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Introduction 

The properties of non-linear dissipative svstems III the case of very 
particular models have been recently investigated by several authors; MAC
DONALD [2], VAN KAl\IPEN [3], [4], DAYlES [5], ALKEMADE [6], BRINKl\!AN 
[7]. Th('se investigations w('re first of all concerned "ith a simple electrical 
circuit, with a vacuum diode containing a non-linear element and with the 
motion of a Brownian particle. They were rather of statistical nature and did 
not lead to an unambiguous and satisfactory result, in the particular questions 
raised, either. A detailed critical analysis is to be found in a recent 'work of 
VAN KA:'IIPE::'\ [3]. Another general defectiveness of the majority of the works 
(mumerated is, that their relation with the linear Onsager theory cannot be 
directly given, moreov('r in some cases the well proved results of the linear 
theory are destroyed by the higher approximations. The non-linear theory 

more appropriate quasi-linear - to be developed in thp follo\yings, will be 
completely general for the flux space to be conjugated to the Onsager a space 
and for the discontinuous systems. On the other hand, since our theory follows 
from the direct generalization of the linear one, it does not destroy it. Though 
the foregoings are without doubt pillars of the theory, we do not as yet consider 
it as complete, and in several respects, first of all experimentally, it calls for 
confirmation. 

So from the experimental as well a!O the theoretical points of view the 
non-linearity might occur because of two different reasons. Statistically non
linear effects can be described by cOll8idering the higher approximatioll8 
of the Boltzmann factor. In other cases non-linearity might be produced from 
the actual interaction of particles, which are responsible for the transition 
between the states. The development of a non-linear theory for the latter 
case seems to be considerably more difficult, at least as regards the statistical 
description. From a phenomenological point of view the fundamentals of a 
non-linear theory can also be outlined in two different manners. The first way 
is obtained as the extension of the validity of our axiom I - see part I of this 

3* 
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paper [1] ill the direction of a higher approximation, for instance by the 
acceptance of (1.10) as axiom. This way the formulae obtainable from (1.10) 
[for example in part I, (1.11), (1.12), (1.13) and (1.14) lead to the direct non
linear forms of the forces Xi in the effectiye state space by which formally 
a non-linear theory can he built up. It scem;, that such a development 
corresponds to the statistical method, when the Boltzmann factor is considered 
in a non-lineal' approximation. We consider this method to he vEry formaL 
from the stati;,tical as well as from the phenomenological point;, of yiew, there
fore its furthcr specification i;, not dealt with here. 

The most important is such a non-linear theory, which can also take 
into consideration the non-linearity of the actual molecular transition mecha
nisms. At present the building out of such a statistical theory cannot he ex
pected. In a phenomcnologieal theory, however, since the non-linearity in 
question should he eyidently expressed by the non-linear relations to be giyen 
hetween the fluxes and forces, an easy and consequent method can he given 
for this case. Now the non-linearity refers to the flux space and to a first 
approximation leads to the dependence of the phenomenological coefficients 
on the thermodynamic forces. Our theory, which can he huilt up on the hasi;, 
of the (1.15) of the hypothesis H. (see in I [1]) will thus he a qua;,i-linear theory. 
In this theory the most properties of the linear Onsager theory can he recog
nized, its theorems can he generalized if in the meantime the dependence on the 
thermodynamic forces of conductivities or resistance:;; is taken into conside
ration. 

§ 1. The effective state pace 

All the expressions characterizing the "first order effectiye state space" 
in Onsager's theory are considered as valid unaltered. The most fundamental is 
the entropy source : 

( 1.1) 

the definition of thermodynamic forces 

(1.2) (i = 1, 2, ... , f) 

Finally the MaxweIl's reciprocal relations are 

(1.3) (i, k = 1,2, .. ,of) 
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expressing the symmetry of gik by the parameters of the effective state space. 
(Further problems are investigated in paper I in full detail.) 

