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Introduction

The properiies of non-linear dissipative systems in the case of very
particular models have been recently investigated by several authors ; Mac-
Dowarp [2], vax Kawmpex [3], [4]. Davies [5], ALkEMADE [6], BRINKMAN
[7]- These investigations were first of all concerned with a simple electrical
circuit, with a vacuum diode containing a non-linear element and with the
motion of a Brownian particle. They were rather of statistical nature and did
not lead to an unambiguous and satisfactory result, in the particular questions
raised, either. A detailed critical analysis is to be found in a recent work of
vaAN KampeN [3]. Another general defectiveness of the majority of the works
enumerated is, that their relation with the linear Onsager theory cannot be
directly given, moreover in some cases the well proved results of the linear
theory are desiroved by the higher approximations. The non-linear theory
— more appropriate quasi-linear — to be developed in the followings, will be
completely general for the flux space to be conjugated to the Onsager a space
and for the discontinuous systems. On the other hand, since our theory follows
from the direct generalization of the linear one. it does not destroy it. Though
the foregoings are without doubt pillars of the theory, we do not as yet consider
it as complete, and in several respects, first of all experimentally, it calls for
confirmation.

So from the experimental as well as the theoretical points of view the
non-linearity might occur because of two different reasons. Statistically non-
linear effects can he described by considering the higher approximations
of the Boltzmann factor. In other cases non-linearity might be produced from
the actual interaction of particles, which are responsible for the transition
between the states. The development of a non-linear theory for the latter
case seems to be considerably more difficult, at least as regards the statistical
description. From a phenomenological point of view the fundamentals of a
non-linear theory can also be outlined in two different manners. The first way
is obtained as the extension of the validity of our axiom I — see part I of this
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paper [1] — in the direction of a higher approximation, for instance by the
acceptance of (1.10) as axiom. This way the formulae obtainable from (1.10)
[for example in part I, (1.11), (1.12), (1.13) and (1.14) lead to the direct non-
linear forms of the forces X; in the effective state space by which formally
a non-linear theorv can be built up. It seems that such a development
corresponds to the statistical method, when the Boltzmann factor is considered
in a non-linear approximation. We consider this method to be very formal,
from the statistical as well as from the phenomenological points of view, there-
fore its further specification is not dealt with here.

The most important is such a non-linear theory, which can also take
into consideration the non-linearity of the actual molecular transition mecha-
nisms. At present the building out of such a statistical theory cannot be ex-
pected. In a phenomenological theory, however, since the non-linearity in
question should be evidently expressed by the non-linear relations to be given
between the fluxes and forces, an easy and consequent method can be given
for this case, Now the non-linearity refers to the flux space and to a first
approximation leads to the dependence of the phenomenological coefficients
on the thermodynamic forces. Our theory, which can be built up on the basis
of the (1.15) of the hypothesis H. (see in I [1]) will thus be a quasi-linear theory.
In this theory the most properties of the linear Onsager theory can be recog-
nized, its theorems can be generalized if in the meantime the dependence on the
thermodynamic forces of conductivities or resistances is taken into conside-
ration.

§ 1. The effective state pace
All the expressions characterizing the “first order effective state space”
in Onsager’s theory are considered as valid unaltered. The most fundamental is

the entropy source :

(1.1) AS = —— N gyua

1.2) X, = — (=12 ...1)

Finally the Maxwell’s reciprocal relations are

da; da, .
1.3 S e TR i,hk=12....1f
(1.3) 5X, X, ( 1)
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expressing the symmetry of g;, by the parameters of the effective state space.
(Further problems are investigated in paper I in full detail.)

§ 2. Quasi-linear phenomenological laws
The touchstone of the theory is the total form of (1.15) in part I of this

paper, which is considered in this approximation as an axiom. The expressions
in question are

i 1 7, .
(2.1) ;= — 2 Co & — = > Vs o G=12.....f)
I=1 < Is=1

where the quantities ¢; are the well known ““coupling coefficients’ of the linear
flux space, whereas the quantities y;; can be called the “non-linear coupling
coefficients™. The latter ones are symmeirical in the indices [ and s, since per

definicionem
af, [ 0%f .
(2-2) ”:"I—J =il = Yils 17 l,_fl— (lv lLe=1.2, f)
dae aas 0 as 8“: )

where the symmetry in the last two indices have also been shown by the
bracket. By means of the quantities ¢; and 7, a new matrix, expressing the
total coupling of the velocity space, can now be interpreted in the following
way :

(2.3) ¢t =c, L+ v, (t,r=12.....1)
where

1 7.
(2.4) V= S,

. Iy y . s rat ® .

