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Abstract

The use of structured metal oxide-based nanoparticles for environmental proposals arises from the adverse impact of human industrial
activities that threaten the fragile balance of the environment. These nanomaterials characterized by their chemical and mechanical
stability, modifiable bandgap, remarkable textural features, and notable optoelectronic properties have an important role in removing
pollutants from the environment. Metal oxide-based nanoparticles have demonstrated remarkable capabilities by removing pollutants
such as herbicides, microplastics, dyes, pesticides, antibiotics, microbial organisms, and heavy metals. Additionally, these materials
can be incorporated into sensing devices for real-time monitoring and identification of pollutants in air, water, and soil, facilitating
environmental risk assessment and pollution control. Nevertheless, the successful implementation of semiconductor nanoparticles
faces drawbacks and challenges, including scalability, cost-effectiveness, and potential environmental impacts, necessitating thorough
consideration. Ongoing research and development efforts are crucial to further explore the potential of semiconductor nanoparticles
for practical solutions. The anticipated growth in the use of these nanomaterials in various commercial applications foresees a more

sustainable and environmentally friendly future. Thus, this document aims to present how nanoparticles with diverse forms and

adjustable physicochemical properties are a tool to conserve the ecological balance.
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1 Introduction

It is widely recognized that contemporary society confronts
important challenges linked to the deterioration of the
environment and the depletion of resources [1]. Effectively
tackling these issues requires innovative and sustainable
approaches that can reconcile economic development with
the preservation of the environment [2]. In the realm of sci-
entific knowledge and technological progress, metal oxide-
based nanoparticles (NPs) are seen as a promising category
of materials with the potential future to improve environ-
mental remediation and protection [3]. They present them-
selves as formidable aid tool in confronting diverse envi-
ronmental challenges due to their remarkable features
as quantum confinement effects, and modifiable optical,
electrical, and photocatalytic properties. Metal oxide-
based nanoparticles showcase their capability to redefine

the trajectory of environmental remediation [4]. In this
sense, metal oxide nanostructures like ZnO, TiO,, WO,,
CuO, Fe,0,, SnO,, V,0,, Fe,0,, ZrO,, and MoO, have been
designed and developed for their application as composites
or individual in different areas of environmental sustain-
ability such as water decontamination, air purification, con-
taminated soil remediation, and energy storage [5]. These
nanostructures display a diversity of operational proper-
ties, clearly related to their crystalline structure, morphol-
ogy, electronic arrangement, inherent defects, doping,
and synthesis route, which govern their optical, electrical,
physicochemical, and photocatalytic properties [6]. The
structural variety of metal oxide nanostructures is given
by the process parameters and the chemical and physical
synthesis techniques [7]. However, it is key to consider that
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the lack of comprehensive regulation and assessment of
these nanomaterials could present a challenge for their real
and practical application [8]. Furthermore, the rapid pro-
liferation of nanomaterials without a clear understanding
of their environmental impacts raises the need for compre-
hensive research and regulatory measures [9]. Therefore,
this review aims to present the potential of metal oxide-
based nanoparticles as a means to improve and safeguard
the ecological balance without compromising environmen-
tal health for future generations.

2 Metal oxide semiconductor nanoparticles
Metal oxide-based nanoparticles are nanomaterials with
dimensions at the nanoscale in the range between 1-100 nm
and are classified into natural, incidental, and engineered or
manufactured. These materials have unique electronic, opti-
cal, and chemical properties compared to their bulk coun-
terparts [10]. Some common metal oxide nanomaterial mor-
phologies are irregular spherical particles, quantum dots
(QDs), wires, flowers, rods, cubes, ovoids, spheres, polyhe-
dral, and sheets [11], which are frequently used to remove a
wide gamma of inorganic and organic pollutants, Fig 1.
Metal oxide semiconductor are valence compounds with
a prominent ionic bonding degree with positive metal and
oxygen in -2 oxidation state and present metallic, ducting, or
insulating features [12]. Their conduction band and valence
band mainly contain metal (M) ns and oxygen 2p orbital,
respectively [13]. The interaction between the metal and
oxide orbitals generates a substantial disparity in the charge
carrier transport. In general, the M ns orbitals are highly
unlocalized, while the O 2p one is localized, which relies
on a smaller effective mass for electrons (¢) compared to
holes (h*) [14]. The electronic configuration of devices based
on semiconductor nanoparticles is essential to understand-
ing their electrical properties, for this reason, the ability to

