Abstract
This review article describes the main results of our research during the last 5-6 years. A series of new rearrangement reactions was discovered and used for the synthesis of novel heterocyclic compounds: furo[2,3-f]isoquinolines, furo[3,2-f]quinolines, benzo[c]xanthene, benzo[k]chromene, benzo[a]xanthene, benzo[f]chromene, furo[2,3-f]isoquinoline, spiro[furo[3,2-f]quinoline, cycloalkanoindoles, and benzotriazines.

Keywords

1 Introduction
Since their discovery, sigmatropic rearrangements have been widely studied and have stimulated the interest of organic chemists. These reactions followed by other transformation are among the most efficient and useful strategies for constructing complex organic compounds.

Among the rearrangement reactions Claisen rearrangement got special attention, because of its simplicity, the predictable stereochemical outcome, and the products could be converted into a wide variety of commercially valuable chemicals [1-3]. Among the different types of Claisen rearrangements aza-Claisen rearrangement was considered as a more complicated variant [4]. Owing to the more forcing conditions – the process needed about 25 kJ/mol more activation energy than its oxy-analogue – it was rare applied in the synthesis of heterocycles. However, after the discovery of the catalysis of Claisen rearrangements, the aza-Claisen rearrangement got significant attention, too [5,6].

In a continuation of our work on the synthesis of biologically active compounds, we have focused our attention on the application of new rearrangement reactions in the synthesis of novel heterocycles. We also examined the microwave-accelerated Claisen and aza-Claisen rearrangements. These reactions coupled with acid-catalyzed cyclization were used for the synthesis of a series of new three and four fused heterocycles and the preparation of the carba analogs of physostigmine. One of the crucial reaction steps was also a rearrangement reaction in our synthesis of potential UV-filters.

The present brief review summaries the results of our work in the past five to six years.

2 New rearrangement reactions
2.1 Rearrangement of allyloxyisoquinolines. Preparation of furo[2,3-f]isoquinolines

The furo[3,2-f]isoquinolines were found to possess phosphodiesterase IV inhibitory activity and are considered to be anti-arteriosclerotic agents [7]. The structural isomer furo[2,3-f]isoquinolines have not received as much attention – only one synthetic method has so far been reported for their preparation [8].
Our interest in the preparation of new heterocyclic compounds which might be promising in the treatment of psychiatric disorders prompted us to elaborate a novel method for the preparation of new furo[2,3-f]isoquinolines and their cycloalkano derivatives [9].

Our synthesis is depicted in Scheme 1. Treatment of isoquinolin-5-ol (1) with NaH afforded the corresponding anion which was reacted with allyl bromide (2a). The allyl isoquinolinyl ether (3a) formed was subjected to microwave irradiation assisted [3,3] rearrangement to give 4a. Acid-catalyzed intramolecular cyclization of the latter yielded furo[2,3-f]isoquinoline (5a).

Likewise, reaction between the sodium salt of 1 and methallyl chloride (2b) afforded an ether (3b). However, thermal rearrangement of this ether (3b) yielded an unexpected product (4b). The formation of this compound could be the following: the initial step a [3,3]-sigmatropic rearrangement of the ether (3b) afforded intermediate 4c which then underwent a homo[1,5]-H shift to yield compound 6 [Scheme 2]. A [1,5]-H shift on compound 6 led to the formation of compound 4b which by intramolecular cyclization furnished 5b in excellent yield.

2.2 Rearrangement of allyloxyquinolines. Preparation of furo[3,2-f]quinolines

Furo[3,2-f]quinolines have not received much attention. So far only three papers have been published dealing with the preparation of this ring system [10-12]. Following our synthetic efforts toward the preparation of new heterocyclic compounds which might be useful intermediates for the developments of molecules of pharmaceutical or biological interest, we elaborated new synthesis generally applicable for the preparation of furo[3,2-f]quinolines [13].

Here, we used essentially the same synthetic strategy as was applied for the preparation of the isomeric furo-isoquinolines (Cf. 2.1). Namely, ethers of quinolin-6-ol (9, Scheme 3) were prepared by the reaction of the sodium salt of quinolin-6-ol (7) with the appropriate allyl bromide (8). The allyl ether (9a) was then subjected to thermal [3,3] rearrangement in a microwave oven to give compound 10a. Acid-catalyzed intramolecular cyclization of this rearrangement product afforded a furo[3,2-f]quinoline (11a).

Starting with compound 9b, the microwave assisted rearrangement gave two products 10b and 10c in a ratio 3:1. Compound 10b was formed in the normal Claisen rearrangement and it afforded the wanted furo[3,2-f]quinoline (11b) by acid promoted ring closure.

