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According to the generally accepted definition of the ideal solution there 
are equal interaction forces acting bet'ween molecules belongin~ to the same 
or d:fferent species. (This is equivalent to the statement that the activity of 
the components equals the concentration.) Strictly speaking this condition is 
only in exceptional cases fulfilled for mixtures (optical isomers, isotopic 
mixtures of an element, hydrocarbon mixtures). It is still usual to talk about 
ideal solutions as limiting cases in reality since very dilutc solutions behave 
ideally with respect to the solvent. This view is further supported by the fact 
that Raoult's Law empirically found for describing the behaviour of the 
solvent in dilute solutions can be deduced thermodynamically via the assump
tion of ideal behaviour of the solvent. 

As is commonly known on the basis of the Gibbs-Duhem equation the 
behavioUl of different components of a solution is interdependent. 

For example: for a two-component solution the variation of the chemical 
potential of the components with the composition can he formulated as 
follows: 

(l) 

Since f.l = f.l0 + RT In a and Xl X 2 = 1 having [to defined independent of 
pressure expression (1) transforms into (2) 

dIn 

dlnxJ dIn x2 

Considering that a = y' x we arnve at the Duhem-Margules equation: 

(2) 

(3) 
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It follows from the equality of the activity and concentration (}J = I) for 
ideal mixtures that 

for both components. 

dIn 

cllnx 
=0 (4) 

On the ba~is of the Duhem-i\Iargules equation the observation of 
ideal behaviour of the soh-ent in dilute, real solutions has resulted in far
reaching inferences regarding the behaviour of the solute known as Henry's 
La",,- because 

dln 

cllnx1 

(5) 

(Subscript~ I and :2 refer to the solute and ~olvenL resp.) gives i'l eonst. as 
a result of non-definite intcgration, i.e. as long as a = x equality is true for 
the solvent one gets a = const. x as the necessary consequence for the solute. 
This line of reasoning giving the connection between thc characteristics of 
solute and soh-ent is frequently found in textbooks on chemistry [1-3]. 
It should he kept in mind, ho·wevcr, that if two components do not tor-m ideal 
solutions in any given ratio than even in dilute solutions the forccs acting 
among molceules cannot he described in terms of ideal condition. It is, of 
course, quite a different matter that in very dilute solutions due to the over
whelming majority of solvent molecules ovcr those of the solute the deviation 
from ideal helwviour can 1)c mch a minute effcct that it cannot be detected 
by measurements. 

In the fol!o .. \·ing we shall point out, provided b is the deviation from 
ideality for the ,"olvent not feasible for observation, hut it can still be defined 
as a finite small quantity, that the same b deviation will manifest itself as a 
measurahle quantity for the solute. Let us write: 

dIn 

dlnx1 

d In )'~ 
---'-=- = (; 

cl In X 2 

That IS d In ~'2 () for the solvent and cl In (5 for the solute. 
dxz X 2 dXl Xl 

(6) 

Assuming a very dilute solution X 2 is yery near to unity but Xl is almost 
zero, therefore, (;jX2 b for the solvent and so it is negligihle, however, (;jx1 
can easily he quite a great number for the solute. 

At the same time that we haye proven Henry's Law to he invalid even 
in approximation along with the existence of the approximately valid Raoult's 
Law we shall try to prove that the distrihution ratio for a compound as defined 
by the concentrations in the two phases can be approximately constant even 
if the activity coefficients are not constant in the separately considered 
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phases. In case we succeed in proying the above statement we have already 
proved that the behaviour of the solute as required by the classical Henry's 
Law is not a necessary condition for the constancy of le. In other wOl:ds we 
give a new interpretation of the Henry domain according to which it is the 
constancy of the distribution ratio of the solute as giFen by the concentration data 
that characterizes the Henry domain. 

For proof let us ('xamine a system composed of two non-miscible solvents 
and a solute distributed hetween them. Considering the thermodynamical 
condition of an cquilihrium it is certain tha t the ratio of equilibrium actiyities 
of the solute in the phases (designated by , and ") is constant and independent 
of the concentrations. 

K=~= 
(l a" 

, 
x 

(7) 
:;" xl! 

In the following we are going to proye that Ky is approximately con
stant and we do not nced the assumption that J' is con:3tant. For that purpose 
we have to know thc concentration dependence of the activity coefficients 
(y', y") for the solute in both phases which is given in a general form hy the 
interpretation of the finite small quantity b defined in (6). 

A number of generally valid statements can be made about the finite 
small b: 

1. \Ve have no reason to assume that b is independent of the concen
tration of the solute (Xl)' 

2. The form of b(XI) cannot be given exactly hut similarly to any function 
it can hc approximated by a series expansion to any degree of accuracy. 