Microplastics 2,

&r{,b/bl
o Drugs Dyes 2, S
Herbicides

Adsorbents

Removers

Environmental Balance

Fig. 1 Diverse applications of metal oxides nanoparticles for removal
pollutants

control and manipulate the electronic configuration is essen-
tial to design devices with specific properties for electronic,
and photonic applications [15]. The various nanoforms, syn-
thesis methods, stoichiometric ratios, and used precursors
give them properties to be used in environmental applica-
tions as shown in Table 1, 2 and 3 [16-51].

3 Metal oxide-based nanoparticles as photocatalysts for
environmental remediation

Semiconductor nanoparticle photocatalysts transform renew-
able solar energy into electrochemical energy, utilizing light
to excite electrons from the valence band (VB) to the con-
duction band (CD) in semiconductors with a bandgap close
to or smaller than the incident light's energy [52]. This pro-
cess creates free holes in the VB. Depending on the band
edges' energy levels, these e -s and h'-s have the potential
to interact with H O or O, molecules, leading to the forma-
tion of reactive oxygen species (ROS) like hydroxyl radi-
cal (OH) and superoxide radical (O,) [53]. These ROS, in
turn, can break down contaminant molecules until achieve
the mineralization of them, i.e. their conversion to H,O and
CO, (Fig. 2). Simultaneously, the charge carriers can directly
participate in reducing or oxidizing the target chemical spe-
cies [1]. Consequently, through various chemical pathways,
semiconductors have a crucial role in promoting environ-
mentally friendly processes. Nevertheless, it is important to
highlight that ROS production decreases as the charger car-
riers (e and h*) suffer the recombination process by affect-
ing their lifetime, thus inhibiting their operational photo-
catalytic performance [54]. To address the aforementioned
problem, different strategies to improve photocatalytic per-
formance as introducing point defects in semiconductors or
forming heterostructures with other chemical compounds or
periodic elements have been implemented [55]. The bonding
of atoms has the potential to introduce extra energy levels
between the valence and conduction bands, thereby improv-
ing light absorption through a reduction in the effective band-
gap. Concurrently, the creation of a heterojunction between
two diverse materials can expedite the efficient separation of
charges, leading to an extended lifespan for charge carriers.

4 Nanoparticles for wastewater treatment

By 2050, about half of the world's population (57%) will
be living in areas that experience water scarcity at least
one month a year, hence, the shortage of water stands as a
prominent challenge confronting nations in the contempo-
rary world [56]. The rise in industrialization has resulted in
the release of various pollutants, including heavy metals,
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Fig. 2 Photo-generation of charge carriers in a semiconductor
nanoparticle

drugs, pathogenic microorganisms, and endless chemical
compounds derived from the manufacture of many con-
sumables into rivers and streams, thereby endangering
human health [57]. These pollutants must be eliminated
before discharge through environmentally friendly treat-
ment processes to reduce the environmental impact and the
risks to human health that they pose [58]. Photocatalysis is
widely used as a tool for the degradation and mineraliza-
tion of organic molecules from wastewater. It has advan-
tages over conventional processes as excellent oxidation
ability, being environmentally friendly, and operating under
standard temperature and pressure. The recent applications
of characteristic metal oxide-based materials used as pho-
tocatalysts differentiated by various nanostructured shapes
for wastewater treatment applications are shown in Table 1.
In this context, Bhuyan et al. [16] studied the photodegra-
dation under solar light of methylene blue (MB), rose ben-
gal (RB), and malachite green (MG) through a metal organic
framework (MOF) and a layered double hydroxide (LDH)
modified with Co, Ni, and Zn quantum dots (MOF-5/Ni-Co-
LDH) prepared by an ultrasound-assisted method. Samples
had highly porous large polyhedral crystals shape. They
found removal values for MB, RB, and MG were 96.2%,
95.8%, and 99.6%, respectively. Moreover, samples showed
removal values of 85.6%, 89.3%, and 96.3% for MB, RB,
and MG after 6 reaction cycles. Authors commented that
the improved photocatalytic efficiency was ascribed to the
enhanced light absorption capability by the QD deposited on
the composite surface as shown in Fig. 3.