It should be noted here, that owing to (2.4) the quantities ¢;, are not constant

and on the other hand are neither symmetric. The physical situation is that
. .. * . »

the inconsiancy of the quantities ¢; might involve the consequence, that

.

though in general ¢;, "> v, this statement cannot be referred to the quantities
vir which depend on the parameters a of the effective state space. Thus
the latter ones in actual cases — in cases somewhat distant from equi-
librium or giving rise to the singularity of the matrix ¢;; — can be compared
with the coefficients c;; or may be even greater than those. Just in these actual
cases, when v, cannot be neglected in c;, either, we speak of non-linearity.
With the quantities ¢;, the formula (2.1) will be

I
(2.5) 4=— Ny t=12,....f)

I=1
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Herewith we have given all the new quantities which are suitable for the
derivation of the quasi-linear laws. Now, using the form of (1.2) referring to
two different indices I and s can be eliminated ¢; and o, from (2.1). Thus we
obtain

I 1 I
M N 1Y N ~1o=1X X P = 1.°¢ ¥
(2:6) o= X c;git X, + - 2 Va8t &t X X (i=152...f)
Lk=1 2 Lks,j=1

Taking into consideration (2.3), (2.4) and (2.5) the quasi-linear relations be-
tween the new fluxes ;ll. = I; and forces will be

f )
Fed * < o ' ’ -1 Y
27 Ii= X cqugit Xy — S vugt X =

;

k=1 LE=1 i

1t

where we introduced the new

(2.8) L= Nc;git (k=12 ....5
conductivity coefficients, which are not constant. Namely owing to (2.3), (2.4)
and (2.6) for (2.8), it can be written, that

I

(2'9) :I = Lil: ":" Elikj ‘Xj (l‘ k= 17 27 T "f)
je=1
where
I
(2.10) L= Yeygit
Je=1
P ]- f-w -1
(2.11) ll-;,,-z—; D Vas ikt &5

are the linear and non-linear, but constant conductivity coefficients. The
determination of the values of the constants L;, belonging to the linear effects
as well as of the constants l;; belonging to the non-linear effects is possible
on an empirical way or rather on the basis of the kinetic theories. In the latter
case it is advisable to consider the third approximation of Enskog’s solution

of the Boltzmann equation. Due to (2.9) the quasi-linearity of (2.7) is evident.

§ 3. “Equations of motion™

As in the ordinary Onsager theory the quasi-linear laws of (2.7) can be
called the “equations of motion™. We, however, maintain this denomination
for the forms analogous with equations (3.4), (3.6) and (3.10) of the linear theory.
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{See these equations in paper 1.) Here the one corresponding to (3.10) is being
derived only. This we obtain by combining the time derivative of (1.2) with
(2.6) also considering still (2.10) and (2.11). Hence we get

b

. i - 1 R
(31) *XI: :‘ZBU\’XI:_E‘ DII{le{'Xj (l:’:lz"f)

k=1

k,

Ly
_!I‘

where the following denotations have been introduced :

f
(3-2) B,=Xg

4

I
(3-3) D[I:j—:—2 8 L (LEj=12...f)

i==

P

It is worth while to note, that the “restoring character” of the thermodynamic
forces X; directed from (3.10) in paper I as well as from (3.1) towards the
equilibrium state is evident.

