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Abstract

Due to its large consumption of raw materials and high construction work rates, the building industry presents one of the most effective
potentials for the use of recycled materials. In an attempt to maximize landfill waste valorization and enhance concrete properties, this
study investigates the combined use of industrial ceramic waste (CW) and granite waste (GW) with seashell bio-waste (SW) and their
effect on the physical and mechanical properties of flowable sand concrete (FSC). For this, seven FSC mixtures were manufactured by
partially replacing natural sand with different amounts of CW, GW, and SW combinations (0, 5, 10, 15, 20, 25, and 30 wt%). The results
showed that up to 30% recycled aggregates could be utilized while maintaining the fresh properties of all FSC mixes. Compressive
and flexural strengths as well as ultrasonic pulse velocity were significantly improved by 40%, 90%, and 6%, respectively. Both water
absorption and porosity were reduced by 20% with the simultaneous addition of 30% recycled aggregates, compared to the reference
concrete. Furthermore, the scanning electron microscopy analysis of some FSC mixes showed that the microstructure of FSC was
enhanced with a stronger bond between the cement paste and aggregates when the three recycled aggregates were included in

amounts of up to 30%. Finally, the results are encouraging when CW and GW are used simultaneously with SW in developing high-

strength FSC, allowing the replacement of up to 30% of fine aggregates for sustainable construction.
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1 Introduction

Concrete is a widely used construction material all over
the world. It is an agglomerated composite material com-
posed of dense particles of varying sizes linked together
by a binder [1-3]. With current designs growing more
complex, the production of fluid concrete has become
a serious challenge for the concrete construction indus-
try [4, 5]. Flowable sand concrete (FSC) is a novel type
of concrete that is low in rough aggregates (gravel) and
rich in fine aggregates. It is distinguished by its simplic-
ity of installation and lack of compaction [6, 7]. Given
the high demand for natural aggregates such as sand and
the difficulties in opening new quarries, the use of indus-
trial waste and by-products in the construction indus-
try has emerged as an effective solution for conserving
natural resources and reducing waste storage in landfills
and along coastlines [8—16]. Additionally, owing to its
lower cost and to legal requirements, this approach also

addresses the economic and environmental challenges
that many countries face [17].

The construction materials industry generates a signifi-
cant rate of waste. The valorization of these wastes in con-
crete manufacturing is an important step toward environ-
mentally friendly and economically viable construction
methods. Researchers have demonstrated that industrial
mineral wastes such as ceramic and granite waste (GW)
can serve as components for construction concrete [18-20].
For instance, Gautam et al. [21] studied the incorporation of
0 to 40% bone china ceramic waste (BCCW) as a partial sub-
stitution for cement in self-compacting concrete (SCC). They
found acceptable fresh properties, improved compressive and
flexural strengths, increased ultrasonic pulse velocity (UPV),
and enhanced resistance to water absorption, with up to 10%
BCCW. In another study, Guendouz et al. [6] looked into
substituting up to 60% of fine aggregate with floor slab waste
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to make flowable sand concrete. They found a drop in the
workability and bulk density of mixtures as floor tile waste
increased, while the compressive and flexural strengths
were improved by 48% and 24%, respectively. El-Dieb and
Kanaan [22] demonstrated that adding 20% ceramic tile
waste (CW) to cement increased strength due to its pozzo-
lanic properties. Similarly, Subasi et al. [23] found that SCC
mixes incorporating up to 20% CW as a cement substitute
had excellent fresh characteristics. According to Bommisetty
etal. [3], the concrete compressive strength increased to a20%
replacement before declining when replacing up to 25% of
natural coarse aggregate with ceramic tile waste. Zegardto
et al. [24] observed that using sanitary ceramic waste instead
of gravel-basalt for ultra-high-strength concrete improved its
compressive and tensile strength and decreased its bulk den-
sity. Guendouz and Boukhelkhal [19] looked at the impact
of recycling ceramic tile and ceramic sanitary ware waste on
FSC properties. They found a decrease in flowable sand con-
crete workability. However, adding up to 50% and 60% of
ceramic sanitary ware and ceramic tile waste, respectively,
improves the mechanical strengths.