In another study, Andish-Lifshagerd et al. [17] inves-
tigated the degradation of tetracycline hydrochlo-
ride (THC), amoxicillin (AMX), Congo red (CR), Fuchsine
and the reduction of Cr(VI) to Cr(III) using a ZnO/CeO,/
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Fig. 3 Degradation way by MOF-5/Ni-Co-LDH under solar light [16]

CeFeO, photocatalyst driven under visible light prepared
by a co-precipitation-calcination method. They found that
removal values for ZnO/CeO,/CeFeO, and the reduction of
Cr(VI) to Cr(III) were much higher and faster values over
the ZnO/CeO,/CeFeO, photocatalyst than that of ZnO for
the pollutants. Moreover, biocompatibility studies showed
that photocatalytic treated wastewater was used for irri-
gating wheat seeds making them able to make it germi-
nate efficiently. Finally, they concluded that the improved
removals can be attributed to the differences in optical,
electrochemical, and textural features, as well as to charge
segregation related to the formation of n-n heterojunc-
tions among ZnO, CeO,, and CeFeO,. On the other hand,
Yik et al. [18] evaluated the photodegradation of MB using
a Co-doped ZnO/Fe,O, photocatalyst under visible light
prepared via co-precipitation. According to the authors,
the 5 mol% Co-ZnO (Co5-ZnO) sample with a band gap of
2.79 eV achieved the highest MB removal (88.7%) in com-
parison to that of ZnO (74.8%) with a band gap of 3.39 eV.
The sample presented high agglomeration with variable
shapes and non-uniform size. The authors demonstrated
that (O,") had the most important role in pollutant removal
due to the magnetic properties of the photocatalyst which
was recovered using a magnet after photoreaction.
Additionally, Rianjanu et al. [19] applied CeO, nanorods
around 100 nm in diameter prepared using a hydrother-
mal route for the photocatalytic degradation of CR dye.
Authors reported that at 2.16 h of reaction, removal of
97.7% of a CR solution at 10 ppm was achieved under UV
light, as well as that (O,") and (h") were responsible for the
removal process, Fig. 4.

The authors concluded that the study provides a sim-
ple and effective route to prepare highly effective pho-
tocatalytic nanomaterials for dye removal. Recently,
a visible-light-active NiTiO, coating developed by
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Fig. 4 Proposed degradation route for CR by CeO, sample [19]

Hernandez-Del Castillo et al. [20] was prepared using
a spin-coated method and studied for the removal of
2,6-dichlorobenzamide pesticide. The Ni wt% in NiTiO,
were 1 wt% and 2 wt% and results showed that in 240 min
of removal reaction, the sample with 1 wt% achieved a
removal of 92.56% of the pesticide at 10 ppm, whereas
the sample with 2 wt% of Ni achieved a 63.2%. Authors
attributed the results to the BET area (159 m?/g), low band
gap (2.4 eV), and physical stability of the samples, as well
as the oxidative effect of the "OH and O, species, Fig 5.

visible

Fig. 5 Degradation of 2,6-dichlorobenzamide by NiTiO, [20]

