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Abstract
The driving force of the formation of the homo- and heterochiral 
associates in the mixtures of chiral compounds is, probably, the 
effort of the system to separate the most symmetric associates 
from the less symmetric ones. A possible way to achieve 
separation of these associates is the distribution between 
two phases. Therefore, during the separation of (a certain 
part) diastereoisomers similar trends can be observed as in 
course of the distribution of enantiomeric mixtures between 
two phases, although in the first case a third chiral compound 
(namely the resolving agent) is present. Of course in this case 
the formation of symmetrical associate is not so obvious as in 
case of enantiomeric mixtures. It should be noted that thus the 
outcome may be modified by the intervention of kinetic control. 
It can be concluded that the structure of chiral compounds 
encodes the result of the (optical) resolution.

Keywords
resolution, resolving agents, racemic compounds, eutectic 
composition, conglomerate- and racemate behaviour, SDE

1 Introduction
In many cases, living organisms contain only one of the 

two enantiomers of the chiral molecules, but often racemic 
compounds (1:1 mixture of the two enantiomers) are obtained 
in the chemical syntheses. The biological activity of the two 
antipodes may be different or even opposite, so enantiomeric 
separations are necessary and inevitable.

The resolution methods of racemic mixtures and 
enantioselective synthetic methods are extensively covered in 
the literature. [1]

Our statements are based on the fundamental recognition of 
Pasteur, who has recognized in 1848, that racemic mixtures can 
be separated into enantiomers by crystallization. [2] He also 
established that the crystallization can be controlled selectively 
by adding pure enantiomers into the supersaturated solution of 
the racemic compound (Scheme 1).
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 Scheme 1 Separation of enantiomers by induced crystallization

During the separation of racemic compounds, always 
a mixture of enantiomers is obtained. This enantiomeric 
mixture can be separated into pure the enantiomer and racemic 
proportion by further separations (Scheme 2).

Dn ≥ Lm → DDn-m + DLm

Scheme 2 The general scheme for „Self disproportion of enantiomers” (SDE) [3]

The behavior of enantiomeric mixtures has already been 
discussed by Rooseboom [4] in 1899, who has established 
that in case of conglomerates (approximately 20% of the 
enantiomer mixtures) always the pure enantiomer crystallizes, 
while in case of racemate type compounds (about 80% of the 
enantiomer mixtures) [5] the crystalline phase have almost 

1 MTA-BME Organic Chemical Technology Research Group, Hungarian 
Academy of Sciences, H-1111 Budapest, Hungary
2 Department of Organic Chemistry and Technology, Faculty of Chemical 
Technology and Biotechnology, Budapest University of Technology and 
Economics, H-1521 Budapest, Hungary
* Corresponding author, e-mail: epalo@mail.bme.hu

59(1), pp. 26-37, 2015
DOI: 10.3311/PPch.7328

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Chemical Engineering

mailto:epalo@mail.bme.hu 
http://dx.doi.org/10.3311/PPch.7328


27Regularities between Separations of Enantiomeric and Diastereoisomeric Mixtures� 2015 59 1

racemic composition when the starting enantiomeric excess of 
the enantiomeric mixture is below the eutectic composition. The 
eutectic composition is characterized by the fact that both solid 
and molten phases contain same ennatiomeric composition. 
The enantiomeric mixtures having an ee above the eutectic 
composition behave similarly to the conglomerates.

Our research group utilizes the ee-ee0 diagrams (where 
ee is the enantiomeric purity of the crystalline phase and ee0 
is the initial enantiomeric composition) for the presentation 
of results (Fig. 1). In this manner not only the distribution 
between solid-liquid phases, but the distribution between any 
two phases can be shown.

These diagrams are in good correlation with the corresponding 
melting point diagrams of conglomerates or racemates. This 
similarity is expected because the distribution between the solid 
and the liquid phase is the key in both cases.

