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Introduction 

Irreversible thermodynamics developed by Ol"SAGER is based on a 
double basis [1], [2]. It is for the most part of phenomenological character, 
but iu essential features it is also founded on statistical laws. The statistical 
considerations rest on the macroscopic fluctuation theory of thermodynamics. 
In this theory a systematical statement is valid, which can be formulated in 
a particular way - with the aid of the correlation functions in time, charac­
terizing the fluctuations of macroscopic parameters - by the hypothesis of 
microscopic reversibility. However, this hypothesis holds strictly only for 
the equation of motion of individual particles, and the essential of it can be 
formulated in the following way: the equations of motion - either in classical 
or in quantum physics - are invariant against the transformation of sign of 
time t -+ - t. Assuming also that in an "aged" system the average decay of 
fluctuations follows the ordinary macroscopic laws - which is a new hypothe­
sis, and as has been shown by BECKER [3J not even realized in every case 
then the validity of ONSAGER'S resp. CASIl\IIR's reciprocal relations is ensured 
by the form of microscopic reversibility expressed by the adequate correlation 
functions. Thus, at present, the ONSAGER'S theory of irreversible thermodynam­
ics, because of the above-mentioned hypothesis, should be considered as 
a particular and not quite natural complexity of phenomenological and statis­
tical elements. Hence, the requirement to develop this theory on the basis of 
purely phenomenological and rigorously statistical principles is justified. 
Since already many attempts, which seem to be successful, have been made in 
the latter direction [4], [5J, [6], therefore, we consider the phenomenological 
building up of the theory as our tas~. Our inve\ltigations were carried out by 
using such a general mathematical apparatus, which affords a possibility for 
the extension of ONSAGER'S linear th~ory to a non-linear one. 
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§ 1. Mathematical fundamentals 

A. Non-equilibrium state parameters 

Our first task is such an interpretation of the non-equilibrium state para­
meters, which follows as a consequent result of the laws of classical thermo­
dynamics (thermostatics). Therefore, let us consider the energy law of thermo­
statics in the following general form: 

(1.1) 

where dE is the elementary change of the internal energy, which is generally 
obtained as the sum of pr~ducts of the equilibrium intensity parameters 
r i and of the reversible dAi change of the conjugated extensive properties 
Ai. In formula (1.1) the quantities r i can be considered as thermostatical forces, 
whereas the A; parameters as coordinates. 'Ve refer here to the fact that 
B. LEAF [7],1. FENYES [8] and more explicitely the author [9] have generalized 
the traditional Carnot cycle (heat cycle) for an analogous cycle related to any 
intensity parameter ri' as well as for reversible and irreversible cases, respec­
tively. In an irreversible case, if "we denote by LlAi the non-equilibrium change 
of the extensive property in question during the elementary step of the ir­
reversible cycle, compared to the adequate reversible one, the following 
inequality is obtained: 

l1.2) (1 = 1,2, ... ,j) 

This means, that in the case of irreversible change of state between two 
neighbouring states of a system, the changes of the extensive properties will 
always be greater for an irreversible change of state as if between the same 
states the transformations should have taken place reversibly. This statement 
is known for the change of entropy since CLAUSIUS, and is the consequence 
of the definite positive character of the "non-compensated heat" produced 
by irreversibility. Completing the inequality (1.2) with the aid of the virtual 
change oA/ of a fictive A; parameter, i. e. 

(1.3) (i = 1,2, .. . ,1) 

then by means of the equality quantitative statements may also be made. 
The parameters Ai will be called effective parameters. For their actual values 
are represented by those points of equilibrium state space, into which the sys­
tem carrying out whichever kind of process effectively arrived at. Since, 
in a reversible case dA; == LlAi, whereas in an irreversible one LlAi = bAt, 
while allowing for the possibility of both types of transformations (1.3) is valid. 
The detailed expounding of the interpretation of the effective parameters can 
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be found in an axiomatical work of the author [9]. If to a first approximation 
the equilibrium operations d and non-equilibrium ones 11 occurring in (1.3). 
are considered as identical, i. e. 11 -+ d - by reason of which the virtual 
operation disappears in a limiting case - instead of (1.3) we can put 

(1.4) 

by which the non-equilibrium 

(1.5) (i = 1,2, .. . ,f) 

parameters were interpreted as effective state parameters of first order .. 
It should be noted, that the ONSAGER "a" parameters analogous to 

(1.5), are in sub8tance identical with the non-equilibrium extensive quantities 
ai' introduced by us. However, O"SAGER'S "a" coordinates - according to 
the theory of fluctuations - ought to be considered as stochastical variables .. 

B.' The effective state space 

It is known that each of the states of a system following one another 
continuously, carrying out a reversible process is to a good approximation an. 
equilibrium state. Such processes can always be illustrated by an adequate 
number of the equilibrium parameters on the statical state diagram. This 
is, however, not the case for a system carrying out an irreversible transforma­
tion. I. e. for a system getting out from the equilibrium state - for instance, 
owing to external perturbation - and carrying out an irreversible process, 
the final position of the first elementary step will be a non-equilibrium state, 
which cannot be illustrated on a statical diagram. At the following elementary 
steps the situation becomes worse, because in these cases the transition takes 
place between non-equilibrium states. Introducing now the effective ai para­
meters of (1.5), we can proceed so that an adequate number of lap a2 , ••• , ajf 

parameters can be conjugated as effective ones to the instantaneous states. 
of systems carrying out irreversible processes and not being remote from the 
equilibrium state. By the independent ai parameter number f an infinitesimal 
state space is spanned, which has an f dimension. This space may be called: 
first order effective state space. The physical essential of this method consists. 
in the fact that the elementary steps of irreversible processes can be described 
statically in the space of effective parameters, i. e. with the mathematical 
apparatus of thermostatics. Those equilibrium parameters are conjugated as. 
effective state parameters to a non-equilibrium state after the first elementary 
step of an irreversible process, to which the system v,rould arrive in a reversible 
manner, but as if the ai change of the equilibrium parameters A; would als(} 
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have taken place in a reversible way. Thus, proceeding by elementary steps 
an effective state space - in which irreversible processes can be observed as 
in a statical projection, - can be given for each instantaneous state of a system. 