5 Nanoparticles for gas sensing and air
decontamination

Around the world almost 9 million of human being lose
their lives annually due to air pollution, and 90% of the
global population inhales air containing heightened levels
of pollutants [59]. Adverse consequences on human health
result from poor air quality, contributing to cardiovascular
and visual diseases, asthma, allergic reactions, and cancer
development [60]. Air pollution means alterations in the
atmospheric composition due to the presence of biologi-
cal, physical, or chemical substances emitted by biogenic,
geogenic, or anthropogenic origins [6]. Those pollutants
are classified as particulate or gaseous states that include
acrosols of a biological nature, such as fungi, bacteria, and
viruses, whereas gaseous form pertains to diverse chemi-
cal molecules such as volatile organic compounds (VOCs),
NO_and CO,_ [61]. In this sense, Table 2 presents recent
studies oriented to the elimination or sensing of air pol-
lutants using metal oxide semiconductors. For example,
Pham et al. [29] studied the NO removal under visible
light using Ag nanoparticles onto SnO, nanorods pre-
pared through a photoreduction route. Authors mentioned
that the NO removal using the Ag/SnO, heterojunction
achieved 50.6% after 30 min, almost twice higher than
that of SnO, nanorods, with a lower NO, gas conversion



318 | Ruiz-Santoyo et al.
Period. Polytech. Chem. Eng., 68(3), pp. 311-325, 2024

efficiency (1.0%), in comparison to that of SnO, (5.2%).
The authors attributed the results to the photogene-
rated (h") in the heterostructure, as shown in Fig. 6.

In another study, Grabchenko et al. [30] prepared
via a facile citrate method different ternary CeO,-ZrO,-
MnOx samples with a sponge-like structure for study-
ing the CO oxidation and soot combustion. In results,
authors mentioned that the Ce  Mn_,Zr ,O, material dis-
played a total CO conversion at 160 °C due to concentra-
tion of highly dispersed reducible MnO_ species, whereas
the Ce, Mn_,Zr O, material was more active at 490 °C
in soot oxidation attributed to the creation of a great
amount of interface boundaries between highly dispersed
MnO_ species and Ce,_Zr O,. The authors deduced that
this study presents an approach for creating novel envi-
ronmental catalysts exceptionally efficient. For their part,
Patrick et al. [31] prepared WO,/WS, materials using
a hydrothermal route followed by a calcination process
aimed at NO, gas sensing at room temperature, Fig 7.

Authors found that WS, nanosheets displayed a response
of 26% towards 10 ppm of NO, with a response and recov-
ery time of 13s/18s, while the WO,/WS, sample annealed
at 600 °C displayed a response of 123% with response and
recovery time of 11s/163s. The authors mentioned that in the
annealing treatment, the WS, had partial oxidation by cre-
ating WO, on the surface developing active heterojunctions
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Fig. 6 NO gas decomposition by Ag/SnO, nanorods [29]

Fig. 7 Sensing structure of WO,/WS, for NO, gas [31]

by incrementing the sensing performance. In another exam-
ple, Samarium oxide (Sm,0,) nanorods with a single crys-
talline phase were prepared by Jamnani et al. [32] through
a hydrothermal route to study their sensing properties ace-
tone (C,H,0), ethanol and formaldehyde. The results showed
that Sm,O, nanorods achieved at 250 °C the resistance in
present of target gas/resistance in presence of air (Rgas/Rair)
response to 1 ppm of acetone was 3.41 with a response and
recovery times of 125 and 43 s, respectively (Fig. 8). Authors
highlighted that Sm O, sensor is more active at low concen-
trations to C,H,O in comparison to CH,O and C,H,O.

Recently, Nguyen et al. [33] studied the NO,_ removal
through SnO,, ZnO, and TiO, mixed separately with com-
mercial CNTs prepared by aball-milling via. The best results
including a high removal performance (42% at 30 min) the
green products selectivity property (37% green products
generation), and stability were achieved by the TiO,/CNTs
sample irradiated with visible light. In addition, the SnO,/
CNTs sample showed a high selectivity for the green prod-
ucts conversion, but a low total NO removal efficiency
was reached. The authors concluded that the photogene-
rated h" had a high influence as a key factor for NO pho-
todegradation over TiO,/CNTs. In another case of sens-
ing gas, Pr doped In,0O, nanoparticles were synthesized
using the co-precipitation method using a hydrothermal
approach by An et al. [62] for ethanol gas-sensing perfor-
mance. The results showed that the Rair/Rgas response of
Pr-doped In,O, (4% molar Pr/In) reached 112.4 at the ideal
temperature of 140 °C, this response was 5.2 times higher
than that of In,O, material. Authors demonstrated that the
Pr doping reduced the particle size of Pr/In,O, composites
as well as generated more active O, on the In,O, surface
by improving the Pr/In,O,-based sensors responses for
C,H,O gas (112.40 — 50 ppm).

