limit cyeles in their certain groups. (E.g. the methods
of BENDIxSON, DrLAacC.) A serious disadvantage of these methods is that they
cannot be used in some important cases — e.g. for examining relaxation sys-
tems. The limit cycles can be found in some cases by graphical or numerical
methods. The disadvantage of these methods is similar as for the determination
of steady states: the graphical or numerical errors may distort the character
of the system (e.g. they may result in a closed curve instead of a spiral or vice
versa). Their common advantage is that they vyield the characteristic data of
the limit cycle: i.e. its shape, stability, and mostly its frequency as well.

4) Are the limit cyeles stable. or unstable?

Several methods are known to determine the stability of the known limit
cycles (e.g. the method of KoEnic, the method of the characteristic indices).
The advantages and the disadvantages of these methods are more or less sim-
ilar to the characteristics of the methods mentioned in item 3.

The presented method, developed by us, is suitable for examining sys-
tems of nth order. Owing to time shortage and for better understanding
the method is described here only for first-order systems.

Before describing the method some notions have to he determined:

a) Directional curve: the geometrical location of points. for which at
least one of the time-linear differential equations

de:Fi(vﬁe-.-xn)EF[? i=1...n
dt

describing the system is equal to zero.
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b) Directional vector defined by

P

W— Ssign[F/] &
=1

where &; is the unity vector of direction x;

The method consists of the following steps:

I. Determination of the directional curves.

I1. Determination of the directional vector over the whole phase plane
(in case of first order systems over the plane %, x).

ITI. The utilization of one sufficient condition of stability. This is as
follows:

If the inequality

(%, — ) P = (2, — x,) Q<70

is valid over the area of the phase plane containing the point belonging to the
steady state, then the point corresponding to the steady state is stable.

In case of first order systems the stability test is done by checking the

following condition:
sign (x;—xy5) = — sign P (x,)

Practical application of the condition is shown on the following example:
The temperature changes of the transistor are examined. The change of

the heat quantity in unit time is:

o _ do, _ do,

di dt di
where @ = the quantity of heat of the transistor
Q: = the quantity of heat generated in the transistor
Q. = the quantity of heat dissipated by the transistor.

Here the transistor is supposed to be homogeneous and its temperature

to be independent of the place.
The heat, dissipated by the transistor in unit time is the sum of heats

dissipated by conduction and radiation:

J0. TR URY Y
,,.@_:g.cu (__._) — lL + - F- (T —T,)
di \ 100 100 ) |
where ¢ == the blackness factor
C, = a universal constant
T = the temperature of the surface

1%
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T; = the environmental temperature — in this case the tempera-
ture of he housing of the transistor or of the cooling fin

% = the heat-transfer coefficient

F = the entire heat-dissipating surface of the transistor.

The first and the second terms of the equation mean the heat. dissipated
by radiation and by conduction, respectively.
The generated heat — in calories — can be expressed as

9 039027
dt

and, as known, the i, of the transistor is increasing nearly exponentially with
the temperature, thus
di,

— =k (T T,
o ( )

The rise of the transistor temperature is described by the equation

dQ =c-m-dT

or, if transposed:

c-m- %C-:: 0.239-Z-i2-exp [k (T — T})] —
¢

SR T 4
C, | —| — [ }——».-F T —T,)
““woJ [100] £ o

-

=P =p.
ifZj—-:*-P=_r‘1-e:q)[?.aT]—B-T'i—D-T—j—(j

dit

Depending on the parameter values, two substantially different modes
of operation are possible:

1) If P,isinvariably greater than P,, thentheir curveisas shownin Fig. 1.

In this case the heat gemeration is higher than the heat dissipation for
any initial condition, thus the system tends to infinite temperature.

2) If the curves P; and P, have two intersections, their curves are as
shown in Fig. 2; thus the directional curve is as in Fig. 3, then the following
statements can be made for the time-dependent operation of the system:

@) If the initial conditions of the system define a temperature helow the
first point, then the first point is reached as shown in Fig. 4;

b) If the initial temperature is between the two points, then the transient

is as shown in Fig. 3;
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¢) If the initial temperature is higher than the second point, then the
system tends to infinite temperature (see Fig. 6).