2 Separation of enantiomeric mixtures
2.1 Crystallization from melt

In case of conglomerates, enantiomeric enrichment is 
expected by the separation of theb crystalline phase from the 
melt of an enatiomeric mixture. The resolution of an intermediate 
of Prostaglandin (PG) is shown on Scheme 3 as an example.

In this case the enantiomeric mixture separated from the 
mother liquor6 of the resolution contains the enantiomer in 
excess (1R,5S)-PG that is inadequate to produce Prostaglandins. 
(Scheme 3). That is why the separation of the unwanted 
enantiomer and the racemic portion was necessary.

During the crystallization of the enantiomeric mixture of 
trans-chrysanthemic acid (CHRA) (racemate behaviour) 
from melt (Scheme 4), the enantiomer in excess with higher 
enantiomeric purity than the initial composition remains in the 
melt and the crystalline phase with a lower ee is formed at the 
same time. [7]

2.1.1 Crystallization from solvent
The separation of enantiomeric mixtures can be carried 

out by crystallization from an adequate solvent. For example, 
the separation of the non-racemic mixture of Diltiazem 
hydrochloride (DIL) was accomplished by crystallization 
from ethyl acetate (Scheme 5).

As the Diltiazem hydrochloride (DIL) is a conglomerate, 
the enantiomer in excess with an ee of 100% can be totally 
recovered from the crystalline phase, and the racemic portion 
may be separated from the solution.

During the recrystallization of enantiomeric mixture 
(Scheme 6) of the Grandaxine (GRAN) from ethyl acetate, 
[9] the racemic proportion crystallizes and an enantiomeric 
mixture with a higher ee than the initial composition remains 
in the mother liquor (racemate behaviour).

2.1.2 Partial precipitation
It is well known that solubility differences exist between 

derivatives of a given compound. This property may be 
exploited for the separation of enantiomeric mixtures into a 
more and a less pure fraction during partial precipitation.
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Fig. 1 The ee-ee0 diagrams obtained by preparative separation of enantiomeric mixtures, and the supramolecular associates presumable in solvent
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Scheme 4 The separation of the non-racemic enantiomeric mixture of CHRA by crystallization from melt.
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The enantomeric mixtures of Tisercin hidrochloride (TIS-HCl) 
(Levomepromazine) are water-soluble, but the TIS in neutral 
form is insoluble in water (Scheme 7). If the aqueous solution 
of KOH is added in equivalent amount to enantiomeric excess, 
the pure enantiomer crystallizes [10], and the racemic proportion 
may be recovered from mother liquor (conglomerate behaviour).

The faster reaction of a derivative may also be exploited for 
separation in case of non-racemic mixtures having racemate 
behavior.

As it is shown on Scheme 8, the racemic proportion 
of Levamisole (LEV) can be separated by the addition of 
calculated quantity of NaOH to the aqueous solution of LEV.

HCl (it is water-insoluble). In this case, the racemic portion 
crystallized, while the enantiomeric excess of the free base 
(LEV soluble in water) may be precipitated from the mother 
liquor as the second fraction. [11]

2.2 The effect of the kinetic control during partial 
precipitation

According to the binary melting point phase diagrams, 
the N-propionyl-phenylalanine (PPA) and the N-propionyl-
phenylglycine (PPG) are racemates, but these compounds 
(PPA and PPG) behave like conglomerates [12] during partial 
precipitation (Fig. 2).

Scheme 5 Separation of non-racemic mixture of DIL by recrystallization from the solvent

Scheme 6 Separation of non-racemic enantiomeric mixture of GRAN by crystallization from the solvent

Scheme 7 Separation of non-racemic mixture by partial precipitation

Scheme 8 The separation the enantiomeric mixture of LEV by partial precipitation
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This unusual behavior is underlined by their ee0-ee diagrams, 
as well. This phenomena can be explained by kinetic control. 
Namely, the enantiomer in excess precipitates faster by the 
addition of hydrochloric acid to the aqueous solutions of the 
corresponding sodium salts, although the faster crystallization 
of the racemic proportion was expected.