§ 2. Quasi-linear phenomenological laws 

The touchstone of the theory is the total form of (1.15) in part I of this 
paper, which is considered in this approximation as an axiom. The expressions 
in question are 

f 
(2.1) a = - ~ Cl al I _ I 

1=1 

1 f 
'5' ". a a ? .... r Ifs I s 

.... [,5=1 

(i=I,2, ... ,j) 

where the quantities Cif are the ,veIl known "coupling coefficients" of the linear 
flux space, whereas the quantities i'ils can be called the "non-linear coupling 
coefficients". The latter ones are symmetrical in the indices land s, since per 
definicionem 

(2.2) (i, I, s = 1,2, ... ,f) 

where the symmetry in the last two indices have also heen shown hy the 
bracket. By means of the quantities Cif and {'ifs a new matrix, expressing the 
total coupling of the velocity space, can now be interpreted in the following 
way: 

(2.3) (i, T 1,2, ... ,1) 

where 

(2.4) I ... ,.-
Izr -

It should he noted here, that owing to (2.4) the quantities c;r are not constant 
and on the other hand are neither symmetric. The physical situation is that 
the inconstancy of the quantities c;r might involve the consequence, that 

though in general Cir /'irs' this statement cannot be referred to the quantities 
Ylr which depend on the parameters a of the effective state space. Thus 
the latter ones in actual cases - in cases somewhat distant from equi
librium or giving rise to the singularity of the matrix Cir - can be compared 
with the coefficients Cir or may be even greater than those. Just in these actual 
cases, when Ytr cannot be neglected in c;r either, we speak of non-linearity. 
With the quantities c;r the formula (2.1) will be 

(2.5) (i=I,2, ... ,f) 
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Herewith we have given all the new quantities which are suitable for the 
derivation of the quasi-linear la·ws. Now, using the form of (1.2) referring to 
two different indices I and s can be eliminated al and as from (2.1). Thus we 
obtain 

j 

(9 6) . - ~ -1 X-•• ai - ..;;;. Ci1 glk le 

1,"=1 

1 ~" -1 -1 X 'V 
9. ~ IUs gu, gsj - li A j 
- l,k,s,j=l 

(i = 1, 2, ... ,f) 

Taking into consideration (2.3), (2.4) and (2.5) the quasi-linear relations be
tween the new fluxes ai ~ r; and forces will be 

(2.7) I; 
j 

Y cngii?X" 
j j 
~ I -1 -v- '-~L· 'V 
~ i'i/ gll: ..()../~ ==.2 if: J\..!: . - 1 ') j') (1 - .... , ... , 

1,"=1 1,1:=1 /:=1 

where we introduced the new 

(2.8) ( . k - 1 9 -Ie-) I, . - ,-, .. "J 

conductivity coefficients, 'which are not constant. Namely owing to (2.3), (2.4) 
and (2.6) for (2.8), it can be written, that 

(2.9) 

where 

(2.10) 

(2.11) 

f 
L - ",' C u-1 

ik==..,;;;;;., ilbl!: 
1=1 

(i,k = 1,2, .. . ,f) 

are the linear and non-linear. but constant conductivitv coefficients. The 
determina tion of the values of the constants Li" belonging to the linear effects 
as well as of the constants li"j belonging to the non-linear effects is possible 
on an empirical way or rather on the basis of the kinetic theories. In the latter 
case it is advisable to consider the third approximation of Enskog's solution 
of the Boltzmann equation. Due to (2.9) the quasi-linearity of (2.7) is evident. 

§ 3. "Equatious of motion" 

As in the ordinary Onsager theory the quasi-linear la,,-s of (2.7) can he 
called the "equations of motion". W-e, however, maintain this denomination 
for the forms analogous with equations (3.4), (3.6) and (3.10) of the linear theory. 
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(See these equations in paper L) Here the one corresponding to (3.10) is being 
derind only. This we obtain by combining the time deriYatiYe of (1.2) "ith 
(2.6) also considering still (2.10) and (2.11). Hence we get 

(3.1) 
• t 

XI =- = ::E B II, XI; 
!;~l 

1 4D X·X· 
-.,;;;;;. /I) " j 
2 k,j=! 

(l = 1,2, ... ,f) 

-where thf' following denotations have been introduced: 

(3.2) (1, k = 1,2, ... ,f) 

(3.3) (l,k,j= 1,2, .. . J) 

It is worth while to note, that the "restoring character" of the thermodynamic 
forces Xi directed from (3.10) in paper I as well as from (3.1) towards thf' 
equilibrium i3tate is eyident. 