Compound 10c took its origin from three consecutive reaction steps (Scheme 4). A Claisen rearrangement of ether 9c yielded intermediate 10b which then underwent a homo[1,5]-H shift to give compound 12. Further [1,5]-H migration on the intermediate led to the formation of 10c which afforded furo[3,2-f]quinoline (11c) by acid-catalyzed ring closure.
2.3 Rearrangement of aryl geranyl ethers.

Aryl geranyl ethers were isolated from the New Zealand liverwort (*Trichocolea molissima*) and showed cytotoxic effects against kidney cells and in AIDS-related lymphoma screens [14,15]. Several geranyl phenyl ethers were prepared and tested for inhibition of insect growth. The epoxide of these compounds showed significant insect juvenile hormone activity [16]. Furanone, coumarine and naphthol derivatives containing a geraniol-like fragment have been shown to process significant in vitro cytostatic activity [17]. These interesting biological effects of aryl geranyl ethers prompted us to prepare a series of these compounds and to elaborate short and efficient method for the conversion them into new heterocyclic compounds [18].

Geranyl naphth-1-yl ether (13, Scheme 5) was prepared from naphthalene-1-ol and geranyl bromide using the usual method. In the presence of PTSA, the thermal rearrangement of this ether afforded two unexpected products 17 and 18. A plausible reaction path for the formation of benzo[h]chromene and benzo[c]xanthene (17 and 18, respectively) may be a [1,3]-alkyl shift, followed by acid catalyzed intramolecular cyclization (15 → 17 and 16 →18).

At higher temperature the rearrangement of ether 13 led to a para-substituted naphthalene derivative 20. Here, a [3,3]-sigmatropic rearrangement afforded intermediate 19, which then underwent another [3,3]rearrangement (Cope rearrangement) to give compound 20. In microwave oven at higher temperature (170 °C) ether 13 decomposed and only naphthalene-1-ol was isolated.

Similar results were obtained with geranyl naphth-2-yl ether (21, Scheme 6). In toluene solution, the acid-initiated rearrangement reaction yielded intermediate 22, which underwent subsequent acid-catalyzed cyclizations (22 →23→25 and 22 →24→26) to afford benzo[f]chromene 25 and benzo[a]xanthene 26 (in a ratio 1:3).
Attempted thermal rearrangement in boiling chlorobenzene or under microwave irradiation resulted only the decomposition of ether 13, and naphthalene-2-ol was isolated.

Geranyl isouquinolinyl ether was prepared by the reaction between isouquinolin-5-ol (27) and geranyl bromide. The product 28 underwent rearrangement in a microwave oven to furnish furo[2,3-f]isouquinoline as a mixture of stereoisomers (32a and 32b, Scheme 7). A plausible mechanism for the formation of compound 32 was based on an abnormal Claisen rearrangement depicted in Scheme 7. A [3,3]-sigmatropic rearrangement of ether 28 afforded intermediate 29, which then underwent a homo[1,5]-H shift to yield intermediate 30. Further [1,5]-H migration on the latter led to the formation of compound 31, which by intramolecular cyclization furnished compound 32 as a 3:2 mixture of cis and trans-isomers.

Geranyl quinolin-8-yl ether (33, Scheme 8) was prepared from quinolin-8-ol and geranyl bromide according to the published procedure [19]. Thermal rearrangement of 33 in boiling toluene led to the formation of the Claisen product 34 in moderate yield (28%). The microwave assisted reaction gave better result and compound 34 was isolated in 61% yield.

Surprisingly, acid-catalyzed intramolecular cyclization of compound 34 afforded a stereoisomeric mixture of spiro compounds (37a and 37b). These unexpected products took their origin from consecutive [1,2]-alkyl migration, [1,2]-H shift, and cyclization reaction (34→ 35 →36→37).

Reaction of ether 33 with sulfuric acid at elevated temperature resulted only in the formation of compound 38 as the result of acid-catalyzed ring closure of the geranyl moiety.
3 Aza-Claisen rearrangement of
\(N\)-(cycloalkenylmethyl)benzeneamines.
Synthesis of cycloalkanoindoles, the carba analogs of physostigmine

Alzheimer’s disease is a progressive dementia associated with the cholinergic system [19,20]. Acetylcholinesterase enzyme rapidly metabolizes the naturally released acetylcholine causing a lack in this neurotransmitter [21]. An alkaloid of the African Calabar bean (Physostigma venosenum), (-)-physostigmine, inhibits the acetylcholinesterase by transcarbamyla-
tion [22,23]. This inhibition reduces the rate of acetylcholine’s hydrolysis in the brain and increases its cholinergic activity.

Physostigmine (eserine) and its phenylcarbamoyl derivative have been used medically to improve memory and relief in Alzheimer’s disease [24-26].

Nowadays, cholinesterase inhibitors – donepezil (aricept), rivastigmine (exelon, an aryl carbamate derivative), and galantamine (nivalin) are also used for the treatment in the mild to moderate stages of Alzheimer’s disease.