6 Nanoparticles for soil remediation

Soil is a limited resource, which means that its loss and
deterioration are irreversible in the course of human life.
The main reason behind the accelerated increase in soil
erosion is attributed to human activity and associated land

Acetone gas

Contact
Sm203 nanorods

Fig. 8 Acetone sensing on Sm,0, based conductometric device [32]



use changes due to as the population increases, more land
is needed to produce food and raw materials [63]. This
phenomenon has significant repercussions on nutrient
and carbon cycling, soil desertification as well as on soil
productivity, consequently affecting socioeconomic con-
ditions at a global level [64]. For these reasons, different
nanoparticles have been applied in the removal of soil pol-
lutants by seeking their regeneration, Table 3. For exam-
ple, Liu et al. [41] studied the synthesis and application
of zinc-iron layered double hydroxide (ZnFe-LDH) pre-
pared by nucleation and separate aging method to study
its remediation performance to As(III) in water and soil
under visible-light. Consequently, the adsorption capacity
to As(III) reached 134.5 mg/g with less than 240 min and
was reduced the As concentration from 20 mg/L to a low
level of smaller than 10 pg/L. Moreover, the authors found
that the transformation of As(III) to As(V) was related to
the photooxidation via photogenerated h*, *OH, and O,".
Fig. 9 (where NHE means normal hydrogen electrode)
shows the photo-oxidation route of As(I1I) to As(V). They
concluded that this approach of coupling photo-oxidation
and adsorption improves the remediation performance of
As(IIT)-polluted soil and water.

In another study, Deng et al. [42] studied the effects of
TiO, nanoparticles on Cd bioaccumulation in ramie and its
use in the remediation of cadmium-polluted soil. The TiO,
was obtained via sol—gel method and presented a spherical
shape with a size of 15 — 20 nm. The results proved that
TiO, increased Cd concentrations by 35% in roots, 75% in
stems, and 278% in leaves of ramie, in comparison to con-
trol plants. Moreover, with TiO, treatment, soil Cd levels
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Fig. 9 Photocatalytic oxidization way of As(IIl) by ZnFe-LDH [39]
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decreased by an estimated 20 — 30% after 2 months of
ramie cultivation. This study shows the increased accumu-
lation of Cd, particularly in the leaves by indicating the
capability of TiO, to improve the phytoextraction effective-
ness of ramie. Fe,O, nanoparticles were applied in di(2-eth-
ylhexyl)phthalate (DEHP)-contaminated soil remediation
by Ghafghazi et al. [43]. In their study, the performance of
kitchen organic waste compost assisted by Fe,O, nanopar-
ticles in DEHP removal using a DEHP concentration of
10 mg/kg, a retention time of 35 days, and a nanoparticle
dose of 0.99 g/kg achieved a removal efficiency of 91.6 %.
The authors concluded that the research showed an effec-
tive collaborative application of nanotechnology and bio-
technology. In parallel Chakravarty et al. [44] studied
the anthracene removal of polluted soil using Alcaligenes
Jaecalis HP8 and TiO, nanoparticles prepared from
Paenibacillus sp. HD1PAH and Cyperus brevifolius. The
results showed that the application of TiO, and Alcaligenes
faecalis HP8 decreased the anthracene concentration up
to 21.3% in liquid at the end of 7 days and 37.9% in the
soil treatments after completion of 30 days. Moreover,
the suggested pathway for the degradation of anthracene
augurs the three ring anthracene breakdown to one ring
salicylic acid. In another case, Barzegar et al. [45] pre-
pared Fe,O, nanoparticles for the remediation of PAH-
contaminated soil. The Fe,O, was prepared using an oxida-
tion—precipitation method and presented a particle size of
around 11 — 18 nm. According to their results, using a Fe,O,
dosage of 18 mM, ultrasonic power of 313 W, and pH = 3.46,
the achieved pyrene removal was 98.37%. The authors
concluded that the findings revealed that removals ranged
between 37.7% and 85.19% for other PAHs. These results
were attributed to high pollution load, due to the presence
of various and different PAHs and indicating a longer reac-
tion time needed. For their part, Bakshi et al. [46] stud-
ied the possibility of using TiO, nanoparticles from Sigma
Aldrich with Brassica juncea L., for exploring the removal
of cadmium at 10 mg/kg to simulate a Cd-polluted soil.
According to the results, Cd removal from the soil at TiO,
nanoparticles concentrations of 0, 100, 250, and 500 mg/kg
treatment were 32.46%, 11.62%, 17.55%, and 55.11%,
respectively. Moreover, the translocations factor for Cd
were 1.35,0.96, 3.73,and 1.27 for 0, 100, 250, and 500 mg/kg
concentrations, respectively. The findings of this research
suggest that the utilization of TiO, nanoparticles in soil can
alleviate Cd stress in plants and effectively extract it from
the soil. Consequently, the integration of TiO, nanopar-
ticles into the phytoremediation process holds promising
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potential for addressing soil contamination issues. The
authors proposed the interaction mechanism between TiO,
and Cd removal as indicated in Fig 10.

