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Abstract

Given the growing global demand for renewable energy and the need for sustainable hydrogen production, the development of
efficient photoelectrochemical systems for water splitting has become a critical area of research in addressing the energy crisis
and reducing greenhouse gas emissions. This study investigates the synthesis of SnO, thin film photoanodes using ultrasonic spray
pyrolysis (USP) and hydrothermal methods, with the aim of evaluating the effects of S,N-carbon quantum dot (CQD) modification
on photoelectrochemical performance. The S,N-CQDs solution was varied in volume (2.5, 5, 7.5, and 10 mL) and applied to the SnO,
thin films. The resulting SnO, microstructure exhibited a spherical morphology with distinct atomic concentrations of Sn and O.
Photoelectrochemical characterization, performed via linear sweep voltammetry (LSV) and cyclic voltammetry (CV), demonstrated
that the SnO, thin film modified with 7.5 mL of S,N-CQDs solution produced the highest photocurrent density of 0.0356 mA/cm?, along
with an optimal photoconversion efficiency (PCE) of 0.0084%. Furthermore, the SnO,/S,N-CQDs photoanode with 7.5 mL of S,N-CQDs
exhibited a double-layer capacitance (C,) of 0.1175 mF/cm?, indicating enhanced electrochemical active sites. These findings suggest
that the incorporation of S,N-CQDs into SnO, thin films effectively increases the active surface area, thereby improving the efficiency
of the photoelectrochemical water splitting process.
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1 Introduction

The energy crisis and climate change are pressing
global issues, with rising greenhouse gas emissions
severely impacting both human life and the environment.
To address these challenges, prioritizing energy efficiency,
transitioning to more sustainable resources, and reducing
pollution are essential for energy conservation. Hydrogen
presents a promising solution to lower greenhouse gas
emissions and support global environmental management.
As an efficient and abundant alternative energy source,
hydrogen can play a key role in reducing emissions and

fostering a sustainable future [1, 2]. Currently, hydro-
gen is primarily produced through industrial processes
like coal gasification, which relies on fossil fuels such
as natural gas and coal. This method is favored due to
its higher energy yields and lower production costs [3].
However, fossil fuel-based production releases harmful
greenhouse gases, such as carbon dioxide and methane,
which pose significant threats to the environment [4—6].
Photoelectrochemical water splitting (PEC-WS), which
harnesses the unlimited energy of sunlight, has emerged
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as a promising method for hydrogen production. PEC-WS
is an environmentally friendly and sustainable process
that converts solar energy into chemical energy, such as
hydrogen, by using semiconductor materials. This process
involves two key reactions: the hydrogen evolution reac-
tion (HER) for water reduction and the oxygen evolution
reaction (OER) for water oxidation [7, 8]. Carbon quan-
tum dots (CQDs) are a promising approach to enhance the
efficiency of PEC-WS and address its challenges. They
help improve the spectral emission of samples with wide
band gaps, thereby boosting performance [9]. CQDs offer
several advantages, including high fluorescence inten-
sity, excellent optical properties, good biocompatibility,
stable chemical behavior, and environmental harmless-
ness. They are also cost-effective, water-soluble, inert,
low in toxicity, easy to synthesize, and straightforward to
apply [10—12]. From a physics standpoint, the electronic
energy spectrum of CQDs resembles that of a direct band-
gap semiconductor. Consequently, CQDs have been pro-
posed as fluorescent materials for use in advanced opti-
cal and optoelectronic devices [3, 13]. With active surface
groups such as ~OH and —~CO,H, CQDs can be functional-
ized and combined with other organic or inorganic materi-
als, enabling a wide range of innovative applications [14].
N-doped CQDs and nitrogen/sulfur co-doped CQDs (N,S-
CQDs) exhibit significantly higher fluorescence quantum
efficiency and photocatalytic activity compared to pure
CQDs [15, 16]. Additionally, the improved performance
of N-doped CQDs has been positively correlated with
the extent of nitrogen doping [17, 18]. Previous study on
SnO, with carbon doping exhibited high yield of hydro-
gen evolution at around 38.4 umol/g h from water splitting
process [19]. While the embedment of CQDs in SnO, has
shown improvement in light absorption which increases
the photocatalytic activity [20].

In this study, a new, efficient, and stable visible light-
driven photocatalyst (CQD-surface modified SnO, nanopar-
ticles) is prepared using ultrasonic spray pyrolysis (USP)
to deposit CQDs onto the surface of SnO, nanoparticles,
which are then used for PEC-WS. The CQDs are derived
from organic materials, such as sucrose, fruit juices, peels,
grasses, and plant leaves [21]. Egeria densa is an example of
an organic material that can be used to produce CQDs, as it
is a non-food resource and an invasive species [22].