§ 4. New forms of the reciprocal relations

In the same manner as that followed in paper I insect. A of § 4 for the
phenomenological interpretation of Onsager’s ordinary reciprocal relations,
we can arrive at some supplementary relations referring to the second order
conductivity coefficients. Itis even now our conception, that according to (2.1)
expressing our hypothesis the properties of the flux space {d;. d,. ... ds}
determined by the parameters of the effective state space, must satisfy the
characteristical properties of the “a” space. Hence, the quasi-linear fluxes I}
in (2.7) can be such as will satisfy the reciprocal relations (1.3) valid in the

effective state space. Differentiated over the time (1.3) — also now in case
of forces constant in time — it can be written, that
0 [dg 0 (dy) .
(4.1) i —E*—]—_— _ ;-[ “l (k=12 ...
oX, | de oX; | dr |

or

al; al; .
(4.2) e~ (k=12 ..../0)

8X, X,

by which consiraint equalities the validity of the following relations are postul-
ated for the coefficients of quasi-linear fluxes ‘given by (2.7)

Y N
(4.3) L+ Ny X, =L + >y Xy GEk=1.2.....1)

j=1 i=1
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i can be seen, that by equation (4.3) following from (4.1) the symmetry of the
new Lj. coefficients is not required. This means an essential departure from
the linear theory (see I), where the symmetry of the constant L;; coefficients,
i. e. the validity of Onsager’s reciprocal relations could have been derived from
(4.1). Turning back now with (2.9) to the ordinary Onsager coefficients, then
(4.3) can be written as well

I, N L, - .
(44) Lyt S+ 10X, =L+ S+ L)X, Gh=12..f)
=1 =

It is evident that the symmetry of the L;, coefficients neither follows from (4.4)
only as well as from (4.3) that one of the Lj; quantities. However, by the con-
dition (4.4) it is enabled to keep the reciprocal relations of the linear theory i.e.,

(4.5) L, =L, k=12 -..1)
completing than by the relations
(46) lil{j + lijl; = l,’«:ij ':_ l.’:ji (l k‘] = 17 27 tor J[)

following from the differentiation over X of both sides of (4.4). In other words,
the relations (1.3) expressing the characteristical property of the “a’ space
require for the quasi-linear fluxes of (2.7) the validity of the conditions (4.4)
and these conditions can be satisfied by the ordinary (4.5) reciprocal relations,
further on by the supplementary relations referring to the second order con-
ductivity coefficients. Hence, the structure of the linear theory is not destroyed
by our theory, but is completed accordingly. In this paper the fundamental
character of the hypothesis H. became also evident, whose approximative
expressions of different order were equally adequate for the theoretical de-
duction of both the linear and the quasi-linear laws.

§ 5. Applications

We give two simple applications of the outlined non-linear theory for
such cases where the experimental verification of the obiainable new formulae
might be, perhaps, the most quickly expected.

A) Thermomechanical and mechanocaloric effects

These effects are particularly fundamental in liquid He II. (The detailed
treatment of the effects on the basis of ONSAGER’s linear theory is to be found
in DE GROOT’s book [8]. The method of notation used here follows the § 9 of the
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cited book.) The thermomechanical and mechanocaloric effecis can be de-

. . . % *
scribed with the aid of a flux of maiter I, and a flow of energy I, by the
following quasi-linear laws :

(51) I;z - me *Xn + L;w Xu
(52) I; - Lzur Xm o Luu Xu

where the explicit forms of forces are

(5.3) X, =—Sapr b oar
T T2
(5.4) X, = AL
T2

The new coefficients are connected with ONSAGER's constant quantities as the
particular case of (2.9) in the following way :

(5.5) L:nm = me + lomm —Xm -+ lmmu Xu
(56) Lmu - Lmu e mzxm Xm -+ lmuu X,z
(5.7) L;zm - Lum + Ly Ym lumu X
(58) L:m = Luu _ uam X i [uuu X u

The quasi-linear laws (5.1) and (5.2) expressed by the forces (5.3) and (5.4)
are the following :

(5.9) - mj_:ﬂZm AP 4 L{l}ﬂ_’_l — L_-TE# AT
T T2
(5.10) [ Lam® gp Lumh —Liw 47

These equations are analogous with corresponding equations of the linear
theory. but expressed now by the non-symmetric Lj, coefficients. If we want
to observe the non-linearity of the equations in an explicit manner, then the
fluxes I, and I, musi be expressed by the constant L;, and l;, which coeffi-
cienis are independent of the forces X, and X,. Hence, int roducmﬂ the re-
lations (5.5)—(5.8) into (5.1) and (4.2) we get :