It means that the kinetic control is also useful for the 
separation of enantiomeric mixtures.

3 The separation of diastereoisomers
Many methods described in the literature for the separation of 

enantiomers involve the formation of diastereoisomers followed 
by liberation of the separated enantiomers. These enantiomeric 
separation methods are discussed and systematized in several 
articles. [1c-h, 5,13-16]

In the course of the resolution processes, racemic 
compounds are reacted with another chiral reagent (resolving 
agent). The diastereoisomers so obtained are separated, and 
their decomposition affords the corresponding enantiomeric 

mixtures. Usually, pure enantiomers can only be obtained by 
further purification of these enantiomeric mixtures (Scheme 9).

If we want to examine how the phenomena observed at the 
separation of enantiomeric mixtures (see Chapter 2) affect 
the distribution of diastereoisomers between two phases, 
resolving agents with slightly different structure from one of 
enantiomers should be chosen.

DL + 2D*     ↔     DD*↓ +     LD*
		  eemixt: 50%	          eeDIA

	          quasi-enantiomeric mixture	     diastereomeric mixture

If the racemic compound is reacted with a derivative of one of 
the enantiomers having opposite chemical character in equimolar 
amount, a quasi-enantiomeric mixture is formed with quasi-
enatiomeric purity of 50% (Scheme 10). In this case either quasi-
racemate or quasi-conglomerate behavior may be expected.

The phenylglicine (PG) and phenylalanine (PA) were 
converted to their structurally related resolving agents by the 

Scheme 10 General scheme for the crystallization of quasi-enantiomers

Scheme 9 General scheme for the preparation of pure enantiomers via the formation of the diastereoisomeric salt (eeeuRac: ee of an enentiomer at the 
eutectic composition of the racemate; eeEuRes: ee of a resolving agent enantiomer (R or Я) at the eutectic composition; eeDia: ee of an enantiomer of the 

original racemate at the eutectic composition of the diastereoisomeric salt).

Fig. 2 The separation of PPA and PPG enantiomeric mixture by partial precipitation
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Scheme 12 A representative melting point/composition diagram of a diastereoisomer. The relation between the eutectic composition of diastereoisomeric 
mixture and efficiency of resolution.

acylation of the amino group with different carboxylic acids. 
Then these racemic compounds (acids) were reacted with the 
derivatives of „structurally related” enantiomers (bases) having 
opposite chemical character. (Scheme 11).

The enantiomeric purity (the purity of the enantiomeric 
mixtures isolated from diastereomers) and the yield of the 
diastereoisomers obtained were measured.

According to this series of experiments, resolutions of racemic 
compounds with bases having similar structure [17], affords 
diastereomers with either homo- or heterochiral structure.

The resolution of six racemic compounds using structurally 
related resolving agent was accomplished. In only one case 
(essentially 20% of the racemic compounds investigate), 
namely in case of the N-formyl-phenylalanine (FoPA), the 
crystallization of homochiral diastereomer was observed.

In all other cases the crystalline diastereoismeric salts 
had heterochiral configurations. Consequently, it is another 
evidence that the structurally similar compounds show the 
behavior of quasi-enantiomeric mixtures at the resolution with 
resolving agent having related molecular structure to them, 
because either heterochiral or homochiral diastereomers are 
obtained during the separations by fractional crystallization.

The question was arisen, if the eutectic composition of 
the racemic compound has an effect on enantiomeric purity 
of the enantiomeric mixture isolated from the diastereomeric 
salt formed in the resolution experiments when a resolving 
agent is used which is not structurally related to the racemic 
compound. A correlation between the eutectic composition of 
biner melting point diagrams of diastereoisomeric mixtures 
(eeEuDia) and efficiency of resolution (F) was established by 
us (Scheme 12). [18]

