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Abstract

In this paper, the effectiveness of artificial neural networks (ANN) and response surface methodology (RSM) models in predicting 

the thermophysical properties ratio of graphene nanoplatelet (GNP)-ethylene glycol (EG)/water nanofluid has been discussed. 

Volume concentration (0.1%–0.5%) and temperature (−15 °C to 15 °C) were considered as inputs to train the models to predict the 

thermophysical properties ratios, including density, viscosity, thermal conductivity, and specific heat capacity. The ANN model with 

the Levenberg–Marquardt (trainlm) algorithm is used to get the best network by varying the number of 9 neurons in the hidden 

layer. In addition, an RSM, a three-dimensional surface plot techniques technique, was employed on the data points to obtain the 

new mathematical correlation for predicting thermophysical properties. Eventually, the mean squared error (MSE), regression 

coefficient  (R2), and percentage of errors from both techniques were compared. The proposed ANN and RSM models show that 

the MSE, R2, and percentage of errors are 2.1239 × 10−5, 0.998, −1.42 to 1.28, and 0.761, above 0.945, −1.46 to 0.97, respectively. 

The results revealed both techniques are sorely suitable for predicting the thermophysical properties ratio of GNP-EG/water nanofluid.
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1 Introduction
The heat transfer process is vital in many energy sec-
tors and industrial applications [1, 2]. The convective 
heat transfer process is widely used in many thermal sys-
tems for heating and cooling applications [3]. For the past 
decades, to enhance thermal systems heat transfer perfor-
mance, researchers have increased the temperature dif-
ference between solid surfaces and fluids and increased 
surface area [4, 5]. In the last few years, because of the 
miniaturization of compact thermal systems, researchers 
have focused on the impact of incorporating nanoparti-
cles in the existing heat transfer fluids, such as water [6], 
ethylene glycol (EG) [7], a mixture of water and EG [8], 
and oils [9, 10], to improve the heat transfer performance 
of these systems. Also, many researchers [11] conducted 
experimental studies and found that incorporating the 

nanoparticles into existing heat transfer fluids improves 
the thermal performance of the systems by enhancing ther-
mophysical properties such as density, viscosity, thermal 
conductivity, and specific heat capacity [12–14]. It is often 
time-consuming and expensive to conduct experimental 
studies. Hence, it is important to minimize the number of 
experiments while maximizing the outcomes. Artificial 
intelligence (AI), a  broad field focused on simulating 
human intelligence processes using computers, is among 
the most effective tools for predicting various proper-
ties from experimental data [15]. Researchers have used 
a variety of algorithms to estimate and optimize different 
parameters like genetic algorithms [16], fuzzy logic [17], 
particle swarms  [18], support vector regression  (SVR), 
the  Levenberg-Marquardt algorithm [19], the  Bayes 
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algorithm [20], and the scaled conjugate gradient algo-
rithm [21]. As AI technology advances, novel prediction 
approaches that outperform traditional ones have been 
presented. One of the most often used approaches is arti-
ficial neural networks (ANN), which has significant draw-
backs, such as the requirement for many control parame-
ters, the difficulty in producing a sustainable output, and 
overfitting issues. Because of the presence of such flaws, 
better models have improved the ANN model [22]. These 
algorithms have great promises and perform well in real-
world situations. Table 1 [15, 23–36] provides an overview 
of recently published studies that use neural networks and 
response surface methodology (RSM) to predict various 
nanofluids thermophysical properties. Previous studies 
have shown that the ANN and RSM approaches are effec-
tive in predicting the thermophysical properties of vari-
ous nanofluids. Klazly and Bognár  [37] investigated and 
developed a new model for calculating the viscosity of 
Al2O3/water nanofluids with varying particle sizes (13 nm 
and 28 nm) and volume concentrations. They found that 
viscosity enhancement is influenced by volume concentra-
tion, particle size, and Brownian motion.

This study evaluates and compares the performance of 
ANN and RSM models in predicting the thermophysical 
properties of graphene nanoplatelet (GNP)–EG/water nano-
fluids based on experimental data. In the ANN model, tem-
perature and nanoparticle volume concentration are used 
as input variables, while the thermophysical properties are 
predicted as outputs. Utilizing ANN and RSM for such 
analysis enables highly accurate predictions of nanofluid 
heat transfer characteristics while significantly reducing the 
cost and effort associated with experimental procedures.