2 Experimental

2.1 Materials

SnCl1,2H,0 on fluorine-doped tin oxide (FTO) substrates
(Merck, USA), HCI (Merck, USA) and NaOH (Merck,

USA) was used as stabilizer. Synthesis of S,N-CQDs from
Egeria densa algae, with the sulfur and nitrogen compo-
nents derived from Na,SO, (Merck, USA) and NH,OH
(Merck, USA).

2.2 Synthesis of tin oxide
The synthesis of SnO, on FTO substrates involves two
stages: seeding and growth. In this study, the seeding pro-
cess was performed using the USP method. The precur-
sor solution was prepared by dissolving 0.2 M SnCl,-2H,0
in a mixture of deionized (DI) water and HCIl. HCI was
added drop by drop to the SnCl, solution until the pH
reached 1, followed by stirring for 30 min using a mag-
netic stirrer. The precursor solution was then sprayed onto
the FTO substrate using a nebulizer at a substrate tempera-
ture of 450 °C. The substrate was first cleaned and steril-
ized sequentially with acetone, isopropanol, and DI water.
During the spraying process, the substrate temperature
was maintained using a hotplate, and spraying continued
for 15 min. After spraying, the film was placed on a Petri
dish and allowed to cool gradually to room temperature.
After seeding the FTO substrate, the sample was grown
using the hydrothermal method. A total of 0.3966 g of
SnCL,-2H,0 (99%) and 0.5686 g of NaOH (99%) as pre-
cursors were dissolved separately in 28 mL DI water.
The NaOH solution was added drop by drop to the SnCl,
solution until the pH reached 13. The combined precur-
sor solution was then transferred into a stainless-steel,
teflon-lined autoclave, with the seeded FTO substrate
placed in the solution, conductive surface facing upward.
The autoclave was placed in an oven at 210 °C for 24 h.
Afterward, the SnO, thin film was cleaned multiple times
with DI water and annealed at 450 °C in a furnace under
atmospheric conditions for 2 h [16].

2.3 Synthesis of S,N-CQDs

Before synthesizing CQDs from algae, a pre-treatment
step is necessary to remove soil because soil is a hab-
itation for algae evolution [23]. First, the algaec were
thoroughly cleaned, washed with water, and then dried.
A sample of 3 g of algae was mixed with 100 mL of a
0.1 M sodium sulfate and 0.1 M ammonium hydroxide
solution. The algae were then placed in a mortar and
crushed. The refined algae, now dissolved in the sodium
sulfate-ammonium hydroxide solution, were transferred
to a beaker or Erlenmeyer flask and placed into a stain-
less-steel, teflon-lined autoclave. The autoclave is then
heated in an oven at 250 °C for 3 h. During this time,
the algae solution underwent a color change to brown.



The mixture is filtered using filter paper and centrifuged
to separate the solution. The resulting solution is then pre-
pared for coating onto the SnO, thin film.

2.4 Synthesis of SnO,/S,N-CQDs

The SnO, thin film samples were annealed and then coated
with S,N-CQDs derived from algae. The S,N-CQDs solu-
tion was applied to the SnO, surface using the spray pyrol-
ysis method. In this process, the solution was sprayed
onto the sample with varying volumes of 2.5 mL, 5 mL,
7.5 mL, and 10 mL. The spray tool was positioned above
the sample, with a nozzle-to-sample distance of approxi-
mately 2-5 cm. During spraying, the sample was heated
on a hotplate, maintained at a constant temperature of
100 °C. Once the coating was uniform, the film was dried
on the hotplate at 100 °C for 1 h and then allowed to cool
gradually to room temperature.

2.5 Photoelectrochemical performance test

The photoelectrochemical test was conducted using
a 0.5 M Na,SO, electrolyte solution and a three-electrode
setup: SnO,/S,N-CQDs as the working electrode (WE), Pt
wire as the counter electrode (CE), and Ag/AgCl as the
reference electrode (RE). Prior to testing, the electrolyte
solution was purged with nitrogen gas for 30 min. A solar
simulator was then used as the light source, with the light
intensity calibrated to 100 mW/cm?. Photocurrent density
measurements were performed under both dark and light
conditions using linear sweep voltammetry (LSV) with
a PalmSens4 potentiostat, spanning a voltage range from
—0.6 V to 1.6 V, with a minimum input current of 1 mA.
Additionally, cyclic voltammetry (CV) was used to mea-
sure the photoconversion efficiency (PCE) and assess the
active sites on the thin film surface.