The growing need for new acetylcholinesterase inhibitors in clinical trials and application had focused interest on the preparation of physostigmine congeners. For instance, the pyrrolo[2,3-b]indole skeleton was replaced by furo[2,3-b]indole. However, the carba analogs in which one of the nitrogen-containing ring had been substituted by cycloalkano skeleton, have not got attention.

Our general interest in the preparation of new heterocyclic compounds, which might be promising in the treatment of mental disease, prompted us to elaborate methods for the synthesis of the carba analogs of physostigmine [27-30].

In our synthesis the key step was an aza-Claisen rearrangement followed by an Alder-ene reaction of the intermediate. Aza-Claisen rearrangement is also a thermal [3,3]sigmatropic rearrangement which shows a suprafacial reaction pathway (Scheme 9) [3-6,31,32]. The aza-Claisen rearrangement can be efficiently catalyzed with acid and Lewis-acids.

In Alder-ene reaction a four electron system including an alkene \(\pi\)-bond and an allylic C-H bond react with an enophilic olefin in a \([4+2]\)-addition reaction. In this pericyclic reaction a double bond is shifted and new C-H and C-C \(\sigma\)-bonds are formed (Scheme 9) [33,34]. Alder-ene reaction can also be catalyzed by Lewis-acid.

Synthesis of the carba analogs of physostigmine is depicted in Scheme 10. The reaction of aniline derivative (38) with 1-(chloromethyl)-cycloalkan-1-ene (39) gave the expected amine (40), which was subjected to thermal rearrangement using BF\(_3\)OEt\(_2\) as a catalyst. The aza-Claisen rearrangement...
followed by a ring closure reaction afforded two products: compound 44 and side product 43. In case of cyclopent-1-ene (39a, \(n = 0 \)), only the cis-isomer was formed. However, cyclohex-1-ene and cyclohept-1-ene derivatives (39b, \(n = 1 \) and 39c, \(n = 2 \), respectively) afforded a 3:1 mixture of cis- and trans-stereoisomers, which was separated by column chromatography. Side product 43 was formed by the migration of the carbon-carbon double bond.

For the preparation of the carba analog of physostigmine the cis-44a-c was treated with BBr\(_3\) and the hydroxy derivatives 45a-c formed were then reacted with phenyl isocyanate to afford the carba analog of physostigmine 46a and its congeners 46b,c.

Earlier we had considered the mechanism of the key step as aza-Claisen rearrangement followed by aromatic stabilization and nucleophilic attack of the nitrogen on the exo-double bond. But further investigation revealed another possible mechanism. Especially the \(\text{ab initio} \) DFT calculation on the transition states leading from 40c to 44c.

In the transition state of the first step (40c → 41c), there was a rather large difference between the energies of the chair and the boat geometry (\(\Delta \Delta E = \Delta 7.3 \text{ kJ mol}^{-1} \)), showing improbable boat conformation of the transition state in the aza-Claisen rearrangement. The cis-diastereoselectivity of the reaction can be rationalized on the above finding (Table 1 and Figs. 1 and 2).
Table 1 Calculation on the formation of compound 44c.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>ΔE(kJ mol⁻¹)</th>
<th>Reagent</th>
<th>ΔE(kJ mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting compound 40c</td>
<td>0</td>
<td>Starting compound 40c</td>
<td>0</td>
</tr>
<tr>
<td>Chair-TS-41c</td>
<td>234</td>
<td>Boat-TS-41c</td>
<td>251</td>
</tr>
<tr>
<td>Intermediate 40c</td>
<td>122</td>
<td>Intermediate 40c</td>
<td>133</td>
</tr>
<tr>
<td>(R,R,S,S) 41c</td>
<td>122</td>
<td>(R,R,S,S) 41c</td>
<td>133</td>
</tr>
<tr>
<td>TS-42c</td>
<td>358</td>
<td>TS-42c</td>
<td>361</td>
</tr>
<tr>
<td>Intermediate 42c</td>
<td>-2.7</td>
<td>Intermediate 42c</td>
<td>-2.7</td>
</tr>
<tr>
<td>TS-cis-44c</td>
<td>211</td>
<td>TS-trans-44c</td>
<td>235</td>
</tr>
<tr>
<td>TS-aza-Alder-ene reaction</td>
<td>288</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Energy diagram of the formation of compound 44c.

Fig. 2 Energy diagram of the aza-Claisen rearrangement followed by aza-Alder-ene reaction.

Surprisingly, the calculation for the transition state of the second step, aromatization, showed high energy (ΔE = 358 kJ mol⁻¹). For the closing step the transition state leading to the cis-product (44c) had lower energy than the corresponding “trans” (ΔΔE = -23.5 kJ mol⁻¹), suggesting that the “trans” reaction pathway was unfavorable, in accordance with experiment. We got also lower energy for the cis-product (44c) than for the trans-isomer (ΔΔE = -7.5 kJ mol⁻¹).