Let us now develop the fundamental mathematical relations of the first 
order effective state space in the case of discontinuous systems. Let us consider 
for that purpose a non-equilibrium system of a degree of freedom j, which 
consists of two thermodynamically identic and homogeneous subsystems. 
Let us give the entropy of the subsystems in an instantaneous state as the 
function of parameters at number j determining the first order effective state 
spaces of the subsystems. The index I refers to the subsystems I and H. The 
scale of the parameters af is chosen according to (1.5), so that in the equilibrium 

I I I O· l'd H state al = a2 = ... = aj = IS va 1. ence 

(1.6) SI (a l ) = SI (ai, a~, . .. , a}) where I = I, II. 

Let us now assume that the entropies of the subsystems are such functions 
of the adequate aliparameters, which can at any time be continuously differen­
tiated. Thus, by developing these functions in a Taylor series and stopping at 
the fourth order terms we obtain: 

(1.7) 

where S,: is the maximum entropy of the stable equilibrium state. Assuming 
that the total system is isolated "with respect to its surroundings, then we may 
write: 

(1.8) and (1.9) 

because of which the entropy variation of the total system, ·which IS due to 
the irreversible processes is 

In this expression the linear and third order terms of (1.7) do not occur. 
The· cancelling of the linear terms means that at the interaction of the 

t wo subsystems this term describes the reversible state variation, according to 
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which one of the subsystems gives just as much entropy to the other as it has 
received from it. According to (1.7) the entropy change of the system can 
always be 'written dO'wn as the sum of terms of odd and even order. It is shown 
by (1.10) that only terms of even order can be responsible for irreversibility. 
This is in.accordance with the second law of thermostatics, i. e. LIS must always 
be positive definite. Hence, the analytical form (1.10) is not in contradiction 
with the second law and, thus, is suitable for the quantitative characterization 
in a statical projection of the irreversible processes. For the sake of the follow­
ing let us define the following quantities by using (1.10), 

(1.11) (i = 1,2, .. . ,f) 

which quantities III the first order effective state space are likewise state 
variables. 

C. The velocity space (Space of fluxes) 

It has already been mentioned that though the effective state space 
determined by {al' a2, ••• , aj} parameters characterizes the irreversible 
processes in a statical picture, their course in time cannot be followed in this 
space. The fact that different effective state parameters must be conjugated 
to the successive instanlaneous states of a system carrying out an irreversible 
process shows that ai quantities depend parametrically on time: i. e., ai = ai(t), 
(i = 1,2, .. . ,j). Therefore, the expressions following from (1.10) and (1.11) 
make sense: 

(1.12) 

(1.13) !iX; = I i ( 82 
S ) ak + ~ i 

dt k=i 8a i 8ak 0 2 k,j,' 

(i=I,2, ... ,f) 

and al:o:o the expressions a1."ising from the combination of (1.11) and (1.12) 

(1.14) 
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In the last expression the time derivative of the ai parameter is denoted identi­

cally by I; = ai' This quantity will be called further on, general thermodynamic 
velocity or flux. The (1.12) gives the entropy change per unit time, i. f. the so­
called entropy production. 

Quantities of a velocity character defined by (1.12) and (1.13) are directly 
derived from the first order effective state space. It is, ho"wever, required 
both by experimental and theoretical investigations that such relations 
should also be taken up, by which a connection is indirectly established between 

the state space and the velocity space {al' a2' ... , Ctf} of the parameters ai­
Thus, we can write such general expressions by which the course in time of 
ai parameters is determined. This follows from the fact, that the velocity space 

of the ai parameters is already determined by the ensemble {al' a2 , ••. , af} 

(or by the ensemble {X;, X;, ... , X;}) expressing the instantaneous state 
of the spanning of the system. This statement is true, at least for such cases, 
in which the parameters ai themselves make sense as non-equilibrium state 
parameters. In order to attain the differential equations giving the description 
in time of change of the parameters ai' unambiguously a velocity space ought 
to be conjugated to the first order effective state space. The conjugation may 
be correct only, if from the velocity space we require the satisfaction of those 
fundamental properties, which are required by the properties of the statical 
state space for the velocity space determined by it. Briefly, it is necessary 
that the properties of the state space be compatible with the behaviour of 
the velocity space conjugated to it. Due to the unambiguous conjugation the 
following hypothesis is assumed. Provided that, the first order effectiw state 
space stretched out by the parameters {ail determines the velocity space 
{a i }. The analytical form of our hypothesis is 

H. (i = 1,2, ... ,f) 

where the functions Ji are at present unknown. Therefore, the following expan­
sion in a series is carried out: 

(1.15) (i = 1, 2, ... ,f) 

which signifies a second order approximation of our hypothesis H. After 
the problems of mathematical character described above, we shall show in 
the folIo'wing paragraphs, keeping in mind more explicitely the physical require­
ments, that they are suitable for the development of ONSAGER'S linear theory, 
moreover to give two non-linear representations. One of the non-linear theories 

is dealt with in the following paper referred to as n. 
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§ 2. Onsager's linear theory 

\\: e may now arrive to ONSAGER'S linear theory - characterized by the 
·existence of linear laws between the fluxes Ii and the forces Xi - if concerning 
the first order effective state space the following axiom is considered to be 
valid. 

Axiom I: The 5 entropy of a system not too remote from its stable 
equilibrium state shall be the at least twice continuously differentiable positit;e 
definite function of the independent parameters {aJ 

I. e. for the present analytical form of 5 = 5(a) it now follows: 

1. 

which is the reduced form of (1.10). Our axiom also comprises implicitly that 
In a stable equilibrium state 

(2.1) 50 = 5 (0,0, ... ,0) = constant, l. e. Ll5 = 5 - 50 = 0 

further that the validity of the following symmetrical relations also holds 
good, 

(2.2) (i, k = 1, 2, ... ,f) 

which are called MAXWELL'S reciprocal relations. In O:C>SAGER'S theory the 
thermodynamic forces Xi used to be defined as follows: 

D. (i = 1,2, ... ,f) 

with the aid of which I. can he written 

(2.3) 

It can immediately be seen that MAXWELL'S reciprocal relations of (2.2) can 
also be written with the parameters of the first order effective state space. 
I. e. due to 1. and D., the (2.2) -- exactly the reciprocal of (2.2) - will be 

(2.4) 
oa; oak 
--=--
oXIe oX; 

(i, k = 1, 2, .. . ,1) 
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These equalities are the forms of thermostatical MAXWELL relations expressed 
by the parameters ai and Xi of the first order effective state space. Herewith, 
the denomination referring to (2.2) has also been justified. It is evident, that the 
reciprocal relations (2.4) ensure the potential character of the Ll S function in the 
effective state space, which thus become fundamental. 