Most of the examined systems show a relaxational motion. In such sys-
terms one parameter varies at a very high (practically infinite) rate (with time),
while the other parameter remains practically constant. These two groups of
movements will be essentially differently treated, namely, while in first order
relaxational systems self-oscillation may occur, in other first order systems this
is impossible. Without detailed verifications we assert that self-oscillation
in non-relaxation systems is impossible, because self-oscillation is presented by
a closed curve on the phase plane (in case of first order systems on the plane
%, x) and this can only be as shown in Figs 7 to 9. (The axis x as a tangent
can be considered to intersect, from our aspect.)

%, being positive, x, increases to x; _on the curve of Fig. 7, movement
can only be in the direction of increasing x; values, thus the curve cannot be
“walked around”. The situation is similar, but in the opposite direction in
Fig. 8.

_ In Fig. 9, for §; and S,, £, =0 (corresponding to steady-state condition)
which cannot be exceeded without disturbing the system. Thus also here the
curve cannot be “walked around”.

In relaxation systems the curves close at the “edge’ of the phase plane,
so closed curves and thereby also self-oscillation may oceur.

This statement is illustrated by an example:

Let the movement to be described by the equation:

x = tg I
and thus
) 1
X =
cos?t
and
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in all points, except the

points of discontinuity. In these points the value of x skips from + = to —oc
(Fig. 10) and & from -}-oc to —oo and vice versa (Fig. 11). The corresponding
phase-picture is shown in Fig. 12, and as a closed curve with finite T = =
repetition rate.

The method for examining relaxation systems is demonstrated by the
generally used tunnel-diode oscillator circuit. As it is known, the current vs.
voltage characteristics of the tunnel diode are as shown in Fig. 13.

The equivalent circuit of the simple tunnel-diode oscillator is shown in
Fig. 14 where the capacitance of the diode and the stray capacitances of the
wiring are neglected. The operation of the circuit is described by the equations:

E=Ug+ U, +Up

. - . Up ___ 1 [
I_f(DD) = R‘“‘—— TV! UL-dt
_ df(Up) dUp | ..
E=R.-f(Uy)=L- . U
f(Up) i = D
Let
L7D5x>0; —Ezb}O
R 1
«L—;—=d> 0 —=c >0
and thus the directional vector:
. 1 1 1
1r=P= —qg—. x—.—cm.x_;-b._____
7w T )
dx dx dx

where

f'x) = g(x)

is the derivative with respect to voltage of the current vs. voltage curve of the
tunnel diode.

The directional curve is analysed by separating the numerator and the
denominator: The denominator is shown by the curve in Fig. 15. The numez-
ator is divided into a linear and a nonlinear part (see Fig. 16).
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As the denominator cannot be infinite (on physical reasons), the direc~
tional vector is zero, where the numerator is zero, i.e. where the curves for
linear and nonlinear parts of the numerator intersect.

The operation of the system is highly dependent on whether there is an
intersection on the negative-slope section or not.
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1) If there is no intersection on the negative-slope section, then the
directional curve is as shown in Fig. 17. It appears that in this case the system
has a stable operating point, no oscillation can develop, as for any initial con-
dition this point will be reached.

2) If there is an intersection on the negative-slope section, then the di-
rectional curve is as shown in Fig. 18. It appears to be a stable limit cycle, self-
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oscillation arising for any initial condition: the given initial condition may be
either on the limit cycle or gets to it. This is conditioned by the solution of
equation

a- flx) =b—c-x
to meet

Fr(x)max < Tsoiution < Xf(xX)min *

The resulting time-function is shown by Fig. 19.
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Fig. 19

These examples are likely to prove the described procedure to be an ex-
cellent method for examining both practical and theoretical problems.

Summary

A special phase-plane method is deseribed for the dynamic analysis of continuous and
relaxation nonlinear systems. This simple and descriptive method suits for designing systems,
Usefulness of the method is shown by examples in the field of electronies (thermal stability of
transistors: tunnel diode oscillators).
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