Furthermore, it was found by analyzing the results of 
45 resolutions, that the average enantiomeric purity (eeEuDia 
= 78%) of enantiomeric mixtures isolated from crystalline 
diastereoisomers correlates to the average value of the measured 
eutectic composition of the starting racemic compounds (eeEuRac 
= 73%). At the same time, when the eutectic composition of the 
resolving agent is higher than the eutectic composition of the 
racemic compound (in 29 cases), a better correlation was observed 
between the average value of enantiomeric purities (eeEuDia = 
80%) of enantiomeric mixtures isolated from the crystalline 
diastereoisomers and the average value of eutectic compositions 
of enantiomeric mixtures of the resolving agent (eeEuRes = 78%) 
(Table 1). [19]
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Scheme 11 Separation of quasi enantiomeric mixtures of AcPA and PGA by fractionated crystallization.
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Table 1 The average ee data of the investigated resolutions

Number of 
resolutions

eeeu Rac

(average)%
eeeuRes

(average) %
eeeuDia

(average)%
F

(average)

45 73 - 78 0.56

29 - 78 80 0.54

Based on these observations, we suppose that the 
composition of crystalline diastereoisomer is determined either 
by the eutectic composition of the racemic compound or that 
of the resolving agent and the higher ee value has the more 
dominant effect (Scheme 13).

Consequently, a correlation can be found between the 
binary melting point/composition phase diagram of the 
diastereoisomeric mixtures and the  phase diagrams of the 
enantiomers which are the constituents of the diastereoisomers.

If we wish to separate the enantiomers of a racemic mixture 
using structurally related resolving agent (equivalent or half 
equivalent amount), the enantiomers of the racemic compound 
are transformed into “quasi enantiomeric mixtures”. In the 
course of the separation of these “quasi enantiomeric mixtures” 
(of diastereoisomers) the same methods can be used which are 
suitable methods for the separation of enantiomeric mixtures 
(also diastereoisomeric related supramolecular enantiomeric 
associates).[1f]

4 Separation of diastereoisomers
4.1 Separation of diastereoisomers from melt

The mixture of the racemic compounds and the resolving 
agents can be considered as the mixture of diastereoisomeric 
supramulecular structures. These diastereomer supramolecular 

structures exist in solutions and in melts, therefore these 
diastereoisomeric associates can be separated by crystallization 
from melt. During these experiments the mixture of the racemic 
compound and the resolving agent is melted, then the crystalline 
phase - obtained by controlled cooling - can be separated by 
filtration (if it is possible).

An example for such separation is the crystallization from 
melt of diastereoisomeric mixture of MEN-DBTA molecular 
complex incorporating menthol (MEN) and (R,R)-dibenzoyl-
tartaric acid ((R,R)-DBTA) (Scheme 14). [20]

It can be seen from the above example that the behavior of 
mixture of the chiral compounds mentioned in the previous 
Chapters is valid not only for diastereoisomeric salts but for 
diastereoisomers in general. During the resolution of racemic 
menthol (MEN) with (R,R)-DBTA the molecules forming 
the diastereoisomeric complex are kept together by weak 
second order interactions, only. Formation of the more stable 
molecular complex that crystallizes more quickly makes the 
separation possible.

4.2 Separation of diastereoisomers by sublimation of 
enantiomeric mixtures

Enantiomeric separations can be effectuated even if the 
mixture of diastereoisomers is obtained in a solid-solid 
reaction. The reaction of solid 2-iodo-trans-cyclohexanol 
(ICH) and solid (R,R)-DBTA for three months is an example 
for this separation (Scheme 15).

It was observed in the course of the fractionated vacuum 
sublimation [21] of the above mentioned mixture of compounds, 
that one of the enantiomers of ICH sublimated in the first 
fraction at relatively low temperature (T1, Scheme 15). The 
other ICH enantiomer sublimated at higher temperature (T2), 

Scheme 13 The affect of eutectic composition of racemic compound and resolving agent on the eutectic composition of diastereoisomers obtained
(see also Scheme 12).

Scheme 14 The separation of diastereomers from melt
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after thermal decomposition of the molecular complex formed 
previously in the solid-solid reaction.