Let us write the matrix form of the expressions mentioned hit~erto. 

If in D. X and « are column matrices, then their transposed forms X and 
et are row matrices. The positive definite matrix G, consisting of theelements 
gik can be called - due to the definition D., the matrix of the "force con­
stants" gik' Hence the matrix forms are 

I'. 

(') ')') ... 
D'. 

(2.3') 

1 1 -JS = - etG« = - -- et G« 
2 2 

G=G 

X=-Ga 

AS 1 - 1 ~ 
.6 = - X «- = «X 

2 2 

by which the further calculations are rendered particularly perspicuous. 
We shall now turn to the investigation of the velocity space belonging 

to the effective state space determined by axiom 1. Let us differentiate the 
expressions 1. and (2.3) over the time, thus, we obtain for the entropy production 

(2.5) (2.5') Lis = Xa = ci X 

where the matrix notation has also been used. Let us consider the form (1.15) 
of the hypothesis H. to a first approximation in order to produce ONSAGER'S 

linear phenomenological laws, 

(2.6) 
. L, 
a i = - 2 ci/a/ (i = 1,2, ... ,f) 

/=1 

t2.6') & = - CC! 

where per definicionem we have introduced due to the stable equilibriu m 
condition positive constants 

(2.7) (i, I = 1, 2, ... , f) (2.7') C = [Gill 

which will be called the "coupling coefficients of the velocity space". The 
"coupling matrix" C can be defined by the elements Gi[, which due to (2.7) 
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is, in general, not symmetrical. The expressions 1. and (2.6) together with the 
definition D. are sufficient for the development of ONSAGER'S theory. By 
D. inverted into al we obtain 

(2.8) 
f 

a[ = - y gii/ X k (I = 1,2, ... ,j) ...... 
k=1 

or taking them into consideration 111 (2.6) 

(2.9) 

(2.9') I = a = CG-l X = LX 

(2.8') cc = - G-l X 

(i = 1,2, .. . ,j) 

These are the linear phenomenological laws between the fluxes Ii and forces 
Xi expressed by the conductivity coefficients 

(2.10) 
f 

Li/c = 2.: ci/ g/i/ (i, k = 1,2, ... ,j) (2.10') L = CG-l. 
1=1 

Hitherto. the essential physical assumption about the irreversible processes 
was that they are linear; i. e. that the fluxes depcnd linearly on the forces 
:Ihat "cause" them. Here we derived these la·ws on the basis of our hypothesis 
H. It is evident, that for the moment nothing can be said of the symmetry 
of the conductivity matrix L, formed from the conductivities L ik • On the other 
hand, it is to be noted that the linear laws of (2.9) proved very productive for 
the description of the irreversible processes. For most transport processes the 
linear approximation is satisfactory too. Deviations from it might be expected 
in non-ohmic electrical networks, in semiconductors of strong space charge, 
in non-linear deformations, in case of transport processes taking place at very 
low temperatures and particularly for chemical reactions. The linear laws 
of (2.9), which are also suitable for the description of the so-called "cross cffects" 
used to be called in irreversible thermodynamics "ONSAGER'S equations of 
motion". We shall, however, suggest this denomination for those differential 
equations which are derived in the following paragraph. 

§ 3. "Equations of motion" 

The "equations of motion" of thermodynamics can be attained so, 
that the effective state space is directly connected with the linear law of velocity 
space. First of all we shall 'Hite an alternative form of the linear laws (2.9)_ 
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Let us introduce the reciprocal matrix R of the conductivity matrix L, t. e. 

(3.1) 5' L im Rmk = ~ Rim Lmk = 0ik - - (3.1') LR = RL = 0 
n. m 

In these expressions the matrix R determined by the elements Rik is the so­
called resistance matrix, 0ik is the KRONECKER symbol and 0 is the unit 
matrix. The Land R are not singular matrices, hence they are mutually recip­
Tocal. On the other hand with the aid of (2.10) and (3.1) it can be written: 

(3.2) (i, k = 1,2, .. . ,f) (3.2') R = GC-l 

By these expreEsions the matrix R is det<:rmined with the "coupling matrix 
of the velocity space" C and the matrix of the "force constants" G, which 
is interpreted in the first order effective state space. Therefore, (3.2) or (3.2') 
can also be considered as the direct definitions of the resistance matrix R. 
"With (2.9) and (3.1) the alternatiye form of the linear la"ws is obtained: 

(3.3) 
f 

Xl" = '"-' R," 0.,_ (i = 1., 2, , .. ,f) ...;;;., 1\ \. 
(3.3') )( = RI 

k=l 

which can be regarded as "equations of motion" in the same sense as (2.9). 
As we have, how-eyer, already pointed out we think it more appropriate to 
keep this denomination for the following ordinary differential set of equations, 
which is obtained by combining D. and (3.3), 

f 
(3.4) ~ (Ri/i ak + gikak) = 0 (i = 1,2, .. . ,f) (3.4') RI GCI.=O 

k=l 

By these equations the linear la",'s are directly connected with the parameters 
of the effectiye state space. As the complement of these "equations of motion" 
we obtain with (2.9) and (2.6) 