2 Methods
Section 2 addresses the data selection process for model-
ing, the modeling techniques used, and the evaluation cri-
teria applied to develop the models.

2.1 Data selection
This study develops a prediction model for the ther-
mophysical properties of a mixture of EG and water 
(50:50 volume ratio) base fluids in the presence of GNP. 
In  this modeling, to investigate the effects of two inde-
pendent variables, such as volume concentration and 

Table 1 The summary of recently published studies for predicting thermophysical properties of nanofluid

References Base fluid Nanoparticle Method Studied properties

Manikandan and 
Nanthakumar [23] SAE10W oil GNP ANN and RSM Thermal conductivity

Komeilibirjandi 
et al. [24] EG, water, and engine oil CuO Correlation and ANN Thermal conductivity

Manikandan and 
Nanthakumar [25] Damper oil GNP ANN and curve fitting Dynamic viscosity

Rostami et al. [26] Liquid paraffin MWCNT* ANN and RSM Thermal conductivity

Alade et al. [27] Diesel oil GNP, MWCNT ANN and SVR Density

Manikandan and 
Nanthakumar [28] SAE10W oil Cu Curve fitting Density, viscosity, thermal 

conductivity, and specific heat capacity

Manikandan and 
Nanthakumar [29] SAE10W oil GNP ANN and curve-fitting Specific heat capacity

Yashawantha and 
Vinod [30] EG–water (35:65 volume%) CuO, Al2O3, and TiO2 ANN and correlation Thermal conductivity

Mirsaeidi and 
Yousefi [31]

Water, EG and water–EG 
mixture (60:40 volume%) Carbon quantum dots ANN and curve fitting Density, viscosity, and thermal 

conductivity

Kishore P V R et al. [32] Water–EG mixture 
(60:40 volume%) GNP, Al2O3, and CuO ANN Viscosity, and thermal conductivity

Asadi et al. [15] Engine oil MWCNT-ZnO  
(25–75 volume%) SVR Dynamic viscosity, and thermal 

conductivity

Sharma et al. [33] Water TiO2 ANN Thermal conductivity

Çolak et al. [34] Water Cu-Al2O3 ANN Specific heat capacity

Borode et al. [35] EG and engine oil GNP and Fe2O3 ANN Viscosity, and thermal conductivity

Hemmat Esfe et al. [36] EG TiN50, TiN20 ANN and RSM Density, thermal conductivity, 
and specific heat capacity

* Multiwalled carbon nanotube
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temperature, on thermophysical properties, laboratory 
data for density, viscosity, thermal conductivity, and spe-
cific heat capacity were collected from the data presented 
by Dhayanidhi and Selvam [38]. The authors prepared 
the nanofluids using a two-step method by incorporating 
GNP (<4 nm) into an EG/water mixture (50:50 volume%). 
The prepared nanofluid stability was analyzed using zeta 
potential analyzer. The stability of the prepared nanoflu-
ids was analyzed using a zeta potential analyzer. The zeta 
potential was found to be −33.70 mV at 0.5 volume% of 
GNP, indicating the good stability of the nanofluid. They 
also measured the thermophysical properties of the GNP–
EG/water nanofluids using various instruments: density 
was measured with a densitometer (DMA 50, Anton Paar, 
Graz, Austria) with an accuracy of ±2% to ±3%; viscosity 
was measured using a rheometer (MCR-102, Anton Paar, 
Graz, Austria) with an accuracy of ±2%; and thermal con-
ductivity and specific heat were measured using a ther-
mal properties analyzer (TPS 2500S, Hot Disk, USA) with 
an accuracy of ±5%. The collected data were used to cal-
culate the ratio of thermophysical properties of nanofluids, 
which was then used to train the ANN and RSM mod-
els. The data span a volume concentration range of 0.1%, 
0.2%, 0.3%, 0.4%, and 0.5%, and a temperature range of 
−15 °C, −10 °C, −5 °C, 0 °C, 5 °C, 10 °C, and 15 °C.