Granite waste is often available in large quantities
during the processes of cutting and polishing granite stone
or on building and demolition sites; it has been extensively
researched by several authors as an aggregate substitute in
mortars or concrete. Zafar et al. [25] found a 42% increase
in compressive strength for the mix having up to 20% gran-
ite dust as a natural sand (NS) substitute. Jain et al. [26]
discovered that SCC with granite dust had negative fresh
qualities but positive hardened properties. Ghannam
et al. [27] investigated the use of up to 20% granite powder
as a substitute for NS in concrete. They found that a 10%
granite powder content increased the compressive strength
by 30% compared to conventional concrete. According to
Jain et al. [28, 29], substituting up to 40% of fine aggregates
with GW could be beneficial in SCC manufacturing, with
an improvement in mechanical performance at 25% GW
replacement. Patil and Patil [30] observed an increase in
compressive and abrasion strengths of SCC with up to 60%
substitution of NS with GW. Similarly, Singh et al. [31]
found that the addition of GW to concrete increased its
compressive and flexural strengths while decreasing its
permeability. Vijayalakshmi et al. [32] investigated the
effects of GW as a partial river sand replacement. Their
results showed that using up to 15% of GW might preserve
concrete's mechanical performance and durability. Binici
and Aksogan [33] found that using GW as a fine aggregate
improves the condensed matrix and makes the concrete

less permeable and more durable than ordinary concrete.
According to Cordeiro et al. [34], using GW in place of
river sand had a detrimental impact on the rheological
properties of concrete mixtures. However, increasing the
amount of superplasticizer (SP) can lessen this negative
impact. Nuaklong et al. [35] looked at the characteristics
of geopolymer concrete by substituting 25 and 50% of the
natural river sand with granite debris. They discovered
that the slump flow increased with higher GW content and
that early compressive strength improved when 50% of the
natural sand was replaced by GW. Amin et al. [36] found
an improvement in compressive strength, splitting tensile
strength, flexural strength, and modulus of elasticity by
replacing some of the cement with granite powder and all
of the sand with crushed granite in ultra-high-performance
concrete. Recently, Gautam et al. [37] studied the effect
of up to 40% granite waste and 0, 10, 20, and 30% bone
china powder waste (BCPW) as cement and fine aggregate,
respectively, on self-compacting concrete properties. They
achieved positive results in the fresh state, and SCC with
10% BCPW and 30% GW presented the greatest strength
with a 15% enhancement in compressive strength [37, 38].
On the other hand, seashell waste (SW) that accumulates
along the coast can be crushed, processed, and used as raw
material for concrete. Several studies have been conducted
to explore the impact of integrating crushed seashells into
concrete mixtures. Goushik and Ramasamy [39] replaced
between 10 and 25% of fine aggregates with crushed shells
and discovered that the crushed shells negatively affected
the concrete's fresh and hardened properties. Boudjellal
et al. [40] studied the use of SW as sand at percentages
ranging from 20% to 50%. According to their results,
the concrete's tensile and compressive strengths improved
significantly and showed their optimum for a substitution
rate of 40%, with an increase of 24.12% and 30.05% in ten-
sile and compressive strengths, respectively. Cuadrado-
Rica et al. [41] studied the integration of crushed shells in
standard concrete at percentages of 20%, 40%, and 60%.
They discovered that the inclusion of shells reduced
workability, density, and mechanical strength. Similarly,
Bamigboye et al. [42] discovered that adding seashell to
concrete mixes reduced both workability and strength.
From the above-mentioned studies, extensive research
has been conducted on the valorization of industrial CW
and GW, as well as seashell bio-waste (SW) as a marine
by-product in concrete manufacturing. However, only one
kind of waste has been valued so far. Therefore, the benefits
for the economy and environment remain relatively small,



especially in countries where waste generation is signifi-
cant. The aim of this research is to create a locally derived,
eco-friendly construction material with enhanced physi-
cal-mechanical properties, as well as maximum waste and
low raw material consumption. Hence, the novelty of this
study is to determine the feasibility of simultaneous use
of industrial mineral waste from stone cutting and polish-
ing processes (CW, GW) with marine biowaste (SW) as an
alternative to natural fine aggregates in flowable sand con-
crete production. For this, the natural sand was replaced by
combined recycled fine aggregates (CW, GW, and SW) at
0,5, 10, 15, 20, 25, and 30 wt%. The impact of these wastes
on the fresh and hardened properties of the FSC was exam-
ined using mini-slump flow diameter, V-funnel flow time,
compressive and flexural strength, dry density, ultrasonic
pulse velocity, water absorption, porosity accessible to
water, and scanning electron microscopy (SEM) analysis.