4.3 Separation of diastereoisomers by distillation of 
enantiomeric mixtures

It can be expected in case of resolutions using half 
equivalent of resolving agent that the enantiomeric proportion 
of racemic compound may be separated from the corresponding 
diastereoisomer formed (distributed between two phases). In 
the reaction of methylanara (2-methylamino-1-phenylpropane, 
MA) and (R,R)-DBTA, after the precipitation of the 
diastereoisomeric salt, the residual free amin, namely (S)-MA 
could be obtained by distillation under vacuum [22], while the 
other enantiomer was obtained by the separation of the solid 
diastereoisomer residue (Scheme 16).

4.4 Separation of diastereoisomers by fractionated 
distillation of enantomeric mixtures

This method is also suitable for fractional separations if 
the resolving agent forms salt that can decompose without 
any side reaction. An adequate example for this is the 
resolution of racemic anara (2-amino-1-phenilpropane, AN) 

by half equivalent of the structurally related (S)-N-phtaloyl-α-
phenylethylamine  (PPEA) [23] (Scheme 17). Again, the free, 
optically active base ((R)-AN) could be distilled off at T1, then 
the solid diastereoisomeric salt could decomposed at higher 
temperature (T2, by ring closure of phtaloilic derivative), so the 
other enantiomer of the amine ((S)-AN) could be distilled off 
in the second stage.

4.5 Separation of diastereoisomers by extraction of 
enantomeric mixtures with a supercritical fluid (carbon 
dioxide)

In the course of a half equivalent resolution, the remaining free 
enantiomer may also be removed by extraction from the reaction 
mixture after the crystallization of the diastereoisomeric salt. 
This extraction can be accomplished using supercritical fluid, 
most often supercritical carbon dioxide. In case of resolution 
of trans-cyclohexane-1,2-diol (trans-CHD)24 by (R,R)-tartaric 
acid ((R,R)-TA), the free enantiomeric portion was separated 
by extraction with supercritical CO2 from the mixture of the 
excess of trans-CHD and the crystalline diastereoisomeric 
complex (Scheme 18). The other enantiomer can be recovered 
from the diastereoisomeric complex, as well.

Scheme 15 The separation of diastereoisomers by fractional vacuum sublimation.

Scheme 16 Separation of diastereoisomers by distillation of enantiomeric mixture.

Scheme 17 Resolution of racemic AN via fractionated distillation of a mixture of free AN and AN.(S)-PPEA diastereoisomeric salt.
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4.6 Separation of diastereoisomeric molecular 
complexes by fractionated crystallization

The above demonstrated methods can be applied for the 
separation of enantiomers having asymmetric center on a 
phosphorous atom. For example, the resolution of several 
racemic alkyl-, alkoxy-, and aryl-substituted 3-methyl-3-
phospholene oxides were accomplished via molecular complex 
formation with (R,R)-TADDOL (α,α,α´,α´-tetraphenyl-1,3-
dioxolan-4,5-dimethanol) as the resolving agent (Scheme 
19). If half equivalent of (R,R)-TADDOL was used, the more 
stable diastereoisomer crystallized which could be isolated by 
conventional methods, such as filtration. [25]

4.7 Separation of diastereoisomeric coordination 
complexes by fractionated crystallization

In other cases, the cyclic P-chiral 3-phospholene oxides 
were separated into their enantiomeric mixtures by resolution 
with the Ca2+ or Mg2+ salts of DBTA (DBTC). As it is shown on 
Scheme 20, when half equivalent of resolving agent was used, 
the favorable diastereoisomer was precipitated. After filtration 

and decomplexation of the diastereoisomeric complex, the 
enantiomeric mixture of the 3-phospholene oxide (MPO) was 
obtained. The antipode of the first isolated MPO enantiomer 
was recovered from the mother liquors of the resolutions. [26] 
Effectiveness of the method was demonstrated on several other 
cyclic P-chiral 3-phospholene oxides. [27]

4.8 Separation of diastereoisomers from enantiomeric 
mixtures using mixtures of two immiscible solvents

Based on the above examples, the formation of solid phase, 
solid-liquid phases or solid-gas phases systems is always 
necessary for the separation of diastereoisomers. The question 
is if chiral separation between two immiscible liquid phases 
can be achieved. The answer yes, of course. Diastereoisomers 
may be separated by distribution between two liquid phases.