2.6 Characterization

The samples were characterized using various techniques.
X-ray diffraction (XRD) analysis was performed with
a Bruker D8 Advance X'Pert3 Powder and Empyrean sys-
tems, using Cu Ka radiation (1 = 1.54 A) over a diffraction
angle (20) range of 20° to 90° to determine the crystal
structure. Ultraviolet-visible spectroscopy (Jasco V-750)
was used to measure the absorbance across different wave-
lengths. The morphology and microstructure of the sam-
ples were examined using field emission scanning electron
microscopy (FE-SEM, Hitachi SU-3500) and high-resolu-
tion transmission electron microscopy (HR-TEM, 200 kV,
Tecnai G2 20 S-Twin, FEI).
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3 Result and discussion

3.1 Optical properties

The research investigates the optical properties of SnO,/
S,N-CQDs photoanodes using UV-Vis spectroscopy.
As shown in Fig. 1, the absorbance of SnO, and SnO,/S,N-
CQDs photoanodes was measured with varying volumes of
2.5mL, 5 mL, 7.5 mL, and 10 mL. The highest absorbance
is observed in the UV-Vis region, where electron transfer
occurs from the valence band (VB) to the conduction band
(CB). Absorbance was measured directly in the 300-400 nm
range, corresponding to the band gap (Fig. 2, Table 1).
The UV-Vis spectrum shows an absorption peak at 400 nm,
indicating that the SnO,/S,N-CQDs photoanode effectively
covers the UV-Vis region. This absorption behavior suggests
that the photoanode exhibits high absorption quality.
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Fig. 1 UV-Vis absorbance spectra of (a) S,N-CQDs and
(b) SnO,/S,N-CQDs
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Table 1 Band gap energy for all samples

Samples Energy gap (eV)
Pure SnO, 3.95
SnO,/S,N-CQDs 2.5 mL 3.92
SnO,/S,N-CQDs 5 mL 3.47
SnO,/S,N-CQDs 7.5 mL 3.41
SnO,/S,N-CQDs 10 mL 3.91

At 7.5 mL, the S,N-CQDs content is at an optimal
level to enhance conductivity and support efficient charge
transfer, enabling effective excitation and accumulation
of electrons in the CB of SnO,. This optimal interaction
improves electron—hole separation and reduces recombi-
nation, resulting in higher photocurrent density. However,
in the 10 mL sample, excessive S,N-CQDs lead to agglom-
eration on the SnO, surface, which not only blocks active
light-absorbing sites but also creates recombination cen-
ters. This condition disrupts electron transport and pre-
vents the effective accumulation of electrons in the CB,
ultimately lowering the PEC performance [24].

At 10 mL excessive S,N-CQDs may lead to agglom-
eration on the SnO, surface, which can create recom-
bination centers or hinder effective light absorption by
blocking the active surface of SnO,. An increase in the
agglomeration of CQD nanoparticles resulted in a band
shift. This indicates that agglomeration has a consider-
able impact on light absorption intensity and may also
influence UV absorption and the photocatalytic perfor-
mance of CQDs. Additionally, the observed wavelength
shift due to agglomeration negatively affects the fluores-
cence properties [24].

3.2 XRD analysis

The XRD pattern of the SnO, layer sample is shown in
Fig. 3. Based on the results of the XRD pattern owned by
SnO, analyzed using HighScore Plus software [25], it is
known to have the same diffraction peaks, namely at 26.5°
(110), 32.4° (012), 34.1° (011), 37.7° (020), 51.5° (121), 54.5°
(220), 61.5° (130), and 65.7° (031). The diffraction pat-
tern was matched to a database [26] with reference code
ICSD 98-016-9033 which is a reference code for SnO, with
a rutile structure. Rutile unit cell with tetragonal symme-
try was described with the space group P4,/mnm [27].
The highest diffraction peak is at peak (020) indicating
that the pure SnO, samples and those already deposited by
S,N-CQDs grow to the front of the FTO glass substrate.
The appearances of small peaks around 27-28°, 38° and
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Fig. 3 XRD spectra of SnO, and SnO,/S,N-CQDs

49° can be correspond to existence of carbon deposited on
surface of SnO, [28].

