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Abstract

In the production of vinyl chloride monomer (VCM), the separation of VCM vapors from ethylene dichloride (EDC) in the distillation 

column is complicated due to uncertain dynamic behavior and nonlinearity of the process and results in poor controlling of the 

column which may overlook product quality. In this regard, the column is simulated with integrated tuned-controllers using Aspen 

Plus dynamics. For system identification of the VCM column, the nonlinear autoregressive model with exogenous inputs (NLARX) 

gives a higher Fit% for the real-time data in comparison with the first order plus time delay (FOPTD) model. The study shows the 

application of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) based control strategies, alongside 

a traditional proportional-integral-derivative (PID) controller for the control of the top composition and bottom composition of the 

VCM column. The results indicate that for top composition, the ANFIS-based controller having an integral time absolute error (ITAE) 

value of 0.132 outperforms ANN-based controller with an ITAE value of 0.78 in terms of set point tracking, and a similar behavior is 

found for bottom composition. In terms of disturbance rejection, the ANFIS having an ITAE value of 0.036 outperforms ANN having an 

ITAE value of 1.03 for top composition and shows the same behavior for bottom composition while the PID control exhibits significantly 

lower performance in both set point tracking and disturbance rejection.
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1 Introduction
1.1 Vinyl chloride monomer (VCM) column
VCM is a key chemical monomer in the production of 
polyvinyl chloride (PVC), a versatile polymer with wide-
spread applications in the construction, automotive, pack-
aging, and healthcare industries  [1]. Given the impor-
tance of VCM in the manufacturing supply chain and its 
significant impact on various industrial sectors, continu-
ous research and development efforts are directed towards 
enhancing the efficiency, reliability, and sustainability of 
VCM production processes. The VCM distillation col-
umn is located at a VCM processing plant in which vinyl 
chloride is separated from ethylene dichloride (EDC) as 
shown in Fig. 1. VCM is produced by the pyrolysis of EDC 
along with by-product hydrogen chloride. Unconverted 
EDC goes into the HCl column for removal of HCl from 
mixture followed by a VCM column [2].

Controlling the purity of VCM at both the top and bot-
tom products of the column in VCM production processes 
is crucial for ensuring product quality, process efficiency, 
and regulatory compliance. Maintaining a high purity level 
at the top of the column is necessary for producing PVC 
with consistent quality and performance characteristics, 
while precise control at the bottom removes impurities 
to protect downstream units and result in a safe working 
environment. Innovative approaches, including the appli-
cation of intelligent control systems, are increasingly being 
researched to address the challenges associated with indus-
trial distillation columns along with their production and 
market demand [2, 3]. Using artificial intelligence  (AI) 
based approaches, the VCM column also needs to be con-
trolled to meet the required demands and specifications 
while being operated under large operating ranges.
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1.2 System Identification of Distillation Column
In order to set up a control structure, it is essential to iden-
tify the system based on dynamics. System identification 
uses input and output data to generate a mathematical 
model of a system [4]. The steps of system identification 
include measurement of input/output signals, selection of a 
candidate model structure, estimation of adjustable param-
eters, and validation of the estimated model [5, 6]. One of 
the challenges in system identification for complex systems 
is the problem of the researcher introducing biases into the 
model, which can affect the accuracy of the recognized 
model  [7]. Another challenge involves avoiding specify-
ing the model structure too restrictively or too generally, 
as this can lead to biased or high-variance models  [8]. 
To overcome these issues, Recent research has highlighted 
the efficiency of nonlinear models over linear models for 
dynamic systems due to enhanced flexibility, accuracy, and 
robustness in representing dynamic systems [9, 10].

For the optimization of the distillation column, mathemat-
ical models obtained from system identification are used for 
a better understanding of the behavior of the column and for 
developing control structures [11, 12]. For the model iden-
tification of distillation columns, a novel approach combin-
ing hybrid particle swarm optimization and artificial neural 
networks (ANNs) is developed, showcasing the better per-
formance of the controller for nonlinear and dynamic col-
umns  [13]. An  AI-based predictive control algorithm is 
developed for distillation column systems to accurately pre-
dict system behavior and also design a corresponding control 
scheme to deal with the system effectively [14]. Further, the 
continuous rise in global energy demand necessitates profi-
cient energy production and utilization, making it essential to 
carry out the process efficiently while handling the complexi-
ties of distillation columns for high-end-product quality [15].

The literature review presents the usage of nonlinear mod-
els in controlling of dynamic and intricate systems [16, 17]. 