] g -
In’ me an i an X - [mmm ‘Xr_n + Immu 'Xm th T

(5.11) o )
11'711117? X 144 Xn'l _L- Ifnllll ’Xl_l

(5 19) I Lum X e Luu X + [umm Y) -+ [umu an Xu +
- qum Xu X + lmu X)
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In these expressions for the linear coefficients Onsager’s reciprocal relations
are valid. i. e.
(5.13) L= Ly

mu

whereas for the second order coefficients following from (4.5)

('3-14) 2lumm = [mmu - [mum
. c — ;
('3'1D> 2Imuu - luum i ]umu

equalities are valid. The quasi-linear laws (5.11) and (5.12) can be written
also in an explicit manner with the aid of the forms (5.3) and (5.4) of the
forces. Introducing namely the following constants :

(5.16) A= — Lo g DB = L
T . T
(5.17) B = — fwm? . p o Lenh =l
T T?
and
ZI7 7 v.l
a = " "71 nt
. 2v
(5.18) as = “F Lumm — Tmm 1)
1 . _
ay == ‘?1‘ ( mmm h? T luuu — 2h lumm)
further
bl — _l_u_nzm v?
T2
. 2v
(319) by = _T‘? (Imuu ~ lumm )
1, oy
b3 == 'E,,? (’umm b - luuu — 2h lmzm)

where the coefficients a,, a;and b,, by have been reduced by the relations (5.14)
and (5.15). Thus the fluxes of (5.9) and (5.10) will be non-linear expressions
in terms of AP and AT. i. e.,

(5.20) I= A, AP — 4, AT + (AP} - ay APAT + ay( AT
(5.

o

1) I == By AP & By AT - by(AP)2 + by APAT -+ by(AT)?
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The linear parts of the complete fluxes

(5.22) Il = A AP + A, AT
(5.23) I3 = B, AP = B, AT

give the flux of energy and flux of maiter of the original Onsager’s theory.
The non-linear terms are

5.24) I2, = ay(AP)? - a, APAT + a(AT)
(5.25) I2 = by(AP)2 - by APAT — hy(AT)?

where the constants a,. a,, a; and by, b,. by of the part-fluxes are, in general,
in the order of magnitude smaller than the linear constants 4,, 4, and B,, B,.
Disregarding the experimentally well known non-linear effects (non-newtonian
viscosity, non-ohmic conduction, chemical reactions ete.) it can be easily seen
from the actual expressions (5.18) and (5.19) of the constants of non-linear
part-fluses that their general occurrence might be pariicularly expected in the
region of low temperatures. This is a direct and general consequence of the fact,
that the actual values of the constants a,, a,, a; and by, b,, b; are governed by
the ever increasing powers of T. Now for the sake of the description of the
thermomechanical and mechanocaloric effects the following particular cases
are considered.

1. In the first special case let the temperature be uniform, 4T = 0, when
a pressure difference AP is fixed. Then three important subcases can be in-
vestigated.

a. Let us consider linear effects only. Then non-linear fluxes vanish
identically, i. e., Ii1 = I?! = 0. Now by dividing (5.23) with (5.22) we get

Il L
(526) L S— Bl - Lo — L,.«*
I}H —’41 L

(5.26") I}=U"1I,

Here U™ is per definicionem the “energy of transfer” by the linear flow of
matter per unit of mass. This quantity is constant and does not depend on the
non-equilibrium quantity AP causing the effect.

b. As another subcase, let us consider the idealized case when only non-
linear effects are present in the system. Then taking the linear part of fluxes
identically as zero, i. e. I, = I} =0, then the U™ “energy of transfer”
due to the non-linear part-flux of matter per unit of mass, can be defined.
Now dividing (5.25) by (5.24) under condition AT = 0 we get
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(5.27) R =U"

where

(5.27") U=t o e
al Immm

¢. The general case satisfying the condition of 1. is, when the linear
and non-linear effects should be observed simultaneously. First of all let us
notice that the quantities U~ and U introduced by the expressions (5.26) and
(5.27) are also well utilisable in our present case. Let us consider (5.20) with
the condition AT = 0, then the energy flux existing under this condition is
evidently delivered by the fluxes of matter I, and I, taken also at constant
temperature in the following sense :