2.2 Development of prediction model
In this study, prediction models are developed by using 
two techniques, one is ANN technique and the other is 
RSM technique. The ANN and RSM models are created 
using the neural network and curve fitter (3D surface fit) 
applications in the MATLAB, (2024b) simulation envi-
ronment [39]. Generally, the ANN architecture consists of 
three layers: input, hidden, and output layers. These lay-
ers contain several neurons and are interconnected with 
weight coefficients (wij ) and biases (bi ) to transfer data 
within the layers. In Eq. (1), the mathematics behind the 
training process of data is presented. The ANN model was 
trained on datasets randomly selected from the pre-pro-
cessed dataset. The data sets contain 35 data points for 
each thermophysical property such as density, viscosity, 
thermal conductivity, and specific heat capacity. During 
the ANN modeling process, the dataset was split into 
three subsets: training (70%), validation  (15%), and test-
ing (15%). The  input parameters, volume concentra-
tion, and temperature were defined, along with the out-
put, which represents the thermophysical properties ratio 
of the nanofluids. Furthermore, to train the ANN model, 

the Levenberg–Marquardt (trainlm) training algorithm is 
used. For the hidden and output layers, the tan-sigmoid 
and purelin transfer functions are utilized. The mathe-
matical representation of the transfer functions utilized in 
the ANN model is shown in Eqs. (2) and (3). Varying the 
number of neurons in the hidden layer of an ANN can sig-
nificantly influence the model's performance. The  ANN 
structure was finalized based on the configuration that 
provided the best optimal performance:
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where yj is the i th output, f is the activation function, 
n is the number of the data points, wij is the weight coeffi-
cients, xj is the j th input and bi is the bias.

For the development of the RSM model to predict 
the thermophysical properties of nanofluids, curve fit-
ting (3D surface fit) was used. In this modeling process, 
the surface fits for the data points of each thermophysical 
property is based on RSM. We obtain a polynomial equa-
tion from the response surface to estimate the thermophys-
ical properties. To obtain the best surface fit, the order of 
the polynomial equation is varied.

2.3 Evaluation criteria
In this study, the evaluation of the ANN and RSM models 
was carried out using the following criteria: mean squared 
error (MSE), regression coefficient (R2), and percentage 
error. The mathematical formulations for these criteria 
are presented in Eqs. (4) to (7), respectively. Generally, 
the model with the greater R2 and the smaller MSE shows 
better performance.
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In Eqs. (4) to (7), where n represents the total number of 
data, TCRa and TCRp indicates the actual thermal conductiv-
ity ratio and predicted thermal conductivity ratio. TPPa, TPPp, 
denotes the thermophysical property ratio of actual exper-
imental measured data and predicted data respectively. 
TPP

a
 is the mean value of actual measured data.

3 Result and discussion
Section 3 discusses the ANN and RSM models performances 
in predicting the thermophysical properties ratio of the 
GNP-EG/water nanofluid concerning volume concentration 
and temperature. It also discusses the comparison between 
the ANN and RSM models against experimental data.

3.1 Evaluation of ANN model performance
In the ANN modeling process, 140 sets of experimental data 
were used to make the prediction model. These sets were 
then split into 98 sets (70%) for training, 21 sets (15%) for 
validation, and 21 sets (15%) for testing. In the ANN mod-
eling process, it is assumed that there is enough data to cap-
ture the underlying patterns; insufficient data can lead to 
underfitting or overfitting. Additionally, inputs are typically 
normalized or standardized, as this scaling helps improve 
model convergence and stability. Assumes a functional 
(possibly nonlinear) relationship exists between the inputs 
and outputs that can be approximated by the network. The 
input parameters are considered as volume concentration, 
temperature, and the output parameters are considered as 
thermophysical properties such as  density ratio, viscosity 
ratio, thermal conductivity ratio, and specific heat capacity 
ratio, respectively. The model was trained using the trainlm 
algorithm, the tansigmoid, and the purlin transfer function. 
Also, change the number of neurons in the hidden layer to 
get the best network structure. Finally, the best ANN archi-
tecture (2–9–1–4) was found to have 9 neurons in the hid-
den layer. This was determined by using evaluation crite-
ria such as the lowest MSE value and the highest R2 value. 
Fig. 1 illustrates the optimal architecture of the ANN model.

Fig. 2 shows the MSE plot of the proposed ANN archi-
tecture. The horizontal axis represents the number of 
epochs as a numerical value, while the vertical axis dis-
plays the MSE values. The blue, green, and red color 

lines, as well as the dotted lines, indicate the train, vali-
dation, and test data sets, and the best points, respectively. 
The green-colored small circle signifies the optimal MSE 
value. The MSE values rapidly decreased as the number of 
epochs increased; eventually, the best validation perfor-
mance was 2.1239 × 10−5, attained at 39 epochs.