Let that series be chosen as b A +- BXI Cxi ... + where A, B 
and C arc constants. Using this form the concentration dependence of the 
activity coefficient of the solute is given by 

dIn 

dIn Xl 

Since at Xl = 0 the ratio: 
dIn 

d In Xl 
=0 

we ohtain as the limiting condition: A O. 

CXi -i- ... (8) 

Taking further into account that for dilute solutions Xl has very small 
values, the second and higher order members of the senes can be neglected: 

2 Pcriodica Polytechnica Ch. X!2. 
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Integrating the above expression over the interval: xl and 0 the result IS: 

In~=Bx I 
Yo 

(9) 

that is '.' - 11 eBX1 where" the activity coefficient of the solute at Xl = 0, Il-/Q 10' 

is therefore constant. 
About the coefficient B it can only be stated that it is constant. In some 

actual problems B can be correlated with certain physical quantities. 
For example in regular mixtures the form of the function whereby the 

activity coefficient of the solute is related to the mole fraction is known: 

or In another form: 

Differentiating that expression with respect to Xl: 

(10) 

As xl is rather small 1 - Xl is approximately a unity so it follows that 

dIn 
--~'-- = - 2qx1 
dlnxl 

On comparing the above formula with (9) it is concluded that B -2q; i.e. 
for regular solutions the value of B can be numcrically given proyided the 
interaction coefficient is known. 

Returning to expression (7) Ky can be formulated as: 

1'1,' B'x' 
K=~_e_ (11) 

y~ eB"x" 

Expanding the exponentials in the numcrator and denominator into series 
and neglecting second and higher order members we get: 

1 --;- B' x' 

B " " X 

(12) 

It has to he emphasized that the problem is that of a very dilute solution. 
Using data in the denominator of (12) relating to the phase less conccntrated 
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for the solute it is possible to rewrite the expression of Ky using the approxi

mation: 

i.e. 

Ky = ,,(1 
Yo 

__ 1 ___ = 1 _ B" x" 
1+ B"x" 

B' x')(1 - B" x") = y~ (1 + B' x' 
y~ 

B" x") (13) 

In deducting (13) the member B" B' x" x' being small in the second order 
has been omitted. 

Considering the form of (13) it is evident that only if B'x' - B"x" is 
negligibly smaller than unity can Ky be a constant. 

Let us examine whether there are such cases. Assuming a solute that 
forms solutions in both solvents with positive deviations with respect to the 
ideal case it follows that: 

dlny' 
--'-- = B' x' < 0 

dlny" 
--'---- = BIf x" .< 0 

dInx' dlnx" 

as for Xl = 0 the value of }' is always greater than unity and decreases with 

increasing Xl. 

This situation can only be achieved if both B' and B" are negative 
quantities from which it follows that in case of positive deviation for both 
solvents B' x' and B"x" have indeed to be subtracted from each other. If the 
mole fraction increases in both phases both Bx type quantities increase 
simultaneously, however, if B'/B" is approximately equal to x"/x' the differ
ence B'x' - B"x" can be neglected when compared to unity in the 'whole 
interval of the dilute solution. The consequence is that for equilibria between 
two solutions of a solute behaving as mixtures of positive deviation both Kt' 
and Kx can be constants even for y =1== con st. The parallel case for two solutions 
of negative deviation cannot be assumed since negative deviation results 
from mixing compounds of similar character and this condition would require 
great similarity between the two solvents. In such cases, howevcr, there 
would be a mixing between the two phases which is no longer the case for 
distribution equilibria. 

Let us analyze the correlation between the dependence of the distri
bution ratio and activity coefficient in a definite example on the concentration. 
(A distribution equilibrium will be examined between two solutions in which 
the mole fraction of the solute is 0.01 and 0.001 resp.) These concentration 
data correspond to molarity 0.5 and 0.05 for aqueous solutions provided the 
more concentrated or less concentrated solution, resp. is the aqueous one. 

2* 
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(Using cyclohexane as solvent the corresponding molarity figures are: 0.1 and 
O.OI,resp.) Take B for the more concentrated solution as 1. (More precisely 
let us choose the molar ratio for the more concentrated solution in such a way 
that for Kx = 10, Bx" 0.01.) As the next step calculate the percentage 
yariation of the distribution ratio; Kx with respect to the infinitely dilute solu
tion for the case -when the concentration in the more concentrated solution 
will increase tenfold. Using the data of the present example this means that 
according to equ. (12) for infinitely dilute solutions the acth-ity coefficient of 
the solution denoted by" decreases from?'''oto 0.9i'''oi.e. it changes by 10%. 
The results of this calculation are tabulated in Table 1. 

Table I 

B',B" ]{A13".r:" 0) 1{;r{B"x'" = -0.1) 1110 

~~----.----

20 10.10 8.88 12.1 

15 10.05 9.38 6 ... 