(3.5) (i=1,2, ... ,f) (3.5') LX + CCI. = 0 

'which relations may be called the "strain relations of thermodynamics". 
These are important in the representation theory of thermodynamics, for the 
examination of stability problems and particularly for the generalization of 
LE CHATELIER'S principle. (See [9]). The following differential equations are 
.also equh'alent with the "equations of motion" in (3.4.) Thus, for instance, the 
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relation (2.6) now expressing our hypothesis H. - is equivalent to (3.4), 
if C is expressed in it by the matriees G and L - whieh are empirieally deter­
mined or statistically computed - according to (2.10). By combining (2.6) with 
(2.10) we obtain 

(3.6 ) (3.6') J = LGa 

and now from these equations just as from (3.4) the quantities a(t) can be deter­
mined if the initial values a o = a(t = 0) are known and the matrix C = LG 
is not singular. Finally, let us consider the hypothesis H. according to which 
the ai coordinates depend on the time. If this is true, as it must be, then the 
same holds for the forces )( in D., i. e. Xi = Xi(t). Therefore, also D. can be 
differentiated over the time beside a constant G. Thus "le obtain 

(3.7) 
. {,. 
Xi = - .. gik al: (i = 1,2, ... ,f) 

r::l 
(3.7') X = - Ga 

which combined with (2.9) 

(3.8) 

or introducing the matrix 

(3.9) B=GCG-l=GL 

equation (3.8) - or rather the matrix form of it will be 

(3.10) x= BX. 

This matrix equation is also an "equation of motion" for the variation in time 

of the thermodynamic forces Xi' It should be noted, that (3.10) for X and X 
is in an analogous relation with (2.6') which refers to a and a. Thus matrix 
B, similarly to matrix C, is abo conceivable as the "coupling matrix" of the 
parameters {Xl' X2 , ••. , Xf} directly belonging to the velocity space of the 
forces. 

Anyone of the equations (3.4), (3.6) and (3.10), as the matrices G, R, and 
L, which can be statistically or empirically determined occur in them, will 
be called the "equations of motion" of irreversible thermodynamics. These 
differential equations are very suitable for the description in time of equaliza­
tion processes approaching equilibrium. The differential equations in question 

3 Periodica Polytechnica Ch .v 13. 
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can immediately be integrated formally, i. e. the values belonging to the 
moment t = 0 denoted by Ct o and Xo the matrix form of the corresponding 
integrals IS: 

(3.11) (3.12) 

Since. III general the matrices G and L are not commutable, their dyadic 
product should be carried out for the determination of the general solutions. 

It should be noted here that the forms of different thermodynamic 
potential functions in the first order effective state space can likewise be given. 
The transformations between potentials require that between the forces Xi 
and coordinates ai such linear transformations should be given, which with 
the aid of the matrices G, C, L, R, B, lead to the representation theory of 
thermodynamics [9]. This theory relying particularly upon the matrices C 
and B renders the transcription of the transformations possible carried out 
in the a space to the flux space, and gives general relations between the state 
space and flux space characteristics of thermodynamic potentials. Hereby, 
those physical fundamentals of the linear transformations used in irreversible 
thermodynamics become evident, which have already been used hitherto 
by some authors in the case of several applications [2], [10]. It is shown by 
these facts that the matrices C and B though less usual to now in literature 
are very productive, both from theoretical and practical point of vie'w. The 
foregoing statements are confirmed by the consequent introduction of 
ONSAGER'S linear laws with the aid of matrix C, as well as by the new form 
(3.6) and (3.10) of the "equations of motion". 

§ 4. Reciprocal relations in the fIlLx space 

A. Indirect method 

In § 1. sec. C. it has already been pointed out, that a velocity space can 
be conjugated to the first order effective state space only in such a way that 
this conjugation should be unambiguous, moreover it ought to be compatible 
with the fundamental properties of the effective state space. The unambiguity 
is ensured by the hypothesis H. [resp. (2.6)]. There remains, however, the ful­
filment 0 f the requirement of compatibility. We should like to emphasize, 
that the requirement for the satisfaction of compatibility does not mean a 
new hypothesis, since the quadratic form of 1. characterizing the effective 
state space expresses the non-equilibrium state of the spanning of the system, 
which owing to H. already determines the flux space. Thus, only such a flux 
space of a real physical system can be permitted, which is satisfying in every 
respect (of course in the approximation in question) the state space determined 
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by 1. and characterized by (2.2). In order to demonstrate more clearly the fore, 
going, let us form the entropy source in every possible way according to 1.­
without making use of the symmetry of G-. Thus we can write 

(4.1) 
1 -JS = - - Cl (G + G) a 
4 

Differentiating this over the time we gP.t the entropy production: 

(4.2) 
1. 1_~ 

a = - - et Get _ a G a. = 
2 2 

Let us eliminate from this expression the fluxes ii and it with the aid of the 
linear law (2.9') (and with the transposed form of it) we obtain 

(4.3) a= 

This form can he written with the aid of D.' ann with the tramposed form 
of it, respectively: 

(4.4) a= 

which IS reduced to 

(4.5) 

which IS confirmed ill ONSAGER'S theory if 

(4.6) 

i. e. if the ONSAGER reciprocal relations are valid. It is to be seen that being 
symmetric or non-symmetric of G has no influence on symmetry properties 
of L. In other words, hitherto the M:axwellian and ONSAGER'S reciprocal rela­
tions were properties independent of each other, i. e. for example the latter 
does not follow from the precedings forthwith. 

Keeping in mind the logical severity and the gnosiological requirements, 
the true character of (2.2) aDd (4.6) for a phenomenological theory can be ac­
cepted on thc basis of the following test methods: 

1. On the basis of experimental criteria M:AXWELL'S and ONSAGER'S 
reciprocal relations can be considered as axioms in a phenornenological theory. 

3* 
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2. The origin of the symmetry propel·ties of both types are led back 
to different, but in any case, logically equivalent axioms. 

3. Accepting some type of the reciprocal relations for true on the basis 
of an axiom of a correct model theory in a given approximation (for instance 
the Maxwellian on the basis of axiom I.), let us derive the other type from it, 
while using some reasonable requirement. 

4. Both types of reciprocal relations are confirmed statistically, while 
rt·lying on the rigorous principles of statistical mechanics. 