Fig. 3 shows the regression plot of the proposed ANN 
model for training, validation, testing, and all data sets. 
The horizontal and vertical axes represent the experimental 
and ANN-predicted data. The blue, green, red, and black fit 
lines indicate the bisector lines, the small circle represents 
the data points, and R represents the regression coefficient 
values. The R-values for the training (R = 0.99949), vali-
dation (R = 0.9925), and test (R = 0.99459) sets are all very 

Fig. 1 The best ANN architecture for predicting thermophysical 
properties of nanofluid

Fig. 2 MSE plot of proposed ANN architecture

Fig. 3 Regression plot of proposed ANN architecture
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high and close to 1. This indicates a strong correlation 
between the experimental data and the ANN's predictions 
across all datasets. Based on Fig. 3, the model is neither 
significantly underfitting nor overfitting. It demonstrates 
a good fit to the data.

Fig.  4 represents the error histogram of the proposed 
ANN model with 20 bins. In Fig.  4, the horizontal axis 
denotes the error values, and the vertical axis represents the 
number of instances. The blue, green, and red vertical bars 
indicate the error values concerning the number of instances 
for training, validation, and test data sets. The orange color 
vertical line denotes the zero error. From Fig. 4 found that 
the proposed ANN model has error values ranging between 
−0.01399 and 0.01211, also most of the data points are 
very close to the zero-error line. Fig. 5 (a) to (d) shows the 
agreement between the experimental data and the proposed 
ANN model predictions with respect to input parameters 
such as the volume concentration (0.1%–0.5%) and tem-
perature (−15 °C to 15 °C) of the GNP-EG/water nanoflu-
ids. The horizontal axis depicts the data samples for each 
thermophysical property, while the vertical axis represents 
the thermophysical property, such as density ratio, viscosity 
ratio, thermal conductivity ratio, and specific heat capac-
ity ratio. The blue color line represented experimental data, 
while the pink line represented ANN model-predicted data. 
Fig. 5 (a) to (d) show a good agreement between the exper-
imental and ANN model-predicted data.

3.2 Evaluation of RSM model performance
In the RSM technique, the 3D surface fitting method 
was used to develop the mathematical model to predict 

the thermophysical properties of nanofluids. The input 
parameters are volume concentration, temperature, and 
experimentally measured data. The curve-fitting appli-
cation in MATLAB [39] was used to develop surface 
fitting based on input parameters. In this surface-fitting 
process using polynomial regression to create a math-
ematical model, the  best-fitting polynomial equation is 
obtained by varying the order of the polynomial equa-
tion. The accuracy of the model is evaluated based on 
MSE and R-squared values. Table 2 presents a mathe-
matical correlation with goodness of fit obtained by RSM 
for predicting the thermophysical properties of GNP-EG/
water nanofluids. These mathematical correlations relate 
the properties to two variables: volume concentration (φ) 
and temperature  (T). The first equation in Table  2 rep-
resents the correlation for the density ratio of GNP/EG 
nanofluids, with a root mean square error (RMSE) of 
0.0014 and a coefficient of determination (R2 ) of 1. The sec-
ond equation in Table 2 corresponds to the viscosity ratio, 
with an RMSE of 0.0091 and R2 of 0.9997. The third equa-
tion in Table  2 provides the correlation for the thermal 
conductivity ratio, yielding an RMSE of 0.0074 and R2 of 
0.9895. The fourth equation in Table  2 models the spe-
cific heat ratio, with an RMSE of 0.0171 and R2 of 0.9459. 
These models are accurate within specific operating con-
ditions. The applicability of the equations in Table  2 is 
limited to a volume concentration range of 0.1% to 0.5% 
and a temperature range of −15 °C to 15 °C. Fig. 6 (a) to (d) 
shows the 3D surface fitting diagram of the thermophysi-
cal properties of GNP nanofluids and corresponding resid-
ual plots. From Fig. 6 (a) to (d), it was observed that all 
experimental data points were well-fitted on the surface 
plot. Consequently, the residual error ranges are 0.5 × 10−5 
to 10 × 10−5 for density ratio, −0.01 to 0.01 for viscosity 
ratio, −4 × 10−3 to 2 × 10−3 for thermal conductivity ratio, 
and −0.01 to 0.01 for specific heat ratio. It shows the pre-
diction accuracy of these mathematical models. Fig. 7 (a) 
to (d) represents the accordance between the experimen-
tal data and proposed RSM model-predicted data concern-
ing the input parameters such as volume concentration 
and temperature. The horizontal axis represents the data 
samples of each thermophysical property, and the vertical 
axis indicates the thermophysical property, such as den-
sity ratio, viscosity ratio, thermal conductivity ratio, and 
specific heat capacity ratio, respectively. The blue color 
line indicated experimental data, and the brown color 
line indicated RSM model predicted data. From Fig. 7 (a) 
to (d), it is observed that there is good agreement between 
the experimental and ANN model-predicted data.Fig. 4 Error histogram of proposed ANN architecture
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3.3 Evaluation of error percentages of prediction 
models
Figs. 8 and 9 reveal that the error ranges between the pre-
dictions and experimental data in the ANN and RSM 