2 Experimental

2.1 Materials

2.1.1 Cement and marble powder

An ordinary Portland cement (OPC) CEMI 42.5 N and
marble powder (MP) obtained by grinding the white tiles
were used as cement and filler, respectively. The chemi-
cal composition determined by the XRD analysis and the
physical properties of cement and MP are listed in Table 1.

2.1.2 Natural and recycled aggregates

Siliceous sand with grain size varying between 0.08 and
5 mm was used as natural sand (Fig. 1). The off-cuts of floor
tiles and granite from the industry landfill are crushed and
ground to create the ceramic and granite waste aggregates,

Table 1 Chemical composition and physical properties of cement and MP

Chemical components (wt%) OPC MP
SiO, 23.83 0.27
AlLO, 6.05 4.39
Fe,O, 4.66 0.12
CaO 56.35 94.31
MgO 2.44 0.56
K,0 0.83 -
Na,0 0.58 -
SO, 2.37 0.06
CaO, . 0.66 0.19
Lor 2.23 -
Physical properties

Specific density (g/cm?) 3.1 273
Specific surface area (cm?/g) 3420 2700

* Loss on ignition
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Fig. 1 Appearance of natural sand (NS), ceramic waste (CW), seashell
waste (SW), and granite waste (GW)

which are then sieved through a 5 mm sieve to create
a 0/5 class sand (Fig. 1). Seashells collected from the sea
oyster family that were rejected in the littorals were used
as a sand substitute in this study. After they were immersed
in water for 24 h and thoroughly scrubbed with a brush to
remove salt and contaminants, especially organic ones, they
were dried for an hour at 40 + 5 °C for a constant weight [31],
then crushed, powdered, and sieved through a 5 mm sieve to
produce the recycled sands as shown in Fig. 1. The SEM
images of NS and recycled aggregates shown in Fig. 2
demonstrate the rounded shape and smooth texture for NS
particles and the angular shape and rough surface of recy-
cled grains. The particle size distributions of NS, CW, GW,
and SW, as well as their physical properties and chemical
composition, are shown in Fig. 3 and Table 2, respectively.

2.1.3 Water and admixture

Drinking water with apH between 6.5 and 8, confirming the
NF EN 1008 standard [43], was used in this study for mix-
ing the mixtures and preserving the samples. The admix-
ture used is a third-generation, high-water-reducing
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Fig. 2 SEM micrographs of natural sand (NS), ceramic waste (CW),
seashell waste (SW), and granite waste (GW)
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Fig. 3 Particle size distribution of natural sand, ceramic waste, seashell

waste, and granite waste

Table 2 Chemical composition and physical properties of NS, CW, GW,

and SW

Chemical components (wWt%) NS CwW GW SW
SiO, 90.35 62.5 51.29 0.11
AlLO, 4.56 16.4 20.47 17.6
Fe,0, 0.51 5.7 12.58 0.10
CaO 1.67 9.2 11.88 81.5
MgO 0.15 2.2 5.51 0.22
K,0 1.92 3.9 1.47 -
Na,O - - 1.36 -
SO, 0.7 0.2 0.27 0.11
Physical properties

Specific density (g/cm?) 2.63 2.50 2.51 2.82
Fineness modulus 2.33 2.66 2.68 2.79
Water absorption (wt%) 0.96 3.83 0.34 2.93

superplasticizer based on polycarboxylate. It is sold in
liquid form under the brand name "MEDAFLOW30" and
characterized by a yellowish color with a solids content
of 30 wt%, a specific gravity of 1.08 g/cm?, a pH equal to
6.25, and a chlorine content of less than 1 g/L.