If the racemic methylanara (MA) is reacted with half 
equivalent of sodium salt of (R,R)-tartaric acid ((R,R)-TAN) in 
a mixture of water and benzene (Scheme 21), the enantiomer 
and diastereoisomer distributed between the two liquid phases. 
[28]

Scheme 19 Separation of diastereoisomeric molecular complexes of MPO by fractional crystallization

Scheme 18 Separation of enantiomers of the trans-CHD via molecular complex formation with TA followed by supercritical fluid extraction.
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Scheme 20 Resolution MPO via diastereoisomeric coordination complex formation and fractional crystallization.

Scheme 21 Resolution of MA using two immiscible solvents.
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The aqueous phase contains the neutral salt of TAN-MA, 
while the other enantiomer can be found in the organic layer. 
So the separation of diastereoisomers or enantiomers can be 
accomplished without crystallization, using two immiscible 
solvents. The two solvent phases can also provide particularly 
good separation if the diastereoisomer can crystallize due to its 
insolubility in the two solvents applied.

The resolution of racemic Grandaxine (GRA) with half 
equivalent of DBTA in mixture of water and chloroform, or 
water and dichloromethane is an example for the separation 
of diastereoisomers by crystallization from two immiscible 
solvents. [29] The crystallization started on the boundary of 
solvent phases, then it is accelerated. The diastereoisomeric 
salt formed was filtrated, and the two phases were separated. 
The enantiomeric mixture containing one of the enantiomers 
in excess was obtained from diastereoisomeric salt, while 
the other enantiomer was recovered in neutral form from 
the organic phase. In addition, a small amount of GRA with 
racemic composition was isolated from the aqueous solution 
(Scheme 22). Form the ee data shown in Scheme 22. One 
can conclude that in this case, the eutectic composition of the 
racemic compound governed the efficiency of separation.

4.9 Separation of diastereoisomers by crystallization 
involving the formation of solvates

It is very common during the separation of diastereoisomers, 
that the enantiomeric purity and yield of separation is increased 
when solvates were formed during the crystallization of the 
diastereoisomers. For example, if trans-chrysanthemic acid 
(CRS) is resolved with N,N-dimethyl-aminodiol (obtained 
by the transformation of an intermediate of chloramphenicol) 
in methanol, a methanol solvate of the diastereoisomer could 
be isolated in very good diastereoisomeric purity, but the 
yield was 52%, only (Scheme 23). Whereas the resolution 
was accomplished in diisopropyl ether, or methyl-isobutyl 
ether in the presence of methanol, the methanol solvate of the 
diastereoisomer crystallized, but both the purity and the yield 
increased significantly. [30]

4.10 Separation of diastereoisomers by crystallization in 
the presence of a structurally related achiral reagent

Frequently, the resolution can be accomplished only via 
solvation. In the previous example the resolution could be carried 
out using another solvent. When the racemic α-phenylethylamine 
(PEA) was resolved using half equivalent of a derivative of 

Scheme 24 Separation of diastereoisomers by crystallization involving the formation of solvates

Scheme 23 Separation of diastereoisomers by crystallization involving the formation of solvates

Scheme 22 The separation of diastereoisomers by crystallization from immiscible solvents
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a PEA enantiomer, a diastereoisomer was isolated which 
contained (S)-PEA in 60% excess in acetone (Scheme 24). [31] 
When an achiral compound (such as urea) with related structure 
to one part of the resolving agent was added to the solution 
before crystallization, much purer diastereoisomer was isolated 
with an (S)-PEA enantiomer excess of 90%.