models. The error percentage was computed using Eq. (6). 
In Figs. 8 and 9, the horizontal axis indicates the number 
of data points, and the vertical axis represents the error 
percentages. Furthermore, the blue, orange, yellow, and 

Fig. 5 Comparison of the data obtained by the ANN model and experimental data; (a) Relationship between data number and density ratio; 
(b) Relationship between data number and viscosity ratio; (c) Relationship between data number and thermal conductivity ratio; (d) Relationship 

between data number and specific heat ratio

(a) (b)

(c) (d)

Table 2 Mathematical model obtained by RSM for predicting nanofluid thermophysical properties

Equation 
No. Mathematical model RMSE R2

1. 0.0014 1

2. 0.0091 0.9997

3.  0.0074 0.9895

4. 0.0171 0.9459
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Fig. 6 3D surface fit diagram with residual plot for: (a) density ratio, (b)viscosity ratio, (c) thermal conductivity ratio, (d) specific heat ratio
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Fig. 8 Percentage of error for ANN predicted data

Fig. 7 Comparison of the data obtained by the RSM model and experimental data; (a) Relationship between data number and density ratio; 
(b) Relationship between data number and viscosity ratio; (c) Relationship between data number and thermal conductivity ratio; (d) Relationship 

between data number and specific heat ratio

(a) (b)

(c) (d)

Fig. 9 Percentage of error for RSM model predicted data



Sekar et al.
Period. Polytech. Chem. Eng., 69(2), pp. 273–283, 2025 |281

purple colors denote the error ranges of ANN and RSM 
predictions. From Fig.  8, it was observed that the ANN 
model predictions error ranges were −0.05 to 0.082% for 
density ratio, −1.42 to 1.28% for viscosity ratio, −0.95 to 
0.29% for thermal conductivity ratio, and −0.90 to 0.48 for 
specific heat ratio. Similarly, Fig. 9 shows that the RSM 
model prediction error ranges were −0.049 to 0.048% for 
density ratio, −1.105 to 0.85% for viscosity ratio, −0.33 to 
0.36 for thermal conductivity ratio, and  1.46  to 0.97 for 
specific heat ratio, respectively. Based on these results, 
the ANN model had an error range of −1.42 to 1.28% for 
predicting the thermophysical properties of the GNP-EG/
water nanofluid, and the RSM model had an error range of 
−1.46 to 0.97. Therefore, the error percentage of both pre-
diction models is less than 1.5%, which is the acceptable 
range for predicting the thermophysical properties ratio of 
the GNP-EG/water nanofluids.

4 Conclusion
In this study, both ANN and RSM models are proposed for 
predicting the thermophysical property ratio of GNP-EG/
water nanofluids. The input and output parameters of 
these models are volume concentration, temperature, and 

thermophysical property ratios. The following significant 
outcomes were derived from these prediction models:

•	 The implementation of the ANN and RSM tech-
niques was successful for predicting the thermophys-
ical properties ratio of GNP-EG/water nanofluids.

•	 The best ANN architecture achieved with 9 neurons 
in the hidden layer. The ANN technique was accu-
rate enough that the MSE and R2 values for GNP-EG/
water nanofluids were 2.1239 × 10−5 and 0.998, respec-
tively. The error reported is less than 1.5%.

•	 The RSM model yielded MSE and R2 values of 0.761 
and above 0.945, respectively. The percentage of 
error was below 1.5%.

•	 The error for both ANN and RSM techniques are 
below 1.5%. This is in close agreement with the pre-
dictions and actual experiments. In conclusion, both 
models outperformed each other in predicting the 
thermophysical properties ratio of GNP-EG/water 
nanofluids.

•	 As a result, both ANN and RSM models are recom-
mended for researchers to predict the thermophysi-
cal properties of GNP-EG/water nanofluids used in 
heat transfer applications.
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