2.2 Concrete mix design

The theoretical method suggested by Sablocrete [44] was
used to determine the composition of all FSC mixes, the
cement and filler contents of 404 kg/m? and 202 kg/m’,
respectively. The water-to-powder ratio (W/P) and the
sand-to-powder ratio (S/P) were maintained constant
at 0.44, and 2.31, respectively. The superplasticizer-to-
cement ratio was selected for each mix to improve the
fresh FSC flowability and homogeneity. A control mix
(CFSC) with 100% natural sand and six other mixes con-
taining 5, 10, 15, 20, 25, or 30% CW, GW, and SW in

place of fine aggregate were made in this study (Table 3).
The mix proportions for each 1 m*® of FSC mixture
(by mass) are given in Table 4.

To produce the different FSC mixes, the mixing proce-
dure can be divided into three parts. For the first half-min-
ute, the cement and aggregate were mixed together. 70% of
the mixing water was then added, and the mixing was con-
tinued for 1 min. After that the superplasticizer mixed with
the remaining 30% water was added and mixed for 1 min.
The mixing was paused for 2 min to rest. Finally, before
discharging the product, the FSC was mixed again for 1 min
to guarantee the homogeneity of the FSC mix [45].

2.3 Casting and testing

All FSC mixes were manufactured in the laboratory at
20 °C and 50% relative humidity, using a 5L rotary mixer.
Following the completion of the mixing procedure, many
experiments were performed on the FSC mixes to evaluate
their fresh and hardened properties. Fig. 4 illustrates the
various tests done on the FSC mixes.

2.3.1 Fresh concrete tests

According to The European Federation of Specialist
Construction  Chemicals and Concrete Systems
(EFNARC) [46], the mini-slump flow diameter and
V-funnel flow time produced by MATEST were used to
evaluate the workability of the FSC mixture. Based on the
results of these tests, the ideal superplasticizer dosage that
produces no bleeding with high fluidity and filling capac-
ity of the FSC mix was determined.

2.3.2 Hardened concrete tests

After 24 h of casting of the FSC mixes in different molds
without vibration and compaction, the specimens were
removed from the molds and stored in a lime-saturated
water tank at 20 °C until the test age. Different tests in
the hardened state were carried out on three specimens
for all FSC mixes, and the average values are reported.

Table 3 Proportions of waste in FSC mixes (Wt%)

Mix GW CcwW SW
CFSC 0 0 0
FSC5W 5 5 5
FSC10W 10 10 10
FSCI5W 15 15 15
FSC20W 20 20 20
FSC25W 25 25 25
FSC30W 30 30 30
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Table 4 Mix design for 1 m?® of FSC mixes
Mixes
Constituent CFSC FSC5W FSC10W FSCI5W FSC20W FSC25W FSC30W
Cement (kg/m?) 404 404 404 404 404 404 404
Marble powder (kg/m?) 202 202 202 202 202 202 202
Sand (kg/m?) 1400 1190 980 770 560 350 140
Ceramic waste (kg/m?®) 0 66.80 133.10 199.60 266.20 332.70 392.20
Granite waste (kg/m?) 0 66.80 133.60 200.40 267.20 334 400.80
Seashell waste (kg/m?) 0 75.30 150.60 225.90 301.30 376.60 451.90
Water (L/m?) 267.52 267.52 267.52 267.52 267.52 267.52 267.52
Superplasticizer (wt%) 0.8 0.85 0.85 0.9 0.95 1 1.2
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Fig. 4 Tests carried out on the FSC mixtures in the fresh and hardened state

The compressive and flexural strength were tested on
40 x 40 x 160 mm prismatic specimens at 7, 28, and
90 days of age, using a hydraulic crushing machine (ELE)
with a capacity of 250 kN according to NF EN 196-1 [47].
A nondestructive ultrasonic pulse velocity (UPV) test
using a Pundit apparatus (Proceq), that gives an idea of
the homogeneity and porosity of the specimens was per-
formed on 100 x 100 x 100 mm cubic specimens aged
28 days in accordance with ASTM C597-16 [48] and
NF EN 12390-7 [49] standards. The dry density, porosity,
and water absorption by immersion tests were carried out
on 40 x 40 x 160 mm prismatic specimens at 28 days of
age in accordance with ASTM C642-13 [50] and NF P18-
459 [51], respectively. Finally, a VEGA3-TES CAN SEM
(TESCAN Orsay Holding, Brno, Czech Republic) with an
accelerating voltage of 25 kV was used to understand the
microstructure of some FSC mixes.