I,=UI,+U"I2 = U A4, 4P + U q, (4P)2 =

= UL yp g bn®pye
T T2

Indeed, if we now take into account (5.26). (5.27) and (5.20) it can be seen
that (5.28) really identical with (5.21) is valid in our particular case, i.e., with
the expression

(5.29) I, = By AP + b,(4P)? = — H_L;n AP -

o

The determination of the constanis U and U™ is possible on the basis of
the kinetic theory. Considering the Enskog’s solutions of the Bolizmann
transpori equation, then some approximation F=fO D of
the distribution function must be used. The linear “energy of transfer”™ U*
depending on aciual cases is already given by the approximations f(o) and
f(m — respectively. Thus, it may be expected that the determination of
the non-linear quantity U’ is possible by taking into consideration further
approximation terms.

In the precedings the case of the simultaneous presence of the linear
and non-linear effecis was given in a description operating with quanitities
introduced for the separate realization of the above mentioned cases. Now
a description relying upon universal quantities. in the general case, is being
dealt with. Dividing (5.10) by (5.9) — or directly (5.28) by (5.9) — under
condition AT = 0 the total “‘energy of transfer” *U can be interpreted.

This will be

I TEIL L TR * i
(5.30) o UL UG Lin .y
I, Ty I

(530,) Il: = ’U‘(Irln : m) - ‘U Im
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which quantity is the direct generalization of U in (5.26), however, U depends
now on the actual thermodynamic parameter. This may immediately be seen
by taking the coefficients Ly, and L, from (5.5) and (5.7) with the reduced

- v - .
forces X, = — —YTJP and X = 0 corresponding to our case. Hence we can
write,
(_, 31) ST == Lum . TLum - lumm vAP
5. S OEE = :
me Tme e Immm vdP

by which expression the dependence in question is explicitely shown. Since
by kinetic calculations in general the constant quantities U and U can be
determined, whereas on the other hand the quantity *U is in direct relation
with the quasi-linear laws (5.9) and (5.10) — and in an analogous relation with
the correspondent quantities of the linear theory — thus the expressions (5.30)
and (5.31) are of great importance. Now we are going over to the treatment
of an other particular case, the stationary one.

2. Under the stationary state of our system such a particular case is
to be understood, where no mass transfer, i.e., I, = 0, but a non-vanishing
energy transfer exists. In such a case a constant pressure difference arises for
the equalization of the temperature difference. Now also three subcases should
be distinguished.

a. Confining ourselves to a linear approximation only, 1. e., I?n = 0 and
I, = IL= 0, then with use of the ordinary Onsager relation in (5.13) we get

from (5.22)

h — L,
(532) P —_ me — h U
/JT ’l"T 'L’T

which is well known from the linear theory.

b. Let the other case be the one — as a fictitious case — when the sta-
tionarity is observed purely in non-linear respect. Then I, = 0 and the con-
dition of stationarity is I, = I = 0, which requiring for (5.24) and dividing

it by (AT)? we get for the ratio E‘ an equation of second order, i. e.,

(AP )2 AP
5.33 a 4 a, -, =
(533) ! l AT} : [ AT , ¢
The solutions of this equation are
s Vi —daya, 1 |, o .
(5.34) (AP] _ as - [a} — 4a, a, _ h— U7 | e — Livu
AT L. 2(11 Z’T ’ Immm
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while the relations in (5.27) have been used. According to (5.34) the equation
(5.32) has real solutions only if one of the conditions

(535) l?lmm _.Z_ lmmm luuu

is fulfilled. From these conditions on a purely theoretical way important con-
clusions can be drawn. In any case the case of equality is of particularly interest
which corresponds to a single real solution. In this particular case

A B
(5.36) P _ h=U
AT T

which is in complete analogy with the corresponding linear expression 5.32.
Of course, this case has not much significance in reality, however, owing
to this fact and on the basis of condition (5.35) we may draw important
conclusions concerning non-linear effects. According to the conditions the prop-
erties of pure second order effects — described by I, and I, — are
such, that they are at the best of an equal order of magnitude with the second
order cross-effects. In other words, the linearity is more sensitively destroyed
throughout the cross-coefficients of the second order effects as by the pure
second order terms. This means that the complete system of the linear pheno-
menological laws has a lower range of validitv as compared to the case when
only single flux is involved. Hence, the departure from linearity, in general,
arises from the fact that L, and L,, coefficients remain constanis only
up to a certain values of AP and AT. As regards the question the dependence
of which parameters of the Lj; coefficients is the stronger and thus eventually
which ones may be omitted, is of course an experimental problem.