§ 4. New forms of the reciprocal relations 

In the same manner as that followed in paper I in sect. A of § 4 for the 
phenomenological interpretation of Onsager's ordinary reciprocal relations, 
we can arrive at some supplementary relations referring to the second order 
conductivity coefficients. It is eyenno'w our conception, that according to (2.1) 
expressing our hypothesis the properties of the flux space {a l , az • ••• , af} 
determined by the parameters of the effective state space, must satisfy the 
characteristical properties of thc "a" space. Hence, the quasi-linear fluxes I~ 
in (2.7) can be such as ,vill satisfy the reciprocal relations (1.3) valid in the 
effectin state space. Differentiated over the time (1.3) - also now in case 
of forces constant in time - it can be written, that 

0 I d;;) = 
cl 

(~;' I (i. k = 1,2, (4.1) 
oX" oX, 

... ,f) 

or 

(4 .. 2) 
rH; 

(i, k = L 2, .. . ,f) 
aX'e (JX

i 

by which constraint equalities the validity of the following relations are postul
ated for the coefficiellls of qua"i-linear fluxei3 /given by (2.7) 

(4.3) 
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It can bc seen, that by equation (4.3) following from (4.1) the symmetry of the 
new L i: coefficients is not required. This means an essential departure from 
the linear theory (see I), where the symmetry of the constant Lik coefficients, 
i. e. the validity of Onsager's reciprocal relations could have been derived from 
(4.1). Turning back now with (2.9) to the ordinary Onsager coefficients, thcn 
(4.3) can be written as well 

j 

lij!J Xj = L"i + :::.' (l"ij+ lleji) Xj (i, k = 1,2, .. . ,f) 
j=l 

It is evident that the symmetry of the Lik coefficients neither follows from (4.4) 
only as well as from (4.3) that one of the L;k quantities. However, by the con
dition (4.4) it is enabled to keep the reciprocal relations of the linear theory i. e., 

(4.5) (i,k= 1.2", .,f) 

completing than by the relations 

(4.6) (i, k,j = 1,2, ... J) 

following from the differentiation over Xj of both sides of (4.4). In other words, 
the relations (1.3) expressing the characteristical property of the "a" space 
require for the quasi-linear fluxes of (2.7) the validity of the conditions (4.4) 
and these conditions can be satisfied by the ordinary (4.5) reciprocal relations, 
further on by the supplementary relations referring to the second order con
ductivity coefficients. Hence, the structure of the linear theory is not destroyed 
by our theory, but is completed accordingly. In this paper the fundamelr~al 
character of the hypothesis H. became also evident, whose approximative 
expressions of different order were equally adequate for the theoretical de
duction of both the linear and the quasi-linear la"w5. 

§ 5. Applications 

\\-e give two simple applications of the outlined non-linear theory for 
such cases 'where the experimental verification of the obtainable new formulae 
might be, perhaps, the most quickly expected. 

A) Thermomechanical and mechanocaloric effects 

These effects are particularly fundamental in liquid He n. (The detailed 
treatment of the effects on the basis of Ol'iSAGER'S linear theory is to be found 
in DE GROOT'S book [8]. The method of notation used here follows the § 9 of the 
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cited book.) The thermomechanical and mechanocaloric effects can be de
scribed with the aid of a flux of matter I: and a flow of energy I~ by the 
following quasi-linear laws: 

(5.1) 

(5.2) 

where the explicit forms of forces are 

(5.3) v JP -'- ~L1T 
T 'T2 

(5.4) 
JT 

The new coefficients are connected with O"SAGER'S constant quantities as the 
particular case of (2.9) in the following way: 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

lmnl1l }(" 

The quasi-linear laws (5.1) and (5.2) expressed by the forces (5.3) and (5.4) 
are the following : 

(5.9) 

(5.10) 

1~, l' Jp-.L 
T I 

I;, = _ _ =-,,-_v __ JP 
T 

JT 

These equations are analogous ,,-ith corresponding equa'Lions of the linear 
theory. hut expressed now by the non-symmetric L;k coefficients. If we want 
to obserye the non-linearity of the equations in an explicit mal1l1f'r, -chcn the 

fluxeo:: 1';1 and I~ must be expressed by the constant Li/, and likj, which coeffi
cients are independelrt: of the forces Xm and X Il • Hence, introducing the re
lations (5.5) (5.8) into (5.1) and (4.2) we get: 