For system identification of an industrial debutanizer col-
umn, Fatima et al.  [18] developed first order plus time 
delay  (FOPTD) models and nonlinear autoregressive with 
exogenous inputs (NLARX) models using the system identi-
fication toolbox in MATLAB and compared both models on 
the basis of Fit%. NLARX model shows a higher fit % with 
the real data. Likely, the application of NLARX for system 
identification can be seen in [19, 20]. Further, the application 
of other mathematical models such as Wiener model [21, 22], 
FOPTD model  [23] and Hammerstein model  [24,  25] on 
distillation column for system identification have been 
reported. Among all these, NLARX is the most admired 
one due to its extension of linear autoregressive exogenous 
(ARX) models to capture complex nonlinear behaviors in 
data. Conclusively, the linear or nonlinear models help in 
understanding the insights of the process and developing 
advanced process control (APC) of the system.

1.3 AI-based control approaches for distillation column
AI-based control schemes have been addressed in the lit-
erature. ANN [26–28], generic model control (GMC) [29], 
support vector machine  (SVM)  [30], fuzzy logic con-
trol  (FLC)  [31–33] and other hybrid-based control meth-
ods  [34] have been reported. ANN and FLC approaches 
are the most widely used algorithms in chemical processes 
along with hybrid control techniques.

The application of the above-mentioned AI-based con-
trol schemes on distillation columns is found in the liter-
ature review. Díaz  [35] compared traditional proportional 
integral  (PI) controllers with various strategies, including 
Expert, Fuzzy, and Neural-Network control on a simu-
lated distillation column. The Neural-Network control with 
the NARMA-L2 controller is found to be the most effec-
tive, providing good disturbance rejection and fast set-point 
tracking. Fatima et al. [36] applied ANN and adaptive neu-
ro-fuzzy inference system (ANFIS) based control strategies 

Fig. 1 Process flow diagram (PFD) of VCM process
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to control the top and bottom composition of a debutanizer 
column and found the performance of the ANFIS-based con-
troller better in set point tracking of top and bottom streams 
and disturbance rejection. In Mishra et al. [32], a fraction-
al-order fuzzy proportional-integral-derivative  (FOFPID) 
controller acted as an intelligent control system to address 
the complex dynamics of a distillation column, providing 
a practical solution for managing the complexities of the 
distillation process. Shin et al. [26] applied neural network 
model predictive control on a distillation column with an 
optimizer for optimum solution and for prediction of future 
responses. The  proposed methodology showed high con-
trollability in multivariable system. Kwon et al. [37] devel-
oped ANN-based prediction model for optimization of 
distillation column by reducing the energy requirement. 
The procedure was followed by data collection, character-
istic data collection to reduce minimum learning time and 
normalization to improve prediction performance. A non-
linear hybrid model predictive controller was presented by 
Elsheikh et al. [38] to control the composition of a mother 
liquor distillation column with a variable feed flow. A data-
based component is added to a phenomenological model to 
reduce the plant-model mismatch. 

Hadian et al. [39] proposed distillation column pre-
dictive controller using an event-based neural network 
which is a multiple-input-multiple-output  (MIMO) non-
linear time-delayed system, using cuckoo optimization 
algorithm  (COA). A  novel observer-based direct adap-
tive Neuro-sliding mode control strategy was proposed by 
Cheng  [40] for a nonlinear  MIMO system in which the 
only known variable is the system output. A radial basis 
function  (RBF) NN is constructed to take into consid-
eration the unknown control laws, model dynamics, and 
state variables. To forecast and operate a continuous eth-
anol-water nonlinear pilot distillation column, Serra [29] 
described applying feedforward ANN with genetic algo-
rithms  (GA). When compared to four decoupled propor-
tional-integral-derivative (PID) controllers, the suggested 
approach was determined to be better. Chavan et al. [41] 
applied FLC coupled with conventional PID using 
MATLAB on a non-linear MIMO distillation column. The 
algorithm delivered a smooth control when outputs were 
compared in the simulation environment. 

Maldonado et al. [42] applied two different control strat-
egies based on PID and fuzzy logic on a non-linear distilla-
tion binary column. It was found that the transfer function 
coupled and decoupled of the system to solve the prob-
lem of monitoring and controlling of distillation column. 

Ochoa-Estopier et al. [43] discussed the application of 
machine learning for prediction of flooding in distillation 
column using data driven approach. The approach relies 
on real time data which is used for training of random for-
est algorithm-based model for prediction of pre-operation 
stage before flooding. Neves et al. [44] applied ANN based 
control system on extractive distillation process enabling 
simultaneous consideration of changes in feed and ethanol 
specifications. The proposed control system determines 
specific set points to adjust specifications and rejects dis-
turbances, outperforming conventional control methods 
based on errors. Overall, the integration of an ANN-based 
control system incorporates in enhanced adaptability, effi-
ciency, and accuracy in extractive distillation operations.