e. Let us now consider the general case when the stationarity is required
for the total flux of matter I,,. In this case we get from the quasi-linear law (5.9)

L;nll
g MTI
(5'37) —]T [ Tn'”n

which relation is though similar to the linear case (5.32), but owing to Ly, ==
= L, cannot be further analized. However, in this general respect some in-
formation can be obtained from (5.20) writing it under stationarity condition
as follows :

(5.38) {~AP] A m UPF @ 4p % gy
| AT J1z,— o A, 4, AT A, A
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Namely considering the conditions (5.35) as well as the differences consisting
in the order of magnitude of the first and second order conductivity coefficients
the following can be postulated :

(539) me > t lmmm ‘ < Iumm

‘uun ‘

Using these conditions rationally and applying the expressions (5.16) and (5.18)
we can write approximately

. A . ek ‘)
(5.40) l 4p Ao h U _ 2h lllmm AT
AT =0 T T3 Lo,

the experimental verification of which may be suggested.

B. Thermoeleciric phenomena

Now similarly to the foregoing the theory of thermoelectric phenomena
is developed. (The detailed treatment on the basis of the linear theory of these
effects is to be found in pE GROOT’s monograph [8] §57.) The quasi-linear laws
for the electric current I, and energy flow I; are the following :

(5.41) I,=L;, X, +L, X,
where the forces are
- . dg
5.43 D i —
(5.43) c 7
AT
5.44) X,=—- _
( - -

The new coefficients with the Onsager’s constant coefficients — as the partic-

ular case of (2.9) — are in following relations :
(5.45) L,=L,+1.,X,+1.,X,
(5.46) Ly,=L,+1L,.X +1,X,
(5.47) L,.=L,+1,X +1,X,
(5.48) Ly=2L,+Lu.X, +La.X,

The quasi-linear laws (5.41) and (5.42) with the aid of these relations can be
written
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It Iz

(5.49) ID=A dg — 4, AT — a, (Ag)? + a, dg AT — ay (AT)?
I} I3

(5.50) I, = B, dg - B, AT — b ()2 + by A AT — by(AT)?

where the constants are

(5.51) I I

T 2
(5.52) B, = — -_L_“, - B,= — ,_'EU,?"

T E
and
- . ].:5; . [ u — Zcua - leu:
(_) 73) Gy ‘“‘?‘ Ay = ;‘7‘;3-’ e . —7-7-4»“
g =g lll{’? . lll(’ll + IZIU{’ l;lllll
(3.04') bl = ‘}‘;— : l)?_: --Hw«fé—‘-ﬁv, : [)3 P ___4___

ONsSAGER’s reciprocal relations are valid for the linear coefficients occurring
in these constants
(5.55) L,=L

eu e

whereas for the second order coefficients the relations following from 4.5

(506) 2‘[“@3 = lecu - Ieuc
(5.57) 2y = lye + luce

hold. Now we can utilize the equation (5.49) and (5.50) for the description of
the thermoelectric phenomena in linear and non-linear approximations too. We
consider two special cases.

1. The Peltier effect. The fundamental equations of this effect are attained
with the condition dg¢ fix and AT = 0. Then (5.49) and (5.50) will be :

(5.58) IL =4, d¢ 4+ a; (dg)?
(5.59) I, = By Ay + by (dg)?,

By dividing (5.59) with (5.58) the Peltier heat is obtained in the general case,
when both linear and non-linear effects are considered. Hence

(5.60) »1::‘— = L;—e— = = Bl - bl qu — TLuc - luee A(F’

I; L;e ‘ '41 -+ a, A(p TL@C - [eccA(p
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where 7 is the Peltier heat of the total effect, which depends also now on the
potential difference A4¢. The Peltier heat of linear and non-linear effects can
also be interpreted, however, separately. By dividing the correspondent part-
fluxes of (5.50) by the correspondent part-fluxes of (5.49) we get

1
(5.61) Iu — LLI(’ =
Il L,
and
Iz b J N
(5.62) B ————l”“’ =

Iz a, l

eeg

where 7 is the linear and 7" is the Peltier heat of non-linear effect. Herewith
the total energy flow under condition AT = 0 will be :

(5.63) I,=all-t=1

o

and evidenily it is true also now, that

(5.64) I P R
L. It + I
i. e.

which are analogous with the expressions 5.30 and 5.30°.