(5.11) 
lnJ[l1lX~ 

(5.12) 
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In these expressions for the linear coefficients Onsager's reciprocal relations 
are .-alid, 1. e. 
(5.13) Lmu = LWl1 

whereas for the ;;;econd order coefficients following from (4.5) 

(5.14) 

(5.15) 

cqualities are yalid. The quasi-linear laws (5.11) and (5.12) can be written 
also in an explicit manner with the aid of the forms (5.3) and (5.4) of the 
forces. Introducing namely the following constants: 

(5.16) .11 
Lmml' 

A2 
h LUll 

- .-~- -
T T'l. 

(5.17) Bl 
Lllmv 

B2 
L _. - -~----- -

T T2 
and 

lmmm v2 

(5.18) 

further 

(5.19) 

,\·here the coefficients a2, a3 and b2, b3 haye heen reduced hy the relations (5.1.1) 
and (5.15). Thus the fIuxes of (5.9) and (5.10) will he non-lineal' expressions 
in terms of .Jp and .JT. i. e., 

(5.20) 

(5.21) 

I;" = Al JP - A 2.JT - a 1(.JPr-'- a2 LJP.JT -!- a3(.JT)2 

It; B l .JP-'-B2JT u1(.JPf-!-b2JPJT+b 3(JT)2 
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The linear parts of the complete fluxes 

(5.22) 

(5.23) 

give the flux of encrgv and flux of matter of the original Onsager's theorv. 
The non-linear terms are 

5.24) 

(5.25) 

where the constants aI' a2_ a3 and bl , bz, b3 of the part-fluxes are, in general, 
in the order of magnitude ;::maller than the linear constants AI' A2 and B l , B2 • 

Di;::regarding the experimentally well known non-linear effects (non-newtonian 
vi;::cosity, non-ohmic conduction, chemical reactions etc.) it can be easily seen 
from the actual expressions (5.18) and (5.19) of the constants of non-linear 
part-fluxes that their general occurrence might be particularly expected in the 
region of low temperatures. This is a direct and general consequence of the fact. 
that the actual values of the constants al. a 2, a 3 and bl , b2, b3 are governed by 
the ever increasing powers of T. J'iow for the sake of the description of the 
thermomechallieal and mechanoealoric effects the following particular cases 
are considered. 

I. In the first special ease let the temperature be uniform, .JT = 0, 'when 
a pressure difference .Jp is fixed. Then three important subcases can be in
vestigated. 

a. Let us consider linear effects onlv. Then non· linear fluxes vanish 
identically, i. e., I~, = I~ = O. J'iow by divi~lil1g (5.23) with (5.22) we get 

(5.26) n Bl =u* n Al Lmm 
or 

(5.26') I,; U' I~, 

Here U" is per definieionem the "energy of transfer" bv the linear flo\\- of 
matter per unit of mass. This quantity is constant and does not depend on 11](' 
non-equilibrium quantity .JP cauf'ing the effect. 

h. As another subcase. let us consider the idealized case when only n011-

linear effects are present in thp "y;::tem. Thc'n taking the linf'ar part of fluxes 
identicallv a;:: zero, i. e. I;, = 11 O. then .. he U** "energy of transfer'-

• 11 . ~-

due to the non-linear part-flux of matter per unit of mass, can be defined. 
:\"ow dividing (5.25) by (5.2-1) under eonditionJT = 0 we get 
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(5.27) 
where 
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J2 !I 

U**= 

U** ]2 
.H 

lmmm 

c. The general case satisfying the condition of 1. is, when the linear 
and non-linear effeets should be observed simultaneouslv. First of all let us 
notice that the quantities U· and U" introduced by the expressions (5.26) and 
(5.27) are also well utilisable in our present case. Let us consider (5.20) with 
the condition LI T = 0, then the energy flux existing under this condition is 
evidently delivered by the fluxes of matter ]~, and ]~ taken also at constant 
temperature in the following ;;:ense ; 

(5.28) 