There if' nothing to add to argument 1 with the exception that }IAx­
WELL'S relations used not to be considered directly as axioms, but rather as 
the consequence of axiom I. For the acceptance as axioms of ONSAGER'S 
reciprocal relations in a phenomenological theory DE GROOT has presented 
a suggestion [2]. The following of the 2nd test method for the MAXWELL rela­
tions is generally accepted; it is related to axiom I, which is true according 
to the model theory of thermostatics. For ONSAGER'S relations such a confirma­
tion is hitherto unknown, the giving of it -will be dealt with in the following 
section B. The 3rd method is connected with the problem of compatibility 
so often already emphasized by us and which will be given in detail in the 
following. Finally, referring to the test methods of statistical character it 
should be noted, that for ONSAGER'S relations only such a method is known 
up to now, whereas the general statistical proof of MAXWELL'S relationoS is 
not giYen, moreover perhaps the necessity of such a proof is not even raised 
explicitly yet. It can be seen, that on the basis of points 1-4 concerning the 
acceptance of the yalidity of both types of reciprocal relation a strong asym­
metry exists between the applicability of the phenomenological and statistical 
principles. Thi;; asymmetry of argumentation is misleading for a rigorous 
phenomenological theory as well as for a conseqnent statistical one. One of the 
aims of the present paper is to eliminate this asymmetry from the phenomeno­
logical side. Thus we demonstrate that both reciprocal relations have similar 
phenomenological fundamentals, assuming that the corresponding fundamen­
tals are measured with an equivalent logical gauge. 

Let us now demonstrate that inasmuch as axiom I is considered to be 
sufficient for the confirmation of MAX\YELL'S relations and if we demand the 
satisfaction of the requirement of compatibility with the properties of the 
effective state space for the flux space, then ONSAGER'S relations follow from 
(2.4). The requirement of such a compatibility is a reasonable one, because 
owing to hypothesis H. the flux space is determined by the first order effective 
state space. Thus, our proof corresponds to that mentioned in point 3. Differen­
tiating now (2.4) over the time, -we get 

(4.7) d ( aUi ) d (aa,,) 
dt . -ax" = dt' aXi 

(i, k = 1,2, ... ,j) 



ON THE PHE,YOJfE,YOLOGICAL BASIS OF IRREVERSIBLE THER.UODY.YAJfICS 233 

Limiting ourselves to the case of constant forces Xi' then interchanging the 
order of differentiation we can write: 

(4.8) (i, k = 1, 2, ... J) 

or 

(4.9) 
8I; 8I" 
--=-- (i, k = 12, ... ,f) 

which relations should be considered as constraint equations for the fluxes. 
Due to the linear laws (2.9) it is required hy (4.9), that in the flux space the 
O="SAGER reciprocal relations 

(4.10) (i, k = 1, 2, ... ' f) 

he yalid. It should he emphasiz;ed that the equations (4.9) follow from (4.7) only 
in case of forces Xi constant in time. Howeyer, in linear approximation the 
coefficients Li" are constant, thus (4.10) is generally verified. It is eyident, that 
(4.7) and (4.8) (resp. (4.9» in case of constant Xi forces are equiyalent and with 
those a restrictio n is expressed for the possible variation in time of tht' a 
parameters. The equivalence of (4,.9) with (4,.10), however, is true only in case 
of linear laws, i. e. (4.9) cannot be considered as the alternative form of O"SAGER 

relations. This is particularly evident from my following paper (see II), 
where a possible non-linear formalism will be discussed. Hereby the program 
outlined by points 1 and 3 is closed. The di"cllSsion of method" 2 and 4 
is given in the following section. 

B. Direct method 

A confirmation independent of the previous one, but formally of a 
I'tructure analogous with it, can also be giyen for the phenomenological proof 
of the O="SAGER relations. The following method, which has been called the 
direct method, is in accordance with the program of 2, and has been developed 
in a work under publication of 1. F.€:"YES and the author [11]. The fundamen­
tal idea of this method can be reali,lCd with the following axiom: 

Axiom If : Let the entropy production (j of a system - not too remote 
from its stable equilibrium state - be, the at least twice continuously differenti­
able positive definite function of the independent parameters Xi' f. e. 

(4.11) 
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furthermore in the stable equilibrium state let us write: 

(4.12) ao = a O (0, 0, ... ,0) = 0 

It can easily be seen, that this axiom does not require any more from a than 
axiom I from 8. Moreover, it is also true that since axiom II is a summary 
of general validity of those experiences according to which the thermodynamic 
processes are thf' consequences of the equalization tendency of the forces Xi' 
thus it is more fundamental than the axiom I relying purely upon the second 
law of thermostatics. The specification of the theory on such general axioma­
tical fundamentals is not dealt with here (see [9J). We only demonstrate 
that in second approximation MAXWELL'S and O;\"SAGER'S relations follow 
from axioms I and II, respectively, as from logically equivalent ones. 

Let us write the expressions of 8 and a in second approximation, w<' 
obtain: 

(4.13) 

(4.14) - -L "" 8a 1 X -L _ ~ -a X X f (. 1 f 8° . 

;=1 . 8x i iO 2 j,k=l 8K i 8XI; t a - a(O) , .:;;..; - i I ..,;;;;. r _ i I; 

On choosing the signs it should be taken inTO consideration here, that the 
equilibrium entropy 8(0) is a maximum, whereas the entropy production 
a(O) has a minimum value at equilibrium or more exactly it vanishes according 
to (4.12). The wm of the linear terms gives zero in a closed system. Introduced 
provisionally by the denotatiom 

(4.15) (4.16) 

the matrices Ql and Q2 are necessarily symmetric due to axioms I and II, 
~ ,...., 

respectively. I. e. Ql = Q1 and Q2 = Q2' Thus we may write 

(4.17) 

and 

(4.18) 

Since (4.17) must be identical with I, thus Ql = G owing to it, is G = G. Dif­
ferentiating now I (01'4.17) over the time and eliminating the fluxes from the 
expressions obtained with the linear laws (2.9'), we get 
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(4.19) As = XLX= xix 

which expression can be identical with (J of (4.18) only (otherwise the relations 
between the thermodynamic parameters would not be unambiguous), if 

Q2 = Land Q2 = L respectively. Thus ithas been demonstrated, that lVIAXWELL'S 
and ONSAGER'S reciprocal relations are also the consequence of the require­
ment common in physics, according to which Sand (J are at least twice conti­
nuously differentiable over the parameters ai and Xi. Because the axiom 
I and II are gnosiologically equivalent, thus it would be completely unjustified 
to accept one type of the reciprocal relations as correct, on the basis of the 
particulars outlined above, and those of the other type as not. At this point 
we shall discuss our results or rather raise some problems in connection with 
the investigations of statistical character. 