3 Result and discussion

3.1 Workability

The characterization of fresh concrete workability is
an important parameter that determines its ease of imple-
mentation. Fig. 5 presents the slump flow diameter and

CFSC ~ FSC5W FSCIOW FSCISW FSC20W FSC25W FSC30W
Mix
Fig. 5 Influence of CW, GW, and SW on the slump-flow diameter and
the flow times of FSC mixes

V-funnel flow time results for all FSC mixes. It was dis-
covered from Table 4 that the SP demand increases as the
content of recycled aggregates increases, with a dosage
varying from 0.8% to 1.2%. The SP content in all mix-
tures with recycled aggregates was higher than that in the
control mixture. It should be noted that each percentage of
CW, GW, and SW required the necessary amount of SP to
achieve the target workability of FSC blends without seg-
regation and bleeding. As can be seen from Fig. 5, for all
FSC mixtures, the flow diameter was found to be in a range
of 270 + 50 mm and 320 £+ 50 mm, and the flow times were
steady and varied between 2 and 10 s, indicating good work-
ability that meets the EFNARC recommendations [46].
Fig. 5 shows that the spread diameter of the FSC has
decreased and the flow time has significantly increased
with the increasing substitution of sand by CW, GW, and
SW. The better flow time results were observed for the
FSC5W and FSC10W mixes as compared to the control
one. At higher substitution levels (30%), an increase of
up to 32% in the V-Funnel flow time was observed when
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compared to the CFSC. Similarly, Gautam et al. [52] found
satisfactory fresh properties as per the EFNARC stan-
dard limit for SCC with bone china ceramic waste pow-
der (BCCWP) and GW. However, for a mix with 30%
BCCWP and 40% GCW, a decline in workability was
observed. Mohammadsalehi and Mostofinejad [53] also
showed a reduction in SCC workability by adding more
than 10% granite sludge as a natural sand replacement.
This decrease in workability was caused by the
rough surface and high angularity of the recycled par-
ticles (Fig. 2), which favored the frictional resistance
between these recycled aggregates and cement particles
and may have resulted in an increase in mix flowabil-
ity [29, 37, 54, 55]. Additionally, the presence of voids at
the surface of recycled grains results in their increased
water absorption characteristics (Table 2) [6, 29, 56].
As a result, the combination of CW and GW with SW had
a negative effect on the flow of FSC, and it is in agree-
ment with several researchers, who noticed a decrease in
the workability of concrete when using CW, GW, and SW
as fine aggregate in the concrete mix design [33, 57-59].

3.2 Compressive and flexural strength

Fig. 6 shows the compressive and flexural strength results
of the various FSC mixtures at 7, 28, and 90 days of hard-
ening. As shown in Fig. 6, for all test periods, all FSC
mixtures with combined recycled aggregates gave higher
mechanical strengths compared to the control mixture,
with an improvement in compressive and flexural strength
by the increasing content of CW, GW, and SW. For instance,
increases of about 67%, 31%, and 38% for the compres-
sive strength and 150%, 148%, and 92% for the flexural
strength were observed at 7, 28, and 90 days, respectively,
for the mixture with 30% recycled aggregates compared to
control FSC. This improvement in compressive and flex-
ural strength is due to the higher hardness of CW, GW, and
SW aggregates compared to natural sand, as well as their
irregular shape and rough surface (Fig. 2), which provides
a larger surface area resulting in strong bonding, interfa-
cial transition zone (ITZ), between the cement paste and
recycled aggregate particles [60—63].