1.4 Methodology for the VCM column
The literature review on distillation column control shows 
a major dependence on either ANN or FLC approaches [3]. 
The literature shows the limitations of single methodology 
to be insufficient to properly address the challenges inher-
ent in distillation column [45]. It is more convenient to use 
unified framework combining both ANN and FLC based 
methodologies to develop ANFIS, which merges the inter-
pretability and linguistic reasoning of fuzzy logic with the 
learning capabilities of neural networks [46]. By combining 
these approaches within the ANFIS framework, improved 
control performance, robustness, and compliance in distil-
lation column operations can be achieved [47, 48].

This paper presents the following methodology to 
develop AI-based control structures. Initially, the dynamic 
simulation of VCM distillation column is created through 
Aspen Plus and is followed by setting and tuning up the 
controllers. Aspen Plus is chosen due to being indus-
try-standard renowned accurate tool in process modeling 
and simulation. It provides precise thermodynamic prop-
erty predictions, extensive libraries of chemical compo-
nents, and a robust dynamic simulation environment, mak-
ing it ideal for capturing the real-time dynamics of complex 
industrial processes like distillation  [49]. The  transfer 
function model FOPTD and NLARX model of the sys-
tem is developed using system identification toolbox in 
MATLAB. These models help in building up the control 
structures. MATLAB's integrated environment for design-
ing and testing AI-based control algorithms ensures opti-
mal performance and seamless execution [50]. Innovative 
control strategies including ANFIS and ANN are designed 
and implemented on the industrial VCM column for control 
of top and bottom composition; the comparative evaluation 
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of performances of AI-based control and traditional PID 
based control is carried out based on step change and dis-
turbance rejection using real-time data. 

2 Simulation-based Control of VCM Column 
The distillation column consists of a tall vertical structure 
with 40 trays. The feed F coming from the bottom of the 
HCl column enters at stage 23  (feed  tray), and is heated, 
causing VCM to be vaporized. As the vapor rises through 
the column, it meets the valve trays. These components pro-
vide a large surface area for condensation and vapor-liquid 
equilibrium to occur. At the top of the column, the vapor is 
condensed back into a liquid through the condenser, and the 
purified vinyl chloride is collected as fraction xD, and some 
of the portion is returned as a reflux to the column as L. 
Meanwhile, the heavier component, i.e. EDC that did not 
vaporize as readily remains in the bottom of the column, 
is recycled to the light column for re-purification as frac-
tion xB, while some portion of the EDC goes back to the rec-
tifying section of the column as V. The column is controlled 
by overhead  (O/H) and bottom control loops. The  level 
control of the reflux drum in the overhead control loop is 
achieved through the regulation of the distillate flow rate. 
Meanwhile, the reflux ratio is fine-tuned to maintain con-
trol over the distillate composition. The reboiler vapor rate 
maintained by the temperature is controlled by the steam 
flowrate in the reboiler as shown in Fig. 2. Normally, the 
extreme end temperatures are used as the variables for con-
trol of the column [51]. However, in the current study, the 

top composition and bottom composition of vinyl chloride 
are the controlled variables, and reflux flowrate and reboiler 
flowrate are the manipulated variables. The unit operation 
block data of the VCM column is presented in Table 1.

Aspen Plus® software [52] is used in this study to build 
a steady-state simulation of the VCM column. Reliability in 
design of column is largely dependent on the choice of 
thermodynamic model and the precision of parameter 
values  [53]. Hence, the nonrandom two-liquid  (NRTL) 
model  equation of state has been selected as the prop-
erty package (base method) in the steady-state simulation 
of VCM column as it involves both liquid-liquid equilib-
rium (LLE) and vapor-liquid equilibrium (VLE) [54]. This is 
followed by Aspen Dynamics® simulation, which is devel-
oped utilizing licensed Aspen Tech® software and industrial 
data. Parameters from Table 1 are used for dynamic evalu-
ation of the process. After exporting the dynamic simula-
tion, controllers are set up as shown in Fig. 3. The dynamic 
simulation is being run and checked for set-point tracking as 
shown in Fig. 4 and closed loop auto-tune variation (ATV) 
test for the temperature controller in order to tuning of con-
troller as shown in Fig  5. For  tuning up the controllers, 
Tyreus-Luyben PI method was chosen over Ziegler-Nichols 
proportional integral (PI) control method due to its improved 
robustness and stability  [55]. The  input/output data in the 
form of manipulated variables and controlled variables, i.e. 
top composition and bottom composition is obtained from 
the simulation as shown in Fig. 6. After being normalized, the 
data is split into two subsets: 40% of the data sets are tested 
(validation) and 60% of the data sets are used for training.