LIP 
1 0 

U** __ mmm v- (JP)2 
T2 

Indeed, if we now Lake into account (5.26), (5.27) and (5.20) it can be seen 
that (5.28) really identical with (5.21) is yalid in our particular ca;;:e, i. e., with 
the expression 

(5.29) 
L ., 

____ "_171_1'_ Jp.- _::.:.:.::::.._L_'-_ (.JPF 
T . T2 

Thc determination of the constants U' and U** is possible on the basis of 
the kinetic tl1('ory. Considering the Enskog's solutions of the Boltzmann 

.' h ~ .. ~ f' f· IO ) j(l). j'(") , f trani3port equatIOn, t en some approxnuatIOn. =. ' --,- - - ... 0 

the distribution function mUi3t be used. The lincar "~l)(:"rgy of transfer" U* 
depending on actual cases is already giyen by the approximations fO) and 
,(0) ~ }(1) rei3pectiye!y. Thus, it may be expected that the determination of 
the non-linear quantity U** is possible by taking into consideration further 
approximation terms. 

In the preccdings the case of the simultaneous presenc(' of the linear 
and non-linear effects was given in a dei3cription operating with quantities 
introduced for the separate realization of the aboye mentioned cai3es. :\'ow 
a dei3cription relying upon uniyersal quantities. in the general case, is being 
dealt with. Diyiding (5.10) by (5.9) - or directly (5.28) by (5.9) - under 
condition L1T = 0 the total "energy of transfer" * U can be interpreted. 
This will be 

(5.30) 
r m 

(5.30') r = *U(]l 
l! m 

L,:m -*U 
L~m 

'u [;n 



'which quantity i,. the direct generalization of U' in (5.26), howeyer, * U depends 
now on the actual thermodynamic parameter. This may immediately be seen 
by taking the coefficient,. L~Jnl and L;;m from (5.5) and (5.7) with the reduced 

L' 
forces X'm _lP and X'. = ° corresl)onding to our case. Hence we can T ~ ~ 

write, 

(5.31 ) 
L~lm 

bv which expression the dependence in question is explicitely shown. Since 
by kinetic calculation8 in general the constant quantities U' and U·' can be 
determined, whereas on the other hand the quantity • U is in direct relation 
with the quasi-linear laws (.5.9) and (5.10) and in an analogous relation with 
the correspondent quantities of the linear theory - thu8 the expressions (5.30) 
and (5.31) are of great importance. ~ow we are going over to the treatment 
of an othcr particular ca8C, the stationary one. 

2. Under the stationary statc of our system such a particular case is 
to be under8tood, where no mass transfer, i. e., Im = 0, but a non-vanishing 
energy transfer exists. In such a case a constant pressure difference arises for 
the equalization of the temperature diffcrence. Now also three subcases should 
be distinguished. 

a. Confining ourselyes to a linear approximation only, l~. e., I~ = 0 and 
I~l = Iin = 0, then with use of the ordinary Onsager relation in (5.13) we get 
from (5.22) 

(5.32) 
JP 

JT 

h _ _ L_n_w_ 

rT 

h - U· 

rT 

which is well known from the linear theory. 
h. Let the other case be the one as a fictitious case - when the sta-

tionarity is observed purely in non-linear respect. Then I~ = ° and the con
dition of stationarity is I~! = I~J = 0, which requiring for (5.24) and dividing 

JP 
it by (JT)2 we get for the ratio JT an equation of second order, i. e., 

(5.33) 

The solutions of this equation are 

r 
~PTI (5.34) LJ I 

I,:! 

= ~-(h - U·' ± 1.~(U**)2 - ~) 
vT ~mm 
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while the relations in (5.27') have been used. According to (5.34) the equation 
(5.32) has real solutions only if one of the conditions 

(5.35) 

is fulfilled. From these conditions on a purely theoretical way important con
clusions can be drawn. In any case the case of equality is of particularly interest 
which corresponds to a single real solution. In this particular case 