Compared to the control FSC, it is clear that the increase
in compressive strength at 90 days is significantly greater
than the increases at 7 and 28 days. This may be due to
the more excellent water absorption of ceramic and seca-
shell aggregates compared to natural sand (Table 2), which
provides a suitable environment for additional hydration
of cement and an increase in mechanical strength [64].
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Fig. 6 Compressive and flexural strength of FSC mixes with different
percentages of CW, GW and SW

Additionally, in the humid curing environment, the cement
paste is hydrated more effectively, minimizing endoge-
nous shrinkage, which eventually increases strength [65].
The improvement in mechanical strength with the integra-
tion of CW, GW, and SW was in accordance with those
observed in several research studies [19, 55, 58, 66-71].
Jain et al. [72] found an increase of about 20% in compres-
sive strength of SCC with up to 40% GW incorporation as
fine aggregates. Mohammadsalehi and Mostofinejad [53]
also found up to a 5.9% increase in SCC compressive
strength by adding 20% granite sludge as a natural sand
replacement. According to Wang et al. [73], the pres-
ence of WG facilitates the generation of calcium silicate
hydrate (C—S—H), enhancing the interfacial transition



zone, and improving aggregate strength. Vilas Meena
et al. [74] found that replacing 30% of natural sand with
ceramic waste tile (CWT) exhibited the highest compres-
sive strength in the SCC.

3.3 Bulk density and ultrasonic pulse velocity (UPV)
The effect of CW, GW, and SW on the dry bulk density
and UPV results at 28 days of age is depicted in Fig. 7.
These results show an increase in bulk density and UPV
values as the percentage of CW, GW, and SW increases.
For instance, the UPV values increased by 0.01, 0.40, 0.75,
1.77, 3.34, and 5.51% for FSC5W, FSC10W, FSCI5W,
FSC20W, FSC25W, and FSC25W mixes, respectively,
compared to the control mixture. This increase in dry den-
sity may be due to the higher density of SW compared to
natural sand, as well as to the greater filling of CW and
GW grains (Fig. 3), which minimize the interconnected
voids and increase compactness of mixes, thus improv-
ing the density of the concrete matrix as reported by other
authors [4, 38]. Additionally, the good intergranular con-
tinuity between particles due to the angular shape of CW,
GW, and SW grains could decrease the pore size in the
mixes, which consequently increases the UPV [75].

3.4 Porosity and water absorption by immersion

Fig. 8 shows the effect of CW, GW, and SW on the porosity
and water absorption results of the FSC mixes after 28 days
of hardening. It is clearly shown in Fig. 8 that the poros-
ity and water absorption decreased proportionally with the
increasing rate of CW, GW, and SW, and the mixture with
30% waste replacement has the lowest porosity and water
absorption values. For instance, the porosity of the control
FSC was 11% and fell to 10% and 9% for FSC15W and
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Fig. 7 Dry bulk density and ultrasonic pulse velocity of different
FSC mixes
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Fig. 8 Porosity and water absorption by immersion of different
FSC mixtures

FSC30W, respectively. This decrease in porosity and water
absorption may be justified by the high amount of fine par-
ticles, rough morphology, and angular shape of CW, GW,
and SW (Figs. 1 and 2), which led to refilling the concrete's
pores and densifying the microstructure of FSC mixtures,
as well as improving the interlocking between the cement
paste and aggregate in ITZ [76]. This porosity and water
absorption decrease tendency with the use of CW, GW,
and SW as fine aggregate has also been noted by other
researchers [38, 77-79]. According to Binici and Aksogan
[33], concrete with 10% granite aggregates had a capillary
absorption coefficient that was 32% lower than the control
concrete. In contrast, Vijayalakshmi et al. [32] found an
increase in water absorption in concrete by adding granite
powder. Jain et al. [72] showed that the replacement of nat-
ural fine aggregates with up to 50% GW exhibited reduc-
tions by around 53%, 15%, and 24% in water permeability,
water absorption, and sorptivity of SCC, respectively.

Moreover, the results of the porosity confirm those for
compressive strength and ultrasonic pulse velocity, as
can be seen from Fig. 9. According to Fig. 9, the hard-
ened properties of FSC containing CW, GW, and SW are
strongly related to each other, with high coefficients of
determination (R? > 0.93), indicating a decrease in com-
pressive strength and UPV as the porosity increases.