2. The Seebeck effect. We can arrive to another particular case, if AT is
fixed and I, == 0, but stationary case characterized by condition I, = 0 are
considered. According to the possible approximation now also three subcases
are possibl-.

a. Confining ourselves to linear effects only, i.e., II=0, I, =I.=0.
Then with the use of the ordinary (5.55) ONSAGER’s relation we get from the
reduced (5.49) for the thermoelectric force

Ay A, 1 L T

(5.65) Ay A 1 Ly m

AT 4, T L, T

which is the well known THOMSON’s second relation.

b. The study of the pure non-linear idealized effects is of particular
interest. Then I = 0 and the stationarity is required now for the non-linear
part-fluxes IS only.I. e. with Iz = 0 we arrive from the reduced (5.49) to the
following second order equation :

(5.66) “](* 1

-;-a3:0

4 Periodica Polytechnica CH, V/4.
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from which two solutions are given for the thermoelectric force. Taking into
consideration the second order coefficients of (5.53) with relation (5.56) the
solutions in question are

(5.67)

| -/Jq:/ } — Qg :E'_Vag_ 4(11 as 1 * / %2 leuu
12

AT 2a, T — I

where even the expression of (5.62) of the non-linear Peltier heat = has been
used. The physical meaning of (5.67) comparing it with the linear (5.65) is
evident, thus (5.67) can be called Thomson’s second relation for non-linear
effects. According to (5.67) the equation (5.66) has real solutions only if one
of the conditions

5 2
(3'68) I”ee 2 lellll IE’E’L’

is fulfilled. From these conditions on a purely theoretical way important con-
clusions can be drawn. In any case the case of equality is of particularly interest
which corresponds to a single real solution. In this case

(5.69) de __ =
AT T

which is in complete analogy with the corresponding linear expression (5.65)-
Now what has been said for thermomechanical and mechanocaloric effects
can be repeated. Namely according to our theory the conditions (5.58) signify,
that the pure second order effects are such, that they are at best of an equal
order of magnitude with the second order cross-effects. This means that the
departure from linearity in a real situation arises from the fact, that mainly
would cease to be constant.

c. Let us now consider the general case when the stationarity is required
for the total flux of matter. In this general respect some information can be
obtained from (5.49) writing it under stationarity condition as follows

._ifj_q;__:" 4,  a (AP ady  a AT

AT 4, A, AT A4, A4

(5.70)

If the coefficients are substituted in this expression owing to (5.51) and (5.53)
then in the non-linear order only the last from among the terms representing
the cross effect is maintained we receive

dg 1 L i

A ‘e ‘euu A

i

(5.71)

AT T L, = T°L

ee
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This relation can be immediately compared with the following experimental
expression :

(5.72) Ap = ay (t — 1) -+ ay (1 — 1,)?

which gives in the case of several thermo-couples and in a very large range
of temperature a good approximation. In this formula a; and a, are material
constants whereas ¢, and r are the temperatures of the cold and hot junctions
in degrees centigrade. If a thermo-couple made of two metals whose junctions
are kept at temperatures T, = 273,16 - ¢, (for cold junction) and T, =
= 273,16 - ¢ (for hot junction), then

AT =Ty — Ty =t — 1,

Thus can be seen. that (5.71) goes over into the experimental formula (5.72)
in that case if

- 1 L l

(;)73) Oy = e e e Uy = edn

T L } T3 Lé’ﬂ

€€

It is evident that after the determination of ¢, and a, in the knowledge of
L, (what is in Ohm’s law with the ¢ ordinary electrical conductivity in the
relation L, = T¢) quantities L,, and l,,, can be determined too.