As regards the confirmation of the lVIAXWELL'S resp. ONSAGER'S relation 
based on the principles of statistical mechanics it should be told, that in the 
first case it is not given in general. Thus - on the basis of axiom I the lVIAX­
WELL relations are considered as proved in a purely phenomenological "way. 
As against this the proof of ONSAGER'S relations is built hitherto upon a statis­
tical basis with the aid of the hypothesis of microscopic reversibility. Though, 
it is also true, that in most part of the cases the examinations carried out do 
not correspond to the Gibbsian conception of statistical mechanics, but rather 
to a more or less phenomenological theory of stochastic processes. The theory 
in question is such for which the name "theory of macroscopic fluctuations" 
is the most appropriate. A strictly statistical proof of ONSAGER'S relations must 
be built up on thc fundamentals of statistical mechanics of the non-equilib­
rium states, which was up to no"wrepresented the best by the works ofR. Cox[,1], 
N. G. van ICDIPE:'I' [5] and H. B; C.ULEN [6]. It is namely evident, that in the 
same way as the statistical interpretation of S became the pillar of ordinary 
statistical thermodynamics or mechanics respectively, similarly a general 
and direct interpretation can be given to (J, which will become a touchstone of 
the statistical theory of non-equilibrium states. Thi:::, however, should be 
the one, which would prove the equalization tendency of intensity parameters 
purely on the basis of interactions of the microparticles in case of a general 
model of non-equilibrium system:::. The final solution of the problem is a very 
complicated one, because it is in close connection with the hitherto unsolved 
problem raised by GIBBS, i. e. '\v"hich are the conditions whereby it can be 
proved that in course of time a non-canonical distribution goes over into a 
canonical one. 

The problems only just referred to here may become intelligible as to 
'why we insist on the purely phenomenological and equivalent interpretation 
of MAXWELL'S and ONSAGER'S relations. Further problems will be mentioned 
in the following paragraph. 
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§ 5. Casimir's "/3" parameters 

In ONSAGER'S theory it was usually as:5umed, that the parameters a 
'were such that they were even functions of the velocity of microparticles 
[2], [12]. This condition is necessary for the choice of the actual form of micro­
scopic reversibility from which the ONSAGER reciprocity theorem aheady 
follows. Later on it had been examined by CASIMIR [13], what happens when 
we also admit parameters into the expression of the entropy source, which 
are odd functions of the velocity of particles. These parameters are called 
"/3" variables. It has been demonstrated by CASIl\IIR that - in this case from 
the actual form of the correlations in time - for those coefficients Lip by 
which "cross effects" between fluxes and forces derived from variables 
of a- and /3-type are described, the following anti~ymmetric relations are valid ~ 

(5.1) 
(i=I,2, ... ,m) 

(v=m 1, .. . ,f) 

In 1957, on the basis of statistical investigations CALLEN expressed the view 
that these relations are not real [6]. DE GROOT in his excellent monogJ"aph 
has derived CASDIIR'S reciprocal relations in the case of an electrical "four­
pole" as a consequence of a direct transformation only [2]. These facts haye 
prompted us to endeavour to interpret the relations (5.1) in a phenomcnological 
'way also. It will be seen that CALLE;\"'S views are supported by our results. 

Con;;:idering both types of the variables the entropy source will be 

(5.2) 
1 m 1 f 
~ Cf., (1.(1, -- ~ 

? . ...:... 01 {: I { ? ~ .... t 

~ l,k=l ~ J.,,·=m ... l 
Cf. /3. ,3 
0/.1' /. v 

or 

(5.2') 
1 1 '" 

LIS = - a G(m) C~ - - ~ G(f-m)~ 
2 2 

since the entropy is an eyen function of the particle velocities, no cross-terms 
between a- and ii-type variables appear in this expression. The Maxwelliuns 
now are 

(5.3) u - 0' • 
bik - bki' G(m) = G(m) 

(i,k = 1,2, ... , m) 

(5.3') G(f-m) = G(f-m) 

(}.,v = m + 1, ... ,j) 

where in the matrix notations the number of the elements of the quadratical 
matrices in question was also shown as argumcnt. The fact, that according 
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to (5.2) LlS is separated into t-wo parts depending only on a- and /i-variables, 
should be interpreted as "the splitting of .1 S in the effective state space". 
The denomination is justified by the following. Let us consider S itself as a 
state function unambiguously determined by tht> a- and I)-variables, i. e. 

(5.4) 

Developing this quantity in a Taylor series we get 

(5.5) 
f f 

m 1 j 
...... ' (3 ",' /' gvi~' at - ') ~ 

1 m 1 m 1 
LlS = - ~ a., a·a, -- :5' fJ. a (3) --

') .::::. bl { I ( ')...... OIV 1 v _'). 
~i!k=l ~ i=1 i= 1 .... j,.l'=m --1 

"=rn.,.l 11=11t-;w! 

where for the matrices to be formulated from the elements gik and gi." the 
reciprocal relations (5.3) and (5.3') are valid. This expression is analogous with 
I and will be identical ,,-ith (5.2) (which is correct in the present case), if it were 
required that the following antisymmetric relations be valid for the "hybrid" 

matrices to be formulated from the elements giv and g"i' 

(5.6) ( 
82 S 1 

.8(3" 8ai. 0 

_a. 
Cv! 