11 10.01 9.88 1.3 

10 10.00 10.00 0.0 

9 9.99 10.11 1.2 

6 9.96 10...13 1.'":" 

.3 9.93 10.72 8.0 

9.91 10.91 10.1 

Let us 'lOW choose a morc concentrated solution that dn·iat{'s ncgatiyely 
from the ideal case. For thc yalue previously used Kx 10 kt B"x" = 0.01. 
Results of this calculation are summarizcd in Table n. 

Table II 

B',n- ]{;xo Kz(B"x' = 0.1) lOO 

.---"-.~ ----.---~--

1 10.09 9.27 8.1 

0 . .5 10.095 9.22 8.7 

-1 10.11 9.09 10.1 

-0 10.15 8.70 1l.3 

-10 10.20 8.H 20.2 

The data tahulated show that for double positive deyiation the approximate 
equality B'jB" P"" Kx results in a negligible change in Kx with changing y" 
in the dilute solution concentration range. This means that the validity of 
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Henry's Law can be extended over and above the range characterized by a 
constant activity coefficient. 

This assumption is not a special one but is very plausible. The greater 
the deyiation from ideality the bigger negative value B interaction coefficient 
will have. A decrease in solubility will, however, accompany such conditions. 
Therefore it can be expected that in cases when the solute is less soluble in one 
of the solvents then the constant B w-ill have greater absolute value in the 
latter. Doubly positive B can occur in physically realizable circumstances 
for gas absorption phenomena when the gas forms negatively de"dating mix
tures with the solvent and the temperature is above the Boyle point for the 
gas in question. For gas absorption the distribution ratio is usually expressed 
as a function of molarity and the Henry-Dalton Law itself is formulated for 
such an absorption coefficient. Expressing B as a function of c it has the 
following typical values at the boiling point of normal liquids: B ?"" -1.2., at 
critical gas temperatures: B -0.25 (at room temperature), at reduced 
temperature {j 2.5, B ?'8 0 and it has positive values at higher temperatures. 
If, therefore, below the Boyle point temperatures B(c)l?", LB(c)g (where I 
refers to the solvent and L is the Henry-Dalton absorption coefficient) the 
absorption cocfficient can be approximately constant even in such concen
tration intervals where the activity coefficient of the gas dissolved is not 
constant. This is equivalent to the original interpretation of Henry's Law. 

For mixtures of negative dev-iation there is no physical sense in putting 
B' / Bn > 1. It is only for gas absorption that the distribution equilibrium 
can be interpreted. The B(c) constant of the gas is positive only above the 
Boyle point and its maximal value for Pk ?'8 50 atm (0 = 5) is 0.25. When, 
therefore, the gas is in the "more dilute" phase B(c) cannot be greater than' 0.25. 

When the "more concentrated" phase is the gas the numerator of Ky 
will be given by the activity coefficient of the solute. In case of negative 
deviation B' / Bn can, in principle, be any great number (B' now refers to the 
solute and Bn to the gas). If the molecular ,,,'eight of the solvent is about 80 
and its density is about 0.8 (e.g. hexane) c ?'8 10x in dilute solution. 

For ideal solubility x = l/po so C?'8 10/po. For room temperature and 
pressure of 1 atm, Cg ?'8 1/25. Using these data Kc?'8 pO/250. In the case of 
{} = 5 the order of magnitude of pis 1000 atm (this is an extrapolated value) 
so the value of Kc is only about 4 .. For mixtures of negative deviation Kc 
can only be smaller, so Kc the reciprocal of the absorption coefficient can 
never reach 10. 

When Po is defined as independent of pressure as remarked in the 
introduction the activity coefficient of the pure solvent is not unity but: 

exp [;: (pg - 1) J ' 



124 G. VARS.INYI and K. Husz.IR 

so it can only be unity at the normal boiling point of the solvent. Since this is 
a constant temperature we need not alter our lines of reasoning. Attention 
should be paid to the fact, however, that the activity coefficient is a function 
of not only the composition but of the pressure as well. (Its variation is parallel 
to that of the pressure.) The effect due to the variations of pressure can, 
however, be neglected in comparison to the effect of composition because the 
factor V/RT is small and the form of the function is exponential. 

Summary 

It has been pointed out on the basis of the Duhem-Margules equation that for cases 
where Raoult's Law is only approximately valid for the solvent the activity coefficient of 
the solute cannot be regarded as constant even in approximation. 

When, however, for mixtures of positive deviation from the ideal behaviour the con
stants B characterizing the deviation are in such a ratio, that is, approximately equal to the 
reciprocal of the distribution ratio for the two mixtures in equilibrium then the validity of 
Henry's Law can be extended. On the ground of the nearly constant nature of the distri
bution ratio this extension can be effected over a broader concentration range than that of 
the constant activity coefficient. Henry's Law can be similarly interpreted in some cases for 
gas absorptions leading to positively deviating solutions. 
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