3 System Identification of VCM Column
To address the nonlinear and complex behavior of distilla-
tion columns, a best-fitted mathematical model is required 

Table 1 Parameters of the VCM column

Parameter Value

VCM tower height 26.67 m

Tower diameter 1.69 m 

Tray count 40

Tray type Valve

Condenser pressure 583.85 kPa

Condenser design Partial

Feed temperature 105 °C

Feed mass flowrate 65612 kg/h

Pressure of feed 1185.8 kPa

O/H liquid mass flowrate 22504 kg/h

O/H vapor mass flowrate 47510 kg/hFig. 2 Schematic Diagram of a binary Distillation Column
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Fig. 3 Dynamics flow diagram of VCM column on Aspen Plus along with controllers

Fig. 4 Temperature controller performance based on step test on reboiler of VCM column

Fig. 5 Closed-loop auto-tune variation (ATV) test of temperature controller
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for the system [56]. In this study, for model identification of 
industrial VCM column, the FOPTD transfer function model 
and NLARX model are used and compared. Two 2 × 1 mul-
tiple-input-single-output  (MISO) systems are created using 
the system identification toolbox in MATLAB. In  the first 
MISO Model 1, reflux flowrate (R) and reboiler flowrate (Q) 
serve as input variable and top product composition  (xD) 
as  output variable, while in the second MISO Model  2, 
the input variables are R and Q and the output variable is bot-
tom product composition (xB) with a sampling rate of 60 s.

A sample of 2500 input-output data sets is inserted 
in the system identification toolbox. To develop a lin-
ear FOPTD model, the algorithm uses the "prediction 
focus" option to minimize the final prediction error (FPE) 
and mean square error  (MSE), and refine until the best 
model is achieved. The parameters of the identified linear 
FOPTD transfer function model along with fit% of the 
model with data are shown in Table 2.

The above two MISO models are used for identification of 
nonlinearities in VCM column using NLARX model as well. 
Developing NLARX models can be challenging, particularly 
when it comes to creating and selecting appropriate input 
and output regressors. Increasing the number of delays adds 

complexity to the model, so it's important to keep the struc-
ture as simple as possible while maintaining accuracy [21]. 
NLARX uses input and output regressors to predict the 
dynamic of the system as shown in Fig. 7. Sigmoid function 
is used as dynamic nonlinearity estimator. For the two non-
linear MISO models in this case, the parameters were set as 

Table 2 Specification of linear FOPTD models for top composition (xD) 
and bottom composition (xB)

Parameter Model 1 (xD) Model 2 (xB)

Model gains

K11 −0.00134 2.64478

K12 0.56784 0.02389

Time constants

τ11 145.48 343.23

τ12 89.0087 22.8909

Time delays

tD,11 25.89 30

tD,12 22.90 0

Errors and Fit%

FPE 0.0166 6.7E-5

MSE 0.0164 6.62E-5

Fit% 73.36 57.09

Fig. 6 (a) Reflux rate and reboiler rate as manipulated variables, (b) top composition as controlled variable and (c) bottom composition as 
controlled variable
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na = 3, nb = [4 4], and nk = [1 1]. The best set of regressors 
was identified by determining which combination provided 
the highest fit percentage (Fit%) between the system's actual 
output and the model's estimated output [18].The specifica-
tion of the models along with the values of FPE, MSE and 
fit% of model with the actual data is given in Table 3.

By comparing values of FPE, MSE, and Fit% of Model 1 
and Model 2 between FOPTD and NLARX, it is found that 
the NLARX model is best fitted to the actual data and closely 
represents the actual dynamic of the process for both models. 

4 Implementation of AI-Based Control Models 
4.1 Development of ANN Models
ANN being a powerful tool, is capable of handling complex 
and nonlinear dynamics with accuracy along with excel-
lence  in nonlinear control, adaptive control, and predictive 
control  [40, 44, 57, 58]. ANN uses historical data for sys-
tem model development, ensuring real-time control adjust-
ments  [59]. As  shown in Fig.  8, the  ANN structure con-
tains three layers; the input layer, the single hidden layer, 
and the outer layer. The  input layer receives the features 
or data points (x1, x2, …, xn) along with bias terms (θ1) that 
enhance the model's flexibility. Each input is associated with 
weights (wij) that determine the strength of its connection to 
neurons in the next layer. The hidden layer, which may con-
tain multiple layers, processes these inputs by computing the 
weighted sum of inputs, adding a bias, and passing the result 
through an activation function ( f ) such as ReLU, sigmoid, 

or tanh. This activation function introduces non-linearity, 
enabling the model to learn complex patterns. The output 
layer generates the final output values (y1, y2, …, yi) based 
on the processed information from the hidden layer  [60]. 
ANNs can handle complex patterns and relationships in data, 
while NLARX  models are dedicated to capturing nonlinear 
dynamics in connection with external inputs  [61]. Using a 
hybrid structure combining both ANN and NLARX gives 
the advantages of both methods, i.e., better model dynamic 
systems and predictive analysis of time series data.