(i = 1,2, ... , m) 

(v = m + 1, .. . ,f) 

Hence,if it were required, that the hypermatrix G(!), which consisting of four 
blocks 

rn f-m 

(5.7) 
(i, k = 1, 2, ... , In)-

(I., I' = In+ 1, .. . ,f) 

would be with respect to the blocks gi.k and gi" antisymmetric. According to 
(5.6) hereby the equivalence of (5.2) 'with (5.5) is evident. Thus, physically only 
the problem remains, whether the antisymmetric relations which can be 
called Maxwe llian antisymmetrics - are rcal or not. In these ONSAGER-CASIlIIIR 

theory the forces are defined by means of (5.2) in the following way: 

(5.8) 
x = 8LlS 

- I 8ai 

(5.9) 
y. = 8LlS 

I, 8(3-
A 

m 

= - ::>' go' a" bl \ . 
(i = 1,2, ... , m) (5.8') X = - G(m) c{ 

f 
"y g,_"(3,, (J. = In + 1, ... ,j) (5.9') Y = - G(f-m) ~ 

~':-7-1 
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In the latter case the forces Y" belong to the "/3" parameters. Herewith the 
part of the ONSAGER-CASBIIR theory which refers to the effective state space 
is complete. 

Let us now introduce the fluxes on the basis of the following conditions 
expres8ing the hypothesis H: 

(5.10) 

(5.11) 

from which in an approximation analogous to (2.6) it can be "written 

(5.12) 

(i= 1,2, ... ,m) 

(5.13) Pi. = 

'where Ci!, ci;" Cl.I, c;." are the corresponding "coupling matricf'f:". Inyerting (5.8) 
to a[ and (5.9) to /3-; we get 

(5.14) (l=1,2, ... ,m) 

(5.15) 
f 

/3"1 = ~'g;-;} Y v (y = m + 1, .. . ,f) 
J'=m+ 1 

which Expressions substituted into (5.12) and (5.13) become: 

(5.16) 
f 
~ C u-IY 

...;;;;. iyb;!!' v (i = 1. 2, ... , m) 
i',v=m+l 

(5.17) R, = ~ C, I f!1-;,l X" -1-I.J/~ ~ I ...... r. \. ( (}.=m 1, .. . ,f) 
l,k=l 

Introducing now into these equations the following new quantities 

(5.18) 
f m 

L - """ C u-I . L - ~ C u-I . 
iv == ..::::.. iy O:'J" i.k ==..;;;; i.l elk , 

,=m+1 1=1 

f 
L,.v _- _"'. C 0'-1 , / i.yl:»"' 

i'=m+l 
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the linear laws are attained 

(5.19) 
or 
(5.19') 

and 

(5.20) 
or 

5.20') 

, m 

Pi. = ;E L i." Y" 
k=! 

f 
",' L Y 

...:.. it. v (i = 1, 2, ... , m) 
s'=m-;-l 

(I. = m + 1, ... ,f) 

It should be kept in mind that according to the expressions (5.19) anll (5.20) 
it is required that alE:o those quantities Lil' and Li." must have a meaning 
now, which had been introduced by the "coupling coefficients" ci;. and Ci./ 

of mixed indices, i. e. "hybrirl" ones. 
Let us turn for a moment no·w to the reciprocal relations (5.3) and (5.3') 

as well as (5.6) and assume the latter ones as being real also. In any case either 
one of the above-mentioned relations can be formulated with the parameters 
{)f the actual effective state space in the following way 

(5.21) aai aa" 
aXle eXi 

ap. 
(5.22) t. 

aYv ayi• 

(i,k = 1,2, ... , m) ()., v = m + 1, .. . ,f) 
and 

(.5.23) Sa i ap" ----
aY" aXi 

(i = 1,2, ... , m; v = m + 1, ... ,f) 

,\-hich are fulfilled in the effective state space determined by the parameters 
a. X, /3 and Y. 

Evidently now again only such a yelocity space can be accepted as cor­
rect, whose fluxes fatisfy the reciprocal relations folIo·wing from the preceding 
relations in an analogous manner to (4.8) and (4.9): 

(5.24) 

;).~;) (- ')"') 

and 

(5.26) 

LiI,=L'd 

L i .v = Lvi. 

(i, k = 1,2, ... , m) 

()., l' = m + 1, .. . ,f) 

(i = 1, 2, ... , m; v = m + 1, ... ,f) 

where the relations of (5.26) are the CASIl\IIR antisymmetrical reciprocal rela­
tions. Thus from the phenomenological point of vie-w the relation!' in (5.26) 
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can be interpreted in an identical way with the O-"SAGER relations, i. e. as 
the consequence of the compatibility of the flux space with the characteristics 
of the state space. At present three problems arise following strictly from one 
another. 

Primarily, what is the condition, that, inasmuch as the potential .::IS 
in the state space splits up into two terms which merely contains a- and i:!­

variables (see (5.2)), that then LIS = (j determincd as the quadratic form of the 
independent forces X and Y be also splitted into two terms in the following 
way: 

(5.27) 

Since the forces X and Y defined by (5.8) and (5.9) are exclusionly determined 

by variables o. and /3, it is plausible that neither can (j = J S (arising from the 
derivation over the time of (5.2)) contain cross-terms in X and Y. The aboye­
mentioned condition is immediately obtained by using the matrix notation, 
if l5.2') is derived over the time and by eliminating the fluxes et = la and 

~ = I", thus obtained with the use of (5.19') and (5.20'), finally by making u!'e 
of the sym~etry of the matrices G(m) and G(f m). Thus on the condition 

that (j = J S should be of the form ginn in (5.27), we get 

(5.28) 

which are the CASIlIIIR reciprocal relations in a matrix notation. It is to be seelL 
that just as the split up of J S in the state space can be described with the 
antisymmetric Maxwellian (whether they are real or not), so the split up of u 

according to (5.27) can be described with the CASIMIR antisymmetrical relatiol15. 
Since, the latter fact is also independent from the reality of CASDIIR'S relations, 
thus at this point according to the two medial EX}Jl"essions of (5.5) it can be 
stated, that the reality of CASDIIR'S relations are connected with the reality of 
the antisymmetric Max"\',-ellian ones. On the other hand it depends on the reality 

of the "hybrid coupling matrices" Ciy and Ci.I' Herewith we reached the second 
problem, i. e. to the problem of what might be said of the physical reality of 
the antisymmetrical MAXWELL relations? 