3.3 Morphological analysis
The morphology of SnO, grown on FTO substrates using
the hydrothermal method was characterized by FE-SEM,
as shown in Fig. 4 (a)—(c). The SnO, microstructure formed
on the FTO substrate is spherical in shape, which is con-
sistent with the morphology of SnO, modified with S,N-
CQDs. However, the morphology of the thin film surface
is less cracked than that of the FTO surface. The parti-
cle size distribution is relatively uniform, with an aver-
age diameter of 0.07 um in the top view and 0.66 pm in
the cross-sectional view, although some agglomeration is
still present. Enhancing the QDs-PEC system primarily
involves designing suitable structures to boost exciton gen-
eration to minimize charge recombination. In this study,
S,N-CQDs are introduced as a modification material to
improve the performance of the SnO, semiconductor [29].

The HR-TEM image of S,N-CQDs, shown in Fig. 4 (d),
reveals that the synthesized nanomaterials are spherical and
uniformly dispersed, with a size distribution ranging from
1 to 8 nm. The HR-TEM image of S,N-CQDs, shown in
Fig. 4 (d), reveals that the synthesized nanomaterials are
spherical and uniformly dispersed, with a size distribution
ranging from 1 to 8 nm. The S,N-CQDs exhibit good dispers-
ibility in water, without significant aggregation, suggesting
that they are stabilized by functional groups [30, 31].

The composition of the S,N-CQDs solution consists of
nitrogen content at 3.67 mL and a sulfur content of 1 mL
based on elemental concentrations in algae from previous
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Fig. 4 (a) Top view FE-SEM image of SnO, thin film, (b) Cross-
sectional view FE-SEM image of SnO, thin film, (c) SEM image of
SnO,/CQDs 7.5 mL, and (d) HR-TEM image of S,N-CQDs

studies [32, 33]. Based on the sulfur and nitrogen com-
position contained in the CQDs, the corresponding sulfur
and nitrogen content in the modified SnO, photoanode was
determined. For the SnO,/S,N-CQDs with a 2.5 mL vari-
ation, the sulfur and nitrogen content was approximately
0.03 mL and 0.09 mL, respectively. In the 5 mL variation,
the sulfur content reached 0.05 mL and nitrogen 0.18 mL.
For the 7.5 mL variation, the sulfur content was 0.08 mL
and nitrogen 0.27 mL. Finally, in the 10 mL variation,
the sulfur and nitrogen contents increased to 0.1 mL and
0.37 mL, respectively [32, 33].

3.4 Surface analysis

The Raman spectrum (Fig. 5) of SnO,/S,N-CQDs
nanoparticles exhibits several bands at 580, 980, 1090, and
1570 cm™. The band observed at 630 cm™ corresponds to
the tetragonal symmetry of SnO, nanoparticles, while the
band at 434 cm™ is attributed to the bending mode of the
Sn-O-Sn bond. Additionally, a band at 332 cm™ is also
observed in SnO,. Vibrational modes at 372 cm™, asso-
ciated with local lattice disorder, and at 560 cm™, indica-
tive of oxygen vacancy (OV) concentration, are also pres-
ent. The intensity of the peak at 560 cm™ increases with a
higher concentration of OVs. During air annealing, these
oxygen vacancies are filled, leading to a decrease in peak
intensity. In contrast, during vacuum annealing, oxygen
atoms are removed from the film, resulting in an increase
in peak intensity [34, 35].

3.5 Photoluminescence (PL) measurements

PL measurements were conducted to examine the charge
recombination behavior and identify defects in the sam-
ples. Fig. 6 shows the PL results for a sample with an exci-
tation wavelength of 325 nm. Generally, the addition of
S,N-CQDs to the SnO, sample reduces the charge recom-
bination density, as evidenced by the lower emission inten-
sity compared to the pure SnO, sample. The peak observed
in the PL spectrum corresponds to defects in SnO,, such as
OV or interstitial oxygen atoms (O). The reduction in this
peak intensity in the S,N-CQDs-modified sample indi-
cates a decrease in defect density [34, 36].

3.6 Photoelectrochemical performance

3.6.1 Linear sweep voltammetry

Photoelectrochemical testing using LSV, shown in Fig. 7,
reveals different responses for SnO, photoanode samples
and SnO,/S,N-CQDs-modified photoanodes with varying
volumes of S,N-CQDs addition. The potential measured
relative to the Ag/AgCl reference electrode was converted
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to the reversible hydrogen electrode (RHE) scale using
the Nernst equation:

E(V vs. RHE) = E(V vs. Ag/AgCl)+0.21+(0.059 pH),
¢))

where E is the electrode potential.