The current study shows the application of an ANN-
based model for prediction of top and product composi-
tions using the series-parallel structure of the NLARX 
network. The  hidden layer, whose size is determined 
through an optimized hit-and-trial process, uses a tan-
gent sigmoid  (tansig) transfer function, while the output 
layer uses a linear (purelin) transfer function. The choice 
of the training algorithm and the number of neurons 
in ANN structure is critical to its performance and appli-
cability. The  Levenberg-Marquardt  (LM) algorithm was 
selected for training the network due to its efficiency and 
fast convergence for medium-sized datasets  [60, 62, 63]. 
LM  combines the advantages of gradient descent and 
Gauss-Newton  methods, making it particularly effective 
for complex, nonlinear systems such as distillation column 
processes [63, 64]. The number of neurons in the hidden 
layer was determined based on the complexity of the prob-
lem, with 14 neurons for the top composition and 10 for 
the bottom composition. This configuration was selected 
through empirical testing and cross-validation to balance 
the model's capacity to capture intricate relationships in 
the data while avoiding overfitting. 

It is chosen for its balance between robustness and 
fast convergence, complemented by the application of 
early stopping criteria. Table  4 shows the parameters of 
the developed ANN model.

4.2 Development of ANFIS model
ANFIS is a combination of an ANN and a Takagi-Sugeno-
Kang (TSK) fuzzy inference system [65]. TSK is chosen for 
ANFIS over Mamdani's fuzzy inference due to being com-
putationally efficient and more compact [35]. This  hybrid 
robust structure holds the strengths of both ANN and fuzzy 
logic, that can effectively combines these methodologies [66].

Fig. 9 illustrates the structure of an ANFIS, consisting of 
five distinct layers, each performing a specific function in 
the process of fuzzy inference. In the first layer  (fuzzifica-
tion layer), input variables X and Y are passed through mem-
bership functions (A1, A2, B1, B2) to convert crisp inputs into 

Table 3 Specifications of NLARX models for top composition (xD) and 
bottom composition (xB)

Model 1 (xD) Model 2 (xB)

Nonlinear function Sigmoid Sigmoid

Number of units 10 10

na 4 4

nb [4 4] [4 4]

nk [1 1] [1 1]

FPE 0.0003976 9.7E-8

MSE 0.0003887 9.6E-8

Fit% 95.9 98.36

Fig. 7 Structure of NLARX model
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fuzzy sets. These membership functions determine the degree 
of belonging of the inputs to specific fuzzy sets. The second 
layer (rule layer) applies fuzzy logic rules using the outputs 
from the first layer. Each node represents a rule, and the fir-
ing strength of each rule is computed as the product (Π) of 
the corresponding membership degrees. The third layer (nor-
malization layer) normalizes the firing strengths by dividing 
each rule's strength by the sum of all rule strengths, ensuring 
the outputs are proportional. In the fourth layer (defuzzifica-
tion layer), the outputs from the normalized layer are used to 
calculate rule contributions. Each rule contributes a weighted 
output based on its firing strength and associated param-
eters. Lastly, the fifth layer (summation  layer) aggregates 

the outputs from all rules by summing them up to produce 
a single crisp output  (f)  [67]. This  structure allows ANFIS 
to learn and adjust both the membership functions and rule 
parameters during training, making it a powerful tool for 
modeling nonlinear systems. ANFIS, being a universal 
approximator, offers significant help in modeling complex 
systems. In essence, it automates the tuning of membership 
functions  (MFs) of Sugeno fuzzy model using the training 
input-output dataset, and associated parameters within a 
fuzzy inference system (FIS) [68].

For the current study, the ANFIS structure is devel-
oped using a hit-and-trial method for finding the optimal 
type and number of MFs. In particular, Gaussian MFs are 
used for the input variables due to their smooth and con-
tinuous nature, providing better approximation capabil-
ities  [69]. To simplify the input space by partition, sub-
tractive clustering is chosen over grid partitioning due to 
its efficient and scalable approach, especially with high-
er-dimensional data, by generating fewer rules and avoid-
ing the exponential growth of rules that grid partitioning 
entails  [70]. A hybrid algorithm, merging least squares 
estimation with backpropagation, is utilized for optimi-
zation, ensuring effective tuning of both the premise and 
consequent parameters. The model is trained, and its per-
formance is subsequently tested to validate its predictive 

Table 4 Parameters of ANN structure for top composition and bottom 
composition

Parameter Description

Network type NARX-NN 

No. of layers 3

Number of neurons in hidden layer 14(top), 10 (bottom)

Epochs 500

Training algorithm Levenberg-Marquardt

Performance function RMSE

Hidden layer transfer function Transig 

Output layer transfer function Purelin

Fig. 8 Model Structure of ANN network
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accuracy and generalization capability. The parameters 
of the ANFIS structure are listed in Table 5.