In addition, it is clearly shown from Fig. 9 that both com-
pressive strength and ultrasonic pulse velocity show a break-
ing point at around 9.6-9.7 porosity, which is corresponding
to FSC with 15% of mixed wastes (FSC15W) indicating that
the UPV significantly increased for mixed containing more
than 15% of waste, with a porosity less than 9.7%. This can
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Fig. 9 Relationship between porosity, compressive strength and UPV of
FSC mixtures

be related to an increased density of the mixtures with the
incorporation of waste materials, particularly SW. However,
the compressive strength values appear to have been grow-
ing slowly for mixes with above 15% of mixed wastes.

3.5 Microstructural analysis

A SEM analysis was used to look at the internal behav-
ior of some FSC mixes that contained combined CW, GW,
and SW. The SEM images of CFSC, FSC5W, FSC20W, and
FSC30W mixtures are presented in Fig. 10. As shown in
Fig. 10, the SEM images indicate voids, cracks, and ITZ and
calcium silicate hydrate (C—S—H) gel of the examined FSC
mixtures. It is clearly shown that FSC20W and FSC30W

7/2022 mag WD HV HFW pressure

det 12/27/2022 mag WD pressure
:38AM 1000 x 11.4mm 5.00kV 592um  1.00E-3Pa Pa

ETD  8:50:53AM | 1000x 11.4mm /S.00kV 270 um

50 um ;

Quattro

pressure

ETD  9:08:33AM 1000 10.5mm 1.00E:3Pa

Fig. 10 SEM images of CFSC, FSC5W, FSC20W, and FSC30W mixtures

mixtures have a more consistent and denser microstructure
between the paste and aggregates than FSC5W and CFSC,
which have more pores and cracks and may negatively
impact the cohesion between the matrix and aggregates.
FSC30W was the mix with the best mechanical properties,
as was previously mentioned. It was shown to exhibit max-
imum values for all studied properties thanks to the for-
mation of an additional C—S—H gel, thus improving fill-
ing ability and providing a better cement matrix to the
aggregate interface (ITZ) and forevermore enhancing the
strength and other mechanical properties of the concrete
[27, 38, 80]. Jain et al. [72] showed a denser microstruc-
ture in SCC containing up to 50% granite waste aggregate
(GWA) as fine aggregates. Gautam et al. [21] also showed
a dense microstructure and higher hydration products and
lesser permeable voids with the use of 10% BCCW and
30% GW in SCC. According to Gautam et al. [38], this
improvement in performance of FSC was mainly due to the
pozzolanic behavior and finer particle size of CW and SW
and the better filling property of GW.

4 Conclusions

The present study examined the combined use of CW,
GW, and SW as fine aggregates to develop an ecofriendly
fluid sand concrete. This new building material is a good
strategy to solve the problems of sustainable solid waste
management while saving landfills, preserving natu-
ral resources, and conserving the ecosystem. From the
obtained finding, the following conclusions can be drawn:

* The addition of up to 30% of CW, GW, and SW in
a combined manner is feasible in terms of fresh FSC
characteristics since all mixtures exhibit flow char-
acteristics within an acceptable range according to
EFNARC recommendations with a minimum dos-
age of superplasticizer.

* For all ages, the combined use of CW, GW, and
SW instead of natural sand in FSC has improved
the compressive and flexural strengths. The 90-day
compressive and flexural strengths were improved
by 38% and 92%, respectively, for FSCs with 30%
use of CW, GW, and SW.

* For all curing ages, UPV and bulk density increase
as the amount of CW, GW, and SW increases in FSC.

* With up to 30% CW, GW, and SW, both porosity and
water absorption were decreased by 20%, confirm-
ing the excellent durability of FSC mixtures with
these recycled aggregates.



» According to SEM analysis, the addition of up to 30%
of CW, GW, and SW as sand substitution improved
the microstructure of FSC and developed a stronger
bond between cement paste and aggregates.

Based on their improved physical-mechanical proper-
ties and environmental advantages, FSC mixes with 30%
recycled waste showed the most balanced performance
overall, making them perfect for application in heavily
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