The strict and general answer to the problem is undoubtedly to be exppct­
ed from statistical physics. This, however, as has already been mentioned, 
overemphasizing the statistical nature and origin of the O-"SAGER relations 
has not even been dealt with as yet, in the general direct confirmation of the 
symmetric NL~XiVELL Tf~lations. It is, ho-wever, shown by investigations within 
the phenomenological framework [9J, that the antisymmetric Maxi,-ellian 
cannot be real. This problem is related to the interpretation of the thermody­
namic potential functions in the effective state space and the transformation 
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properties between them and between the parameters determining them. 
But since lVL'\'xWELL'S reciprocal relations show a complete analogy with 
GREE~'S reciprocal relations of electrostatics (see [H]), moreover considering 
a general energetics the latter are a particular case of the former ones, thus the 
antisymmetrical relations of GREEK'S may give information on the reality of 
the antisymmetric NIaxweIlian. However, the non-reality of the GREEN anti­
symmetrical relations can be understood trivially in every case. I. e. their 
a~5umption leads eithl'r to the formulation of a physically senseless problem 
or they can be obtained only as the consequence of a formal mathematical 
manipulation, l'art pour l'art transformation. The rigorous statistical con­
firmation of the problem raised is desirable in any case and at the same time 
sho',-s the deficiencies encountered, if either the statistical or the phenomeno­
logical description is emphasized as the only correct method of research. 

The answer to the third problem, i. e. the problem of the reality of 
C\SBIIR'S relations partly arises from the precedings. Namely if (5.23) are non­
n'aL than (5.26) are identically zero. It is worthwhile to note that in spite of 
C\LLEN'S statistical examinations this problem was neglected in literature. 
It i5 also important, that DE GROOT in his book ([2], § 80) arrives to the 
CASBHR relations through the example of the electrical "four-pole" by carry­
ing out a simple transformation only. The situation here is quite similar to 
the one that we have stated for the formal transformations directed towards 
the production of the GREEN antisymmetrical relations. All these facts go to 
show that the problem of the reality of CASIMIR'S reciprocal relations is very 

actual. 
Now without making use of what has already been said on the non­

reality of the antisymmetric NIaxwellian, the non-reality of CASIMIR'S relations 
('.an also be understood in a quite different way by considering the definitions 
of a- and p-variables. It is known from CASIMIR and others [12], [13], that 
the i3 variables or their divergencies are the time derivatives of the variables 

of a type, i. e. 

(5.29) (5.30) d· (3 Sa -WJ_--
St 

where (5.29) refers to a property of a discontinuous system, whereas (5.30) to one 
of a continuous system. It is evident from these expressions - which can be 
-considered as the phenomenological definitions of the (3 variables too - that 
a velocity space of the a parameters is stretched out by p variables. Indeed, 
j3 parameters used also to he called "velocity variables" [12]. Hence consider­
ing the (3 parameters in (5.2) in the same way as the a variables of an effective 
state space, which is otherwise possible, it should be kept in mind that the 
state space of the /3 variables is dynamically of a higher order (velocity space) 
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than the a space (coordinate space). On the basis of the aforesaid relations (5.10) 
and (5.11) make sense only in the following form: 

(5.10') (i = 1,2, ... , m) 

(5.11') (I. = m + 1, .. . ,j} 

The latter expression shows that a space of acceleration of the parameters 
a is actually determined in it. Several examples are known in literature for 
these general considerations, thus we should like to draw the attention only 
to the fact, that due to the foregoings the "coupling coefficients" Ci, and C;.[> 

which are the elements of the "hybrid" matrices are eventually zero. The 
quantities c;.;. can perhaps be called "the coupling coefficients of the accelera­
tion space". Thus also the quantities L il. and L;.k defined in (5.18) disappear 
eventually and it shows that CASBHR'S antisymmetry is not real. This means 
that the matrix of conductivity coefficients is necessarily symmetric in the 
absence of a magnetic field and Coriolis force re'lpectively. Otherwise, the orig­
inal ONSAGER theory, at least in the flux space, is complete and correct. 
without any complements. 

The physical situation is evident. Since perhaps it has no sense in taking 
such "cross effects" into account, which can be described by the quantities 
L iv , which for instance would refer to the interference between the velocity 
and acceleration of a parameter a. In other words the following theorem can be 
stated: 

Theorem: "Cross effects" cannot be interpreted between flux spaces 
belonging to effective state space of a different dynamic order. 

The theorem is a manifest consequence of the fact that the velocity space 
of a higher order is unambigously determined by the state spaceof adynamicaJly 
lower order. Of course it may be that our given theorem is not valid in 
general and thus the reality of CASBIIR'S relations ought to be taken into 
account. If finally the detailed non-phenomenological examinations lead to 
such results in contradiction with CALLEN'S results, then the derivation 
given here for CASIMIR'S antisymmetry is admissible only in that case, if 
(5.23) are real relations too. 

It is emphasized by the author that he leaves the raised problems 
opened for drawing the final conclusions. Thus he intended only to demon­
strate here that more fundamental problems of ONSAGER'S theory can be 
examined also phenomenological way. In a following paper it ,\ill be 
demonstrated, how the model of a non-linear thermodynamic theory can 
be built up in a purely phenomenological way on the basis of hypothesis H. 
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Summary 

On the basis of the second law'of classical thermodynamics the Or;SAGER "a" coordinates. 
are introduced and an effective state space determined by them is interpreted. ONSAGER'S 
flux space is considered as the one determined by effective state space. With the aid of the 
"coupling matrix" of the flux space, some representations of the "equations of motion'" 
of irreversible thermodynamics are given. ONSAGER's and CASIMIR's reciprocal relations are 
discussed in a purely phenomenological way. In connection with ~1AXWELL'S, Or;SAGER's 
and CASBUR's reciprocal relations many statistical connections and deficiencies are mentioned. 
The non-reality of CASIlIHR's antisymmetrical relations is eventually suggested. The formalism. 
given here can be used for discontinuous systems only. 
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