studied the
mance of ZnO nanoparticles in sunflower plant growth

Finally, Pérez-Hernandez perfor-
(Helianthus annuus L.) for the removal of As and Pb from
soils. In the study, was probed that ZnO at concentrations
of 0.3 and 0.6 mg/kg dry soil enhanced the proportions of
the plant and roots. Moreover, ZnO intensified the biocon-
centration and translocation of As and Pb into the plant
tissues as well. They concluded that the creep factor was
higher than 1 at 25 and 45 days after plant emergence.
Hence, the method of integrating phytoremediation with
H. annuus and ZnO nanoparticles could present an inno-
vative approach for cleansing soils tainted with As and
Pb. In the described examples, the authors conclude, by
pointing out that these studies are straightforward yet effi-
cient approaches for creating potent materials designed
for destroying pollutants, that subsequent research will
concentrate on improving the material features towards
the implementation of these materials on a larger scale.
However, technical, scientific, and even environmental
safety issues must first be resolved and some of these are
discussed in Drawbacks and opportunities section.

7 Drawbacks and opportunities
As described in the paper, photocatalytic systems are
seen as a supporting tool for the removal of emerging

contaminants in either wastewater treatment, air purifica-
tion, or soil remediation. Dozens of research are published
annually reporting designs and studies of nanostructures
that remove contaminant molecules, however, most are
experimentally idealized models. The question why these
nanomaterials have not been taken to intensive way pro-
cesses still remains and some proposed possible technical
and scientific aspects could be: i) a longer contact time
reaction between the pollutant molecule and its by-prod-
ucts with the generated ROS ('OH and O,") because their
half-life is nanoseconds and their production decreases
with time and reuse cycles, ii) the advancement of charac-
terization methods and tools for clarifying and verifying
the routes taken by e~ and h* pairs in heterojunction pho-
tocatalysts, iii) incomplete mineralization of target mol-
ecule in aqueous medium due to the recombination rate
of e~ and h* pairs, iv) the efficient design and operation
of photocatalytic reactors is complex and requires care-
ful control of parameters such as catalyst concentration,
water flow rate and constant light intensity, v) the mass
production of photocatalysts from affordable reagents is
a must in order to operate under a favorable cost-benefit
regime, vi) photocatalysis should be used as a final step
in a decontamination process, not as a competing pro-
cess to conventional ones, vii) the design of immobilized
photocatalysts in continuous flux reactors should be fur-
ther studied due to photocatalyst in powder involves its
recovery at some point for reactivation (batch reactor) by
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Fig. 10 Proposed interaction mechanism between TiO, and Cd [46]



increasing the operating costs, viii) the operation of pho-
toactive photocatalysts operating under solar radiation to
make the process sustainable despite adverse environmen-
tal operating conditions and, finally ix) aspects such as
stability, selectivity, biodegradability, eco-friendly, recy-
clability, and cost-effectiveness (Fig 11). In soil remedi-
ation, through engaging with simultaneous pollutants in
soil, nanomaterials could introduce an extra influence on
the soil ecosystem, leading to combined toxicity of soil
microbiome, varied bioaccumulation patterns, and com-
plex overall effects. It has been proven that nano TiO, has
claimed to increase the ecotoxicity or bioaccumulation of
pollutants to animals and plants at cell the level by con-
tributing to the imbalance of microorganisms in the soil
and polluting the groundwater.