C. States of minimum entropy production in non-linear case

It is known that in the linear ONsSAGER’s theory the theorem of minimum
eniropy production is of great importance because of unambigous definition
of the stationary state of different order is enabled. PricociNe and pe GrooT
formulated the theorem as follows [8] : “When a system, characterized by f
independent forces X, X,, ... Xf, is kept in a state with fixed X, X,, ... X,
(r is one of the numbers 0,1,2,...,f) and minimum entropy production
o the fluxes I; with the index numbers i=r + 1,r + 2,...,f vanish.”
An isolated system the stationary state of zeroth order corresponds to the
thermostatic equilibrium state. For the justification of this theorem the
ONSAGER’s reciprocal relations are used in the linear theory. In the following
we should like to examine the theorem in the non-linear case developed
in the precedings.

In the non-linear theory developed here the entropy production can be
written with the aid of the time derivative of (1.1) and the use of (1.2) and
(2.7) as follows :

(5.74) 6=4-S= NI X,= SL,X,X, + 31X, X, X,
1 1.k ik j
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where the last term is the entropy production arising from the non-linearity.
When the values of X, X,, ..., X, are fixed, the state of minimum entropy
production is found from conditions :

do

5.75
(5.75) oX,

=0 (i=r+1r=2...0).

Now the case of two independent forces dealt with in detail in the foregoing
for a better understanding of the conditions in our non-linear case. By this
simplification the theoretical generality is not affected.

Comnsidering (5.74) in the case of twoindependent forces X; and X,, then
taking X, as fixed and diferentiating ¢ over X, ({irst order stationary state)
the particular form of (5.75) will be :

do
(5.76) 2%z

=0 =20y Xy + Ly X, + Ly Xy + (lya + hoy + I Xi

+ 2(lioe + loge + lyyy) Xy Xy + 31555 X3

Making now use of ONSAGER’s relation (4.5) and the conditions (4.6) com-
pleting those in our non-linear theory, i. e.,

(5.77) Ly, =Ly

(5.78) | 2oy = hyp + by
[ 255 = logy + oy

relations, then for the state of minimum entropy production we obtain
(5.79) 2(Lgy X1+ Loy X) + 3(logy X3 + 2090 Xy Xp + 1y X3) = 0

This condition of the state of minimum entropy productlon is just equal to
the following expression :

(5.80) 2L+ 313 =0

where I} is the linear and Ig is the non-linear part-flux of the flux I;. From
this relation the following conclusions can be drawn. In the non-linear theory
the state of minimum entropy production is attained, if for the linear and
non-linear part-fluxes of the non fixed forces the conditions

(5.81) A4 312=0 (i=r+1r+2,....f)
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are fulfilled. Characteristical for such a state is that the linear and non-linear
part of the fluxes belonging to the non-fixed forces are compensating them-
selves according to (5.81). The state arising owing to the compensation in
question does not correspond to the conception of stationary state of the linear
theory for which

(5.82) I'=0 (=r+1r+2,....1)

conditions are valid. The analysis of the more detailed conditions can bhe per-
formed only by taking into consideration the expression of the rate of entropy
production and the “equations of motion™ (3.1).

Herewith we have demonstrated several examples that in the precedings
developed non-linear theory presents all the resulis which are also given by
ONsAGER’s original theory, supplementing those by such new relations, which
are the straight generalization of ONSAGER’s apparatus towards the non-linear
orders.

The author is deeply indebted to Prof. Dr. G. ScEAY for his interest and
encouragement.

Summary

In connection with our preceding paper — referred to hereasI — a possible non-linear
theory is built up now also in a purely phenomenological way. We give here quasi-linear
phenomenolomcal laws hetween the thermodynamic fluxes and forces. Then the conductivities
and resistances already depending on the non-equilibrium thermodynamic parameters. A re-
presentation of the ‘‘equations of motion™ is given which is suitable for the description of
the course in time of non-linear effects near the equilibrium state. The validity of the Onsager
reciprocal relations is extended to the conduectivity coefficients of quasi-linear laws., Addi-
tional relations are given. Finally, the theory is apphed for the phenomena of thermal mi-
gration and thermoelectricity.
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