So the achiral solvate forming reagent - which is structurally 
related to either the resolving agent or the racemic compound 
– promoted the crystallization of diastreomer, and increased 
enantiomeric excess of the diasteromer.

4.11 Crystallization of diastereoisomers based on kinetic 
and thermodynamic control

The decisive role of kinetic and thermodynamic control 
may be observed in the separation of enantiomeric mixtures. 
This phenomenon can also be found at both the separation of 
quasi-enantiomeric mixtures and conventional resolutions. 
[32,33] For example, the effect of kinetic control was observed 
in the resolution of Pregabalin (PRE) with mandelic aid [(S)-
MA] (Scheme 25). When the crystalline diastereoisomeric salt 
was isolated after 15 minutes crystallization, enantiomeric 
excess of (S)-PRE isolated from the salt was 98%, while the 
ee decreased significantly if the crystallization was carried out 
over 48 hours.

It means that the thermodynamic control has a 
disadvantageous effect on this process.

The same phenomenon was observed in the course of 
the reciprocal process, when racemic MA was resolved by 
(S)-PRE. Namely, crystallization of the diastereoisomeric salt 
was controlled kinetically.

In other cases, it is necessary to wait until thermodynamic 
equilibrium, because in these cases the process is controlled 
thermodynamically. An adequate example is the resolution 
of an intermediate of Tamsulosin (TAM) with (R,R)-DBTA 
(Scheme 26). In this case, the diastereoisomeric salt contained 
the (R)-TAM enantiomer in excess. However, after an hour 
crystallization, practically racemic TAM was found in the salt, 

but excellent enantiomeric excess could be achieved when the 
diastereoisomer was crystallized for 48 hours. [34]

5 Conclusion
The above mentioned examples demonstrate that the 

properties of the enantiomeric mixtures determine the enantiomer 
(diastereoisomer) distribution between two phases and the 
behavior of the chiral compounds used determine the efficiency 
of the process during enantiomer or diastereoisomer separations 
in this way. There are numerous methods of choice (solid-
solid, solid-liquid, solid-gas, liquid-liquid distributions) and the 
most favourable method should be chosen (if there are more 
possibilities).

We have recognized that in the resolution processes, 
the diastereoisomers behave similarly to their constituent 
enantiomeric mixtures, if the resolving agent was structurally 
related to the racemic compound.

We demostrated that the eutectic composition of 
the racemate and/or the resolving agent determines the 
composition of the (crystalline) diastereoisomers formed 
even if the chiral compounds forming diastereoisomer are not 
structurally similar. Comparison of the average ee values of 
the obtained enantiomeric mixtures from series of resolutions 
with the average eutectic compositions of the involved chiral 
compounds (racemate and resolving agent) confirmed the 
above observation, namely the higher eutectic composition 
governs the enantiomer separation (Table 2).

Table 2 The average ee data of the examined resolutions

Nr. of 
experiments

average value of
eeEuRac/eeEuRes

b

average value of
eeDia

b

average value of
F

13 (10a) 80% 78% 0.58

a the used compounds are not structurally related
b eeeuRac: ee of an enentiomer at the eutectic composition of the racemate; 
eeEuRes: ee of a resolving agent enantiomer (R or Я) at the eutectic 
composition; eeDia: ee of an enantiomer of the original racemate at the eutectic 
composition of the diastereoisomeric salt.

Scheme 25 The affect of kinetic control on the separation of diastereoisomers

Scheme 26 The effect of thermodynamic contol on the separation of diastereoisomers
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We also think that the eutectic composition of the 
enantiomers forming diastereoisomer determines the efficiency 
of the resolutions in cases of crystalline diastereoisomeric 
salt, molecular- or coordination complex formations and these 
governing effects are valid when the separation is based on the 
distribution between two liquid phases.

On the bases of all this we can conclude that the structure of 
chiral compounds encodes the results of the (optical) resolutions.
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