(5.36) 
Iz U" 

vT 

which is in complete analogy with the corresponding linear expression 5.32. 
Of course, this case has not much significance in reality, however, o'wing 
to this fact and on the basis of condition (5.35) we may draw important 
conclusions concerning non-linear effects. According to the conditions the prop
erties of pure second order effects - described by lmmm and lUl111 - are 
such, that they are at the best of an equal order of magnitude with the second 
order cross-effects. In other words, the linearity is more sensitively destroyed 
throughout the cross-coefficients of the second order effects as by the pure 
second order terms. This means that the complete system of the linear pheno
menologicallaws has a lower range of validity as compared to the case when 
only single flux is involved. Hence, the departure from linearity, in genpral, 
arises from the fact that Lmu and Lmu coefficients remain constants only 
up to a certain values of .Jp and .JT. As regards the question the dependence 
of which parameters of the L;k coefficients is the stronger and thus cyentually 
which ones may be omitted, is of course an experimental problem. 

c. Let us now consider the general case when the stationarity is required 
for the total flux of matter I:n. In this case we get from the quasi-linear la,,- (5.9) 

(5.37) 
.Jp 

.JT vT 

which relation is though similar to the linear case (5.32), but owing to L;nu 
= L;,m cannot be further analized. Howeyer, in this general respect some in
formation can be obtained from (5.20) writing it under stationarity condition 
as follows: 

(5.38) 
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Namely considering the conditions (5.35) as well as the differences consisting 
in the order of magnitude of the first and second order conductivity coefficients 
the foIlo'wing can be postulated : 

(5.39) I \ < l"mm 

Using these conditions rationally and applying the expressions (5.16) and (5.18) 
we can write approximately 

(5.40) .,jp 1 < 

~L1T I~ = 0 ?S 

2h 
----=::-.,jT 

l'T3 

the pxperimental yerification of which may be suggestt'd. 

B. Thermoelectric phenomena 

::.\ow similarly to the foregoing the theory of thermoelectric phenomena 
is deyeloped. (The detailed treatment on the basis of the linear theory of these 
effects is to be found in DE GROOT'S monograph [8] § 57.) The quasi-linear laws 
for the electric current I: and energy flow 1* are the follo,\-ing : .. ~. u ~ 

(5.41) 

(5.42) 
where the forces are 

(5.43) 

(5.44) ~Yl1 = 
T'2 

The new coefficients with the Onsager's constant coefficients - as the partic

ular case of (2.9) - are in following relations: 

(5.45 ) L;e = Lee lcee Xc lcC!! _X" 

(5.46) L;" = Lw le11e Xc 'C11ii X ll 

(5.47) L~e = L"e '!lee Xc 111C1l X" 

(5.48) L'llI L,," + l,we _Xc -I'llI11_X" 

The quasi-linear laws (5.41) and (5.42) with the aid of these relations can he 

written 
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(5.'19) r , 

1,7 
(5 .. 50) 

\\-here the constants are 

(5.51) Ai .1.2 L.-" 
T T2 

C -?) BI 
L llC B2 L'11I .::> •• ::>::.. - - - -

T P 
and 

( 5.;)3) °1 ([2 
l'-'-ll -'- l(ll'-

([;3 
T2 T3 T4 

(.5.54) hi = bz 
lllC!I -+- [lWC b3 

'Ullll 
-----~. --~~-~-

T2 T2 T4 

ONSAGER'S reciprocal relations are valid for the linear coefficients occurring 
in these constants 

( 5.55) 

whereas for the second order coefficients the relations following from 4.5 

(5.56) 2111cC = lCell - ('lie 

~.;) , (- -~) 21wu = IUllC I U(l! 

hold. Kow we can utilize the equation (5.49) and (5.50) for the description of 
the thermoelectric phenomena in linear and non-linear approximations too. We 
consider two special cases. 

1. The Peltier effect. The fundamental equations of this effect are attained 
with the condition .d(P fix and .JT = O. Then (5.49) and (5.50) will be : 

(5.58) 

(5.59) 

I; A 1 .drp + ([1 (.drp)2 

I,: = B 1 .drr + b1 (.drp)2 J 

By dividing (5.59) v,-ith (5.58) the Peltier heat is obtained in the general case, 
when both linear and non-linear effects are considered. Hence 

(5.60) B1 + h1 .drr ------
Al a1 .drp 

TLue Illee .drr 

TLcc - lecc.drr 
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where ,;<** is the Peltier heat of the total effect, which depends also nOK on the 
potential difference Lltp. The Peltier heat of linear and non-linear effects can 
also be interpreted, however, separately. By di-dding the correspondent part
f'lllxes of (5.50) by the correspondent part-fluxes of (5.49) we get 

(5.61) 

and 

(5.62) 
J2 1l 

J2 e 

where ';< is the linear and ,;<* is the Peltier heat of non-linear effect. Herewith 
the total energy flow under condition LlT = 0 will be : 

(5.63) 

and evidently it IS true also now, that 

r e 
(5.64) 

r 1l 

1~ + 1~ 
1. e. 