The LSV testing results for the SnO,/S,N-CQDs-
modified photoanode with 7.5 mL of S,N-CQDs show
the highest current density of 0.0356 mA/cm? at 1.23 V
vs. RHE under a light intensity of 100 mW/cm?. This is
followed by SnO,/S,N-CQDs with 10 mL of S,N-CQDs
(0.0331 mA/cm?), 5 mL of S,N-CQDs (0.0307 mA/cm?),
2.5 mL of S,N-CQDs (0.0292 mA/cm?®), and pure SnO,
(0.0268 mA/cm?). These results indicate that the current
density for SnO, photoanodes without S,N-CQDs modifi-
cation increases upon the addition of S,N-CQDs.
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N-doped CQDs and nitrogen/sulfur co-doped CQDs
(N,S-CQDs) exhibit significantly higher fluorescence
quantum efficiency and photocatalytic activity compared
to pure CQDs [15, 16]. Additionally, the improved perfor-
mance of N-doped CQDs has been positively correlated
with the extent of nitrogen doping [17, 18]:

J (1.23 V-7,
ABPE:M

x100% , )

where . is the photocurrent density, V, is the applied bias
voltage, and P is the power density.

In the Applied Bias Photon-to-current Efficiency
(ABPE) graph shown in Fig. 8, a higher ABPE value indi-
cates better efficiency in converting light energy into
electric current. The SnO, photoanode sample exhibits
a maximum ABPE value of 0.0065% at 0.8 V vs. RHE,
while the SnO,/S,N-CQDs photoanode with the addition
of 7.5 mL of S,N-CQDs shows a maximum ABPE value
of 0.084% at 0.8 V vs. RHE. This demonstrates that the
SnO,/S,N-CQDs photoanode with 7.5 mL of S,N-CQDs
exhibits superior performance compared to the pure SnO,
photoanode and other S,N-CQDs variations in photoelec-
trochemical water splitting applications. These findings
are consistent with several studies in the literature, which
suggest that modifying SnO, photoanodes with S,N-CQDs
enhances the light absorption capability of semiconductor
materials with wide band gaps [37-39].

3.6.2 Chronoamperometry (CA) measurements
CA measurements were performed to assess the photosta-
bility of the samples, as shown in Fig. 9. This parameter
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Fig. 8 ABPE test results on SnO,/S,N-CQDs thin film photoanode samples

provides insight into the stability of the material during

the photoelectrochemical water splitting process.
Photostability tests were conducted under both dark and
light conditions, using an on/off method with a time inter-
val of 60 s for a total duration of 420 s. As shown in Fig. 9,
the SnO,/S,N-CQDs sample with 7.5 mL of S,N-CQDs
demonstrates the greatest stability compared to the other
samples. This is evident from the consistent response
observed under light and dark conditions, while other
samples exhibit rapid charge recombination, indicated by

fluctuating responses.

3.7 Cyclic voltammetry

CV testing is used to analyze the electrochemical response
of the catalyst, its interaction with the electrolyte, and its
catalytic activity [40]. The results of the CV tests on the
samples are shown in Fig. 10, with scan rates of 15 mV,
30 mV, 45 mV, and 60 mV. The sample with 7.5 mL of S,N-
CQDs shows the largest CV curve area, indicating better
electrochemical performance. In contrast, the sample with
2.5 mL of S,N-CQDs shows the smallest CV curve area
compared to the other samples. Higher scan rates in the
CV tests can improve the accuracy of the sample's perfor-
mance evaluation. A rectangular CV curve suggests good
electric double-layer capacitance (C,), indicating efficient
charge storage and stability [41, 42].

In the CV testing, the electrochemical surface area
(ECSA) was analyzed. The ECSA of each system was
evaluated based on the electrochemical C, of the catalyst
surface. This capacitance was determined by analyzing
the non-Faradaic capacitive current, which arises from
double-layer charging, as a function of scan rate in CV
measurements [43].

ECSA = % 3)

The ECSA value is determined by calculating the C, at
various scan rates (v) [22, 44]. The ECSA data is processed
using the linear regression method (Fig. 11), based on the
C, values for each scan rate (v). Since the value of specific
capacitance (C ) is unknown, the relative change in ECSA
is observed through the C,, values. A higher C,, value cor-
responds to a larger active surface area in the sample [45].
The sample with 7.5 ml S,N-CQDs variation has the most
abundant active sites compared to the other samples.
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Fig. 11 Estimation of C, by plotting the current density variation
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4 Conclusion

Electron microscopy analysis reveals that SnO, particles on
the FTO substrate exhibit a spherical microstructure, with
a particle size distribution ranging from 0.04 to 0.1 pum.
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