4.3 Comparison of the ANN and ANFIS Models
To forecast the accuracy of the prediction, ANN and 
ANFIS are compared using the root mean square 
error (RMSE) criteria. The error levels for the models cre-
ated using the ANFIS technique are comparatively lower 
than those for the ANN, as the table illustrates. Overall, 
the ANFIS demonstrated improved prediction perfor-
mance with reduced RMSE values as shown in Table 6. 

5 PID Control on VCM column
Industrial control applications frequently use PID: a feed-
back loop control scheme. A PID controller computes the 

variation between the desired set-point and measured pro-
cess variable using derivative, integral, and proportional 
actions. Based on this calculation, it produces an amended 
control signal, u(t). PID control design has been thoroughly 
studied in the literature and has found beneficial applica-
tions in several fields. Its primary benefit and drawback 
are regarded as being related to its simplicity, which limits 
the breadth of operations it can effectively control [69]. 

In this study, two separate PID controllers are set up 
for the top composition and bottom composition of an 
industry-based vinyl chloride column. Both of the PID 
controllers were tuned by MATLAB/Simulink software. 
The values of the optimal gains of the PID controllers 
i.e., (Kp, Ki, Kd) are listed in Table 7.

6 Results and discussion
The top composition and bottom compositions of the 
VCM distillation unit are controlled by three different con-
trol strategies: PID, ANN, and ANFIS. The performance 
of each controller is assessed through set-point tracking 
and disturbance rejection tests.

6.1 Evaluation of the ANN and ANFIS-based Models 
on the basis of set point tracking
The controllers' capability of tracking the new set point is 
observed and compared by introducing a step change in the 
set point. The performances are compared based on integral 
square error (ISE) and integral time absolute error (ITAE). 

Table 5 Parameters of ANFIS structure for top composition and bottom 
composition

Parameter Description

No. of input MF for top composition 8

No. of input MF for bottom composition 6

Input MF type Gaussian

Output MF type Linear

Epochs 30

Clustering method Subtractive clustering

Optimization method Hybrid algorithm

Table 6 Evaluation of top and bottom composition models on the basis 
of RMSE

Testing Training

ANN-top 2.23E-2 4.30E-2 

ANN-bot 4.33E-2 3.78E-2

ANFIS-top 1.08E-2 3.76E-2

ANFIS-bot 3.97E-2 2.48E-2

Table 7 Parameters of PID controller for top and bottom composition

Parameter Kp Ki Kd

Top composition 20.56 0.01 25.2 

Bottom composition 22.2 0.53 18.92

Fig. 9 Model structure of ANFIS network
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ISE refers to steady-state errors while ITAE reflects the con-
troller's ability to regulate its dynamic response properties.

Fig.  10(a) illustrates how well the three controllers, 
i.e., PID, ANN, and ANFIS performed in following the 
top composition's new set point when it was adjusted 
from 0.94 to 0.99. However, the results clearly show that 
in set point tracking, PID controllers exhibit significant 
oscillations, prolonged settling times, and a slow response. 
Since, ANN-based and ANFIS-based controllers hold 
reduced rising time with zero offsets, they outperform PID 
controllers with faster settling times. 

Similarly, in Fig. 10(b), when the set point of the bottom 
composition is changed from 0.02 to 0.01, the PID control-
ler shows a similar behavior with oscillations and over-
shoots. Both ANN and ANFIS show smooth tracking of 
set points with faster responses. However, a slight under-
shoot is seen in ANN response before meeting the tar-
geted set point. No offset is observed in ANFIS response 
as it directly meets the set point.

The performance indices are shown in Table 8. The error 
values, ISE and ITAE, provide critical insights into the per-
formance of different controllers in tracking set points and 
rejecting disturbances. ISE quantifies the sum of squared 
deviations between the actual and desired outputs over 
time, with lower values indicating greater control precision 
and minimized oscillations. The  ANFIS-based controller 
demonstrates superior performance with the smallest ISE 
values for both top composition (0.020) and bottom composi-
tion (0.013), highlighting its ability to achieve precise control. 
Similarly, ITAE, which measures the time-weighted absolute 
error, emphasizes long-term stability and rapid error correc-
tion [71]. The ANFIS controller achieves significantly lower 
ITAE values for both top composition  (0.132) and bottom 
composition (0.56), reflecting its ability to stabilize quickly 
and effectively manage transient responses. Compared to 

the ANN-based controller, which performs moderately well 
based on the values of ISE and ITAE in terms of tracking 
the set point in comparison with PID in both top composition 
and bottom composition. However, ANFIS shows the best 
results with less value of ISE and ITAE.

6.2 Evaluation of the ANN and ANFIS based Models on 
basis of disturbance rejection
To assess the system's robustness, stability, and perfor-
mance under external influences, a disturbance is intro-
duced assumed as an external disturbance caused by 
some unknown sources, to deviate the controlled vari-
ables from their respective set points. Evaluation of con-
trollers is based on their capability to regain the set point 
while handling the disturbances.