(5.64') 1~ ** (11 -'- 12) - ** I" ';< e' e -:7 e 

which are analogous with the expressions 5.30 and 5.30'. 
2. The Seebeck effect. We can arrive to another particular case, if Ll T is 

fixed and 1~ =1= 0, but stationary case characterized by condition I; = 0 are 
considered. According to the possible approximation now also three subcases 
are possibl·. 

a. Confining ourseh-es to linear effects only, i. e., I; = 0, I; == I! = O. 
Then 'with the use of the ordinary (5.55) ONSAGER'S relation we get from the 
reduced (5.49) for the thermoelectric force 

(5.65) 
LlT T 

which is the well known THOMsol""S second relation. 
h. The study of the pure non-linear idealized effects is of particular 

interest. Then I; = 0 and the stationarity is required now for the non-linear 
part-fluxes I~ only. I. e. ,,-ith I; = 0 we arrive from the reduced (5.49) to the 
following second order equation: 

(5.66) 

-! Pcriodiea PolytecImica CH. Y/4. 
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from which two solutions are given for the thermoelectric force. Taking into 
consideration the second order coefficients of (5.53) with relation (5.56) the 
solutions in question are 

(5.67) 
- a2 ± V a~ - 4a1 a~ 

2a1 

"'here even the expression of (5.62) of the non-linear Peltier heat ::r* has been 
used. The physical meaning of (5.67) comparing it with the linear (5.65) is 
evident, thus (5.67) can be called Thomson's second relation for non-linear 
effects. According to (5.67) the equation (5.66) has real solutions only if one 
of the conditions 

(5.68) 

is fulfilled. From these conditions on a purely theoretical way important con
clu8ions can be drawn. In any case the case of equality is of particularly interest 
which corresponds to a single real solution. In this case 

(5.69) 
.dq; 

.dT 
* ::r 

T 

which is in complete analogy with the corresponding linear expression (5.65)
-:\ ow what has been said for thermomechanical and mechanocaloric effects 
can be repeated. Namely according to our theory the conditions (5.58) signify, 
that the pnre 8econd order effects are sueh, that they are at best of an equal 
order of magnitude with the second order cross-effects. This means that the 
departure from linearity in a real situation arises from the fact, that mainly 
would cease to be constant. 

c. Lct u;; now consider the general case whcn the stationarity is required 
for the total flux of matter. In this general respect some information can be 
ob'~ained from (5.'19) writing it under stationarity condition a;; follow;; 

(5.70) 
.dT 

JT 

If the coefficient;; are substituted in this expression owing to (5.51) and (5.53) 
then in the non-linear order only the last from among the terms representing 
the cross effect is maintained we receive 

(5.71) 
.dq; 1 

---rs --
.dT T Lee 
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This relation can be immediately compared 'vith the following experimental 

expression : 

(5.72) 

which gives in the case of several thermo-couples and in a very large range 
of temperature a good approximation. In this formula a I and az are material 
constants whereas to and t are the temperatures of the cold and hot junctions 
in degrees centigrade. If a thermo-couple made of two metals whose junctions 
are kept at temperatures TI = 273,16 + to (for cold junction) and Tz = 
= 273,16 + t (for hot junction), then 

Thus can be seen, that (5.71) goes over into the experimental formula (5.72) 
in that case if 

(5.73) 

It is evident that after the determination of a I and Gz in the knowledge of 
Lee (what is in Ohm's law with the a ordinary electrical conductivity in the 
relation Lee = Ta) quantities Leu and leu!l can be determined too. 

