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Abstract
While most molecules and solids are spin-unpolarized, most 
chemically-active atoms are partly spin-polarized. As a result, 
the errors of the spin-dependence of a density functional are 
much more troublesome for atomization energies than they 
are for typical reaction or formation energies. This observa-
tion explains why the atomization energy errors of approximate 
functionals do not correlate with their other errors, and why the 
errors of atomization energies for a given functional can be rad-
ically reduced by fitting the energies of the atoms. We present an 
illustrative example from the recent nonempirical construction 
of the SCAN meta-generalized gradient approximation.
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1 Introduction
This year is the 50th anniversary of Kohn-Sham density func-

tional theory [1], which from a humble beginning has grown up 
to be the most widely-used method of electronic structure cal-
culation in condensed matter physics, quantum chemistry, and 
materials engineering. The popularity of this theory arises first 
because it is computationally efficient, with an orbital structure 
like that of Hartree or Hartree-Fock theory, and second because 
it is usefully accurate. There is an underlying exact theory for 
the ground-state energy and electron density, which inspires 
the continuing and successful (if slow) search for more accu-
rate but still computationally tractable approximations to the 
needed density functional for the exchange-correlation energy.

This is also the tenth anniversary of collaboration among 
the authors of this paper. In 2005, three of us (GIC, AR, JPP) 
published the first [2] of 35 collaborative research papers in 
density functional theory. (One year later, another of us (JS) 
started research in this theory as a graduate student with JPP.) 
That first collaborative paper raised questions about the atomi-
zation energies of molecules, which up to that time had been 
widely regarded as a “gold standard” of accuracy for density 
functional approximations. In 2015, when three of us (JS, AR, 
and JPP) have proposed what we regard as an optimally accu-
rate functional that preserves computational efficiency [3], 
we return to the issue in the title of this article and present an 
explanation which is supported by numerical evidence at this 
high level of approximation.

2 Density and Spin-Density Functional Theories
The original Kohn-Sham theory [1] assumed that the elec-

trons (with mutual Coulomb repulsion) see a static, spin-inde-
pendent, and multiplicative external potential v r( )  (typically 
but not necessarily the Coulomb attraction to the nuclei). 
Under this condition, the exact exchange-correlation energy 
Exc is a functional Exc [n] of the electron density distribution 
n r( ) ; i.e., there is a rule (in practice an uncomputable one) 
that assigns one energy Exc to each possible electron density 
distribution n r( ) . Apart from Exc , the rest of the total energy 
is computable exactly.
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Later this theorem was generalized [4] to electrons that see 
spin-dependent external potentials v r↑( )

  and v r↓( )
 . In this 

case, E n nxc ↑ ↓ ,  is a functional of the electron spin-density 
distributions n r↑( )

  and n r↓( )
 . In nature, non-relativistic elec-

trons in the absence of a magnetic field always see an exter-
nal potential v r v r v r( ) ( ) ( )

  

= =↑ ↓ , so these two exact theories 
should yield the same exact total density n n n= +↑ ↓  and the 
same exact total energy (which includes Exc as one term).

But approximations to these two exact theories need not 
agree. We can see this already at the simplest level, the local 
spin-density approximation [5]

E n n d rn n nxc
LSDA

xc
unif

↑ ↓ ↑ ↓  = ( )∫, , .3 ε

Here ε xc
unif n n↑ ↓( ),  is the exchange-correlation energy per par-