In Fig.  11(a), for top composition, there is an abrupt 
and prolonged disturbance of 0.006 mol fraction, results 
in deviation of set point from 0.990 to 0.996 at t = 10 min. 
The figure shows the initial response and stabilization of 
the top composition to the set point over time. The ANFIS 
line reaches the set point quickly with minimal overshoot, 
ANN follows with a slightly slower response, and PID 
shows the largest overshoot before stabilizing. Similarly, 
in Fig.  11(b), a disturbance of  0.006  mol is introduced 
at t = 10 min which shifts the set point from 0.010 to 0.004. 

Fig. 10 Performance of controllers (ANN, ANFIS & PID) on basis of set point tracking for (a) top composition and (b) bottom composition

Table 8 Performance comparison of controllers based on ISE and ITAE 
on set point basis

ANFIS ANN PID

Top composition

ISE 0.020 0.06 0.22

ITAE 0.132 0.78 2.43

Bottom composition

ISE 0.013 0.045 0.098

ITAE 0.56 0.96 5.67
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Similar behavior with initial deviations and eventual sta-
bilization is observed in the case of ANN and ANFIS 
which appear to reach and maintain the set point faster 
rejecting the disturbance. While the PID controllers expe-
rience significant overshoot and extended settling time.

For step disturbance rejection test, Table 9 shows the 
performance indices of controllers based on the values of 
ISE and ITAE. The values indicate that ANFIS with the 
lowest value of errors, plays the best role in rejecting the 
disturbance in uncertain environments when compared 
with ANN and PID.

7 Simulink model of the process
The above results show the dominance of ANFIS-based 
control over ANN-based control in the system. ANN-based 
control model is further investigated based on loop gain, 
peak gain, and stability by developing a Simulink-based 
model. Fig. 12 shows a control system diagram for a VCM 
distillation column, specifically to control the top and bot-
tom composition of the column. The  diagram includes a 
data sheet block of VCM column, a process model (DM), 
a controller (PI & PID), and a neural network (NNET) con-
nected with distillation column block, with inputs repre-
senting the flow rate of the liquid and the vapor phases. 
Process model block converts controller's output, which is 

predicted by NNET, as input to generate the top product 
composition and bottom product compositions. The  sys-
tem also includes a reference signal for the desired output. 
The NNET is labeled as "1 input - 1 hidden layer - 1 out-
put1". This suggests that the NNET is trained on data from 
the system and used to predict future behavior. 

The graph obtained from the above model is given in 
Fig. 13. A plot of the minimum and maximum loop gains 
for an open loop system is in the frequency domain, as 
shown in Fig. 13(a). The green line represents the singular 
value of the system at all frequencies, which is constant at 
0 dB. The red line represents the target loop shape, which 
is a straight line with a slope of -20 dB per decade. The blue 
line shows the loop gains, with the solid line representing 
the scaled loop gains and the dashed line representing the 
loop gains themselves. The loop gains, within the spec-
ified tolerance are shown by the shaded area. The green 
for the minimum loop gain, while the red represents the 
maximum loop gain. Since, the loop gains are within the 
specified tolerance over the entire frequency range, which 
shows the system is stable and well-behaved.

The plot of overshoot as a peak gain constraint shows 
the actual closed-loop gain is in allowable range lower 
than the maximum allowed gain (15%) (Fig.  13(b)). 
The graph is a measure of how much a system’s output 
exceeds its desired value.

The four graphs illustrate the step disturbance rejection 
of a system (see Fig. 13(c)). Each graph shows the response 
of the system to a step disturbance (blue line) in compari-
son with the reference response (purple dashed line) with 
two different input sources, dL and dV. 

In Fig. 13(d) graph shows the stability margins of a sys-
tem at plant inputs. The top plot shows the gain margin in 
decibels (dB) while bottom plot shows the phase margin in 
degrees as a function of frequency. The stability margins 

Fig. 11 Performance of controllers (ANN, ANFIS & PID) on basis of step disturbance for (a) top composition and (b) bottom composition

Table 9 Performance comparison of controllers based on ISE and ITAE 
on step disturbance basis

ANFIS ANN PID

Top composition

ISE 4.34E-5 1.65E-4 2.98E-2

ITAE 0.036 1.03 3.45

Bottom composition

ISE 0.022 0.056 1.78

ITAE 0.86 2.12 7.54
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Fig. 12 Simulink model of an ANN-based control structure of a VCM distillation column

Fig. 13 (a) Minimum and maximum loop gains, (b) overshoot as a peak gain constraint, (c) step disturbance rejection, (d) margins at plant input and 
(e) margins at plant outputs
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are the minimum amount of gain or phase shift that can be 
added to the system before it becomes unstable. The yel-
low shaded areas indicate the acceptable range for the sta-
bility margins. The plot shows that the system has a gain 
margin of about 10 dB and a phase margin of about 90°. 
These values indicate that the system is stable and has a 
good amount of margin for stability. 