C. States of minimum entropy production in non-linear case 

It is known that in the linear O:\"SAGER'S theory the theorem of minimum 
entropy production is of great importance because of unambigous definition 
of the stationary state of different order is enabled. PRIGOGI:\"E and DE GROOT 
formulated the theorem as follows [8]: "When a system, characterized by f 
independent forces Xl' X z, ••• Xi' is kept in a state 'with fixed Xl' X 2, ••• Xr 
(r is one of the numbers 0, 1, 2, .. . ,f) and minimum entropy production 
a the fluxes I; with the index numbers i = r + 1, r -T- 2, ... , f vanish." 
An isolated system the stationary state of zeroth order corresponds to the 
thermostatic equilibrium state. For the justification of this theorem the 
O:\"SAGER'S reciprocal relations are used in the linear theory. In the following 
we should like to examine the theorem in the non-linear case developed 
in the precedings. 

In the non-linear theory developed here the entropy production can be 
written 'with the aid of the time derivative of (1.1) and the use of (1.2) and 
(2.7) as follows: 

(5.74) a = Ll . S = .2 I; X; :E LikXiXk - ~'likjX;XJ;Xj 
I I,k ;,k,} 

4* 
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where the last term is the entropy production arising from the non-linearity. 
When the values of Xl' X 2, ••• , Xr are fixed, the state of minimum entropy 
production is found from conditions : 

(5.75) (i . rI' <) f) 1 T ,r -;- _, ... ., . 

Now the case of two independent forces dealt with in detail in the foregoing 
for a better understanding of the conditions in our non-linear case. By this 
simplification the theoretical generality is not affected. 

Considering (5.74) in the case of two independent forces Xl and X 2, then 
taking Xl as fixed and diferentiating a over X 2 (first order stationary state) 
the particular form of (5.75) -will be : 

Sa 

(5.76) aX2 

Making now use of ONSAGER'S relation (4.5) and the conditions (4.6) com
pleting those in our non-linear theory, i. e., 

(5.77) 

(5.78) 

L12 =L21 

j 21211 1112 + 1121 

/21122 = 1221 + 1212 

relations, then for the state of minimum entropy production we obtain 

(5.79) 

This condition of the state of minimum entropy production is just equal to 
the follo"ing expression : 

(5.80) 2I~ + 3I~ = 0 

where I~ is the linear and I; is the non-linear part-flux of the flux I;. From 
this relation the following conclusions can be drawn. In the non-linear theory 
the state of minimum entropy production is attained, if for the linear and 
non-linear part-fluxes of the non fixed forces the conditions 

(5.81) 2I} 3I? = 0 (i = r + 1, r 2, .... f) 



O_V THE PHESO-'IESOLOGICAL BASIS OF IRREVERSIBLE THERJJODYSAJIICS 339 

are fulfilled. Characteristical for such a state is that the linear and non-linear 
part of the fluxes belonging to the non-fixed forces are compensating them
selves according to (5.81). The state arising o,~ing to the compensation in 
question does not correspond to the conception of stationary state of the linear 
theory for which 

(5.82) IT = 0 (i = r -1- 1, r + 2, ... ,f) 

conditions are valid. Thc analysis of the more detailed conditions can be per
formed only by taking into consideration the expression of the rate of entropy 
production and the "equations of motion" (3.1). 

Herewith we have demonstrated several examples that in the preeedings 
developed non-linear theory presents all the results which are also given by 
ONSAGER'S original theory, supplementing those by such new relations, which 
are the straight generalization of ONSAGER'S apparatus towards the non-linear 
orders. 

The author is deeply indebted to Prof. Dr. G. SCHAY for his interest and 
encouragement. 

Summary 

In connection with our preceding paper - referred to here as I - a possible non-linear 
theory is built up now also in a purely phenomenological way. \Vc give here quasi-linear 
phenomcnologicallaws between the thermodynamic fluxes and forces. Then the conductivities 
and resistances already depending 011 the non-equilibrium thermodynamic parameters. A re
presentation of the "equations of motion" is given which is suitable for the description of 
the course in time of non-linear effects near the equilibrium state. The validity of the Onsager 
reciprocal relations is extended to the conductivity coefficients of quasi-linear laws. Addi
tional relations are given. Finally, the theory is applied for the phenomena of thermal mi
gration and thermoelectricity. 
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