On the other hand, in future investigations, it is essen-
tial to focus on advancing sophisticated methodologies to
evaluate nanomaterials across diverse environmental con-
ditions. This will contribute to the progress in character-
izing these elements at the nanometer scale. Such efforts
will improve our understanding of their behavior, inter-
actions, and potential risks, ultimately aiding in the cre-
ation of better effective mitigation strategies. An integral
aspect of this pursuit involves interdisciplinary collabo-
ration, requiring active engagement from scientists, pol-
icymakers, and environmentalists. Collaborative research
groups with interdisciplinary expertise have the faculty to
offer a comprehensive perspective on the phenomenon of
pollution. In the journey to address pollution, the incorpo-
ration of scientific invention, policy expertise, and soci-
etal cooperation has the talent to shape the coming days
where the hostile impacts of pollution are decreased, fos-
tering a thriving environment characterized by balanced
coexistence. Once the intensive and technique application
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Fig. 11 Main nanotechnological and environmental approaches
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of nanostructures for remediation purposes has been
resolved, it is important to consider that despite all pos-
sible benefits, it is critical to address concerns related to
environmental safety and the potential toxicity of nano-
materials. A thorough assessment of potential risks is
required before large-scale implementation. For example,
some health agencies have warned of the toxicity of cer-
tain nanomaterials such as TiO, as potentially carcino-
genic agents [65]. In this sense, public perception of nan-
otechnology in environmental remediation may influence
its acceptance. Addressing concerns, providing transpar-
ent information, and engaging the public in discussions
about the benefits and risks are important for fostering
acceptance. Moreover, the regulatory framework for nan-
otechnology in environmental remediation is still evolving
by establishing clear guidelines and regulations to ensure
the safe and responsible use of nanomaterials. Addressing
ethical concerns related to the potential unintended conse-
quences is key also. Therefore, we must correctly choose
the solution without collateral damage. Finally, the use of
nanomaterials in environmental remediation is a prom-
ising and careful approach to addressing pollution chal-
lenges, offering efficient and sustainable solutions to pre-
serve and restore the environmental balance.

8 Conclusion

Emerging pollutants, originating from substances like
pharmaceuticals, personal care products, microplastics,
consumable production byproducts, combustion gases,
organic waste, fertilizers, and herbicides, pose a significant
threat to both human health and the ecological balance of
ecosystems. The application of nanomaterials in environ-
mental remediation is a significant advance in the search
for sustainable solutions to address environmental pollu-
tion. Nanomaterials with specific properties such as target
specificity and a high specific surface area allow for greater
interaction with contaminants present in the environment.
This facilitates the efficient adsorption and capture of con-
taminant compounds by contributing to the purification of
ecosystems. Furthermore, nanomaterial engineering facil-
itates functionalization to enhance the selectivity in cap-
turing specific contaminants, thereby bolstering the effi-
cacy of remediation processes. Nonetheless, while hybrid
decontamination systems exhibit superior performance
compared to individual methods, they pose challenges in
terms of time, energy consumption, and cost. To tackle
these challenges, nanostructures emerge as a promising
solution. By leveraging these structures in monitoring
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applications, their adaptable and controllable properties
can be optimized for maximum efficacy. Manipulating the
properties of metal oxide nanoparticles holds substantial
potential for significant advancements. This ongoing prog-
ress is driving the development of devices with heightened
performance, transitioning from mere prototypes to practi-
cal, everyday applications by trying to ensure their indus-
trial viability and economic feasibility.
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