Fig. 13(e) shows two graphs, one depicting gain margin 
and the other showing phase margin at plant outputs. The gain 
margin is relatively constant across the frequency range, 
while the phase margin is a horizontal line at around 90°.

Fig.  14 shows performance parameter of ANN model 
for training, validation, test, and all. The plots show the 
model's predicted outputs versus the actual target values. 
The plots include a line of best fit (labeled as "Fit") and 
a diagonal line representing the ideal scenario where the 
model predicts the target perfectly (labeled as "Y  =  T"). 

The R-squared values for each plot are given, indicating 
how well the model fits the data. The higher the R-squared 
value, the better the model's performance. 

8 Conclusion
The paper presents the simulation-based study of the 
industrial VCM column using aspen plus dynamics soft-
ware and the controllers. The performance of the con-
trollers is validated through set point tacking after being 
tuned. The  data generated from the simulation is pro-
cessed through the system identification toolbox, in which 
the distillation column is identified as a nonlinear system 
and shows the highest Fit% in NLARX model. The  top 
and bottom composition of the VCM column is con-
trolled using different control structures, i.e. PID, ANN, 
and ANFIS. The  performances of these controllers are 
compared based on set point tracking and disturbance 

Fig. 14 Regression coefficient of ANN model
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rejection. The results show PID controllers lag behind the 
intelligent controllers due to their incapability to handle 
nonlinear systems. However, the ANFIS-based controller 
outreaches the responses of ANN-based controllers owing 
to its ability to handle uncertainties as shown by the values 
of ITAE, MSE and ISE. Further, ANN-based controllers 
are investigated through a simulation model of the distil-
lation column on Simulink and are checked for stability, 
overshoot, and gain values. Despite being stable and high 
value of regression coefficient, the hybrid nature of ANFIS 
allows it to manage nonlinearities and adapt more flexibly 
to system dynamics, providing better overall control and 
generalization compared to ANN. The work is beneficial in 
terms of developing understanding of nonlinear AI- based 
control of industrial VCM distillation column. However, 
the current study can be extended in domain of fault detec-
tion and diagnosis (FDD), Uncertainty and Robustness 
Analysis, Energy Optimization and Cost Analysis and 
Generalization to Other Industrial Systems. Additionally, 
the ANFIS model could be extended to multivariable con-
trol, managing multiple process variables like tempera-
ture, pressure, and flow rates simultaneously, thus improv-
ing robustness and adaptability. Beyond distillation, the 
model could be applied to other complex chemical pro-
cesses such as reactors, crystallization, and extraction sys-
tems, showcasing its versatility. Future studies could also 
investigate hybridizing ANFIS with machine learning 
techniques like reinforcement learning or deep learning to 
further enhance its predictive capabilities. 
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Abbreviations
AI artificial intelligence

ANFIS artificial neural fuzzy inference system

ANN artificial neural network

APC advanced process control

ATV auto-tune variation

COA cuckoo optimization algorithm

EDC ethylene dichloride

FIS fuzzy inference system

FLC fuzzy logic control

FOFPID fractional-order fuzzy proportional-
integral-derivative

FOPTD first order plus time delay

FPE final prediction error

GA genetic algorithm

GMC generic model control

HCl hydrogen chloride

IMC internal model control

ISE integral square error

ITAE integral time absolute error

LC level controller

LLE liquid-liquid equilibrium

LM Levenberg-Marquardt

MF membership function

MIMO multiple-input-multiple-output

MISO multiple-input-single-output

MSE mean square error

NNET neural network

NLARX nonlinear autoregressive with exogenous 
inputs

NNMPC non-linear model predictive control

NRTL nonrandom two-liquid

O/H overhead

PID proportional integral derivative

PI proportional integral

PVC poly vinyl chloride

RBF radial basis function

RMSE root mean square error

SVM support vector machine

TSK Takagi-Sugeno-Kang

VCM vinyl chloride monomer

VLE vapor-liquid equilibrium

Nomenclature
A, B membership function

dB decibels

F feed
f activation function
Kp proportional gain
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Ki integral gain

Kd derivative gain

L liquid reflux

na past outputs

nb past inputs

nk input delays

Q reboiler flowrate

R reflux flowrate

τ time constant

t time

u input

u(t) control signal

ux membership value of x

V vapors from reboiler

wnk weight of connections between neurons

xD top product composition

xF feed composition

xB bottom product composition

X, Y fuzzy input variables

y output

θ bias value

Π firing strength of fuzzy rule
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