Due to the calculated high activation energy of intermediate 42, we considered another possible mechanism for this reaction. We found that an intramolecular aza-Alder-ene reaction might also take place. The calculated activation energy (41c → TS-41c → 44) was significantly lower than that calculated for the TS-42 (ΔΔE = 147 kJ mol⁻¹). Therefore, this two-step pathway with its low activation barrier may be regarded as the mechanism of the formation of compounds 44c. We had further evidence for this mechanism. We treated the isolated side product 43c with BF₃OEt₂ at 170°C for longer time, but no ring closed product 44c could be isolated. We observed only some degradation.

4 Synthesis of new potential UV-filters

As the result of the decreasing of the protective ozone layer, the exposure to ultraviolet light (UV) is increasing worldwide. UVA light (320-400 nm), which is approximately 90% of the UV light, can pass through window glass, penetrates into the dermis, and may cause tanning, wrinkling, and skin cancer. Malignant melanoma is the most harmful of all skin cancers. Recently, it has been increasing faster than any other cancer and regarding the number of cases it has more than doubled in the last five years. Therefore, protection against the UV light has been growing and is of crucial significance [35-41].

A number of molecules are employed as UV light protecting agents. Among them compounds having intramolecular H-bond are strong UV absorbers and show proper photostability. Mexoryl XL, a benzotriazole derivative, is widely used as UV stabilizers. In this molecule the photoinduced excited state returns to the ground state by a proton transfer and rapid non-radiative dissipation of the harmful UV energy. The relaxation mechanism involves intramolecular proton transfer (ESIPT) from the S₁ state occurring in the femtosecond timescale, then radiative decay of the excited molecule (fluorescence emission with a large shift, λem ~ 640 nm) is followed by back proton transfer, causing a return to the ground state (back ESIPT) [42-45].

Recently we have elaborated new economical method for the preparation of 2-(2'-hydroxyphenyl)benzotriazoles (51, 52, Scheme 11) by the reduction of compounds 50 with benzyl alcohol [46]. These important building blocks were then used for the preparation of new potential UV-filters. The synthesis followed is shown in Scheme 11.

Treatment of the aniline derivatives (47) with NaN₃ and HCl afforded compounds 48, which was coupled with phenols (49). The products (50) were treated with benzyl alcohol at 100°C to yield N-oxide (51) and at higher temperature benzotriazole derivatives (52) were isolated in excellent yield. Compounds 52 were heated with methallyl chloride in the presence of K₂CO₃ and KI to give ethers 53. Thermal rearrangement of the products in N,N-dimethylaniline afforded compounds 54.
which were then silylated using heptamethyltrisiloxane and Karlstedt catalyst \([\text{Pt}_2(\text{divinyltetramethyldisiloxane})_3]\) to give the desired products 55 in good yield [47-49].

Compounds 55 were evaluated for their photochemical behavior as potential UV-filters. The results are shown by the example of compound 55a. The absorption spectra of compound 55a showed two maxima, \(\lambda_1\) at ca. 300 nm and \(\lambda_2\) at ca. 350 nm, in ethanol, and after excitation a new emission spectra was observed at \(\lambda_1\) at 590 nm. Moreover, steady state photolysis showed that this compound exhibits a potential applicability as UV-filter due to its UVA-absorption capability and its photostability.

5 Concluding remarks

New methods have been elaborated for the economical preparation of novel heterocyclic compounds, the carba analogs of physostigmine, and potential UV-filters. The key step of these syntheses was a rearrangement reaction: Claisen rearrangement, "abnormal" Claisen rearrangement, and aza-Claisen rearrangement. These rearrangement reactions are excellent tools in the preparation of complex heterocyclic compounds.

Acknowledgements

The financial supports for this investigation provided by ISDIN (Barcelona, Spain) and Bayer CropSciences (Frankfurt, Germany) are greatly appreciated.

We are grateful to László Könczöl, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, for helpful discussion on the mechanism of combined aza-Claisen rearrangement and Alder-ene reaction.

References

[4] DOI: 10.1021/cr020703u
[8] DOI: 10.1021/cr0006100i
[10] DOI: 10.1007/b96891

DOI: 10.1002/jps.3030371111

DOI: 10.1016/j.mrfmmm.2004.09.012

DOI: 10.1073/pnas.0401141101

DOI: 10.1034/j.1600-0536.2002.460605.x

DOI: 10.1016/s0009-2614(96)01268-7

DOI: 10.1021/j100158a008

DOI: 10.3987/com-09-11759

DOI: 10.2478/s11532-009-0150-8

DOI: 10.3390/molecules15096205

DOI: 10.3311/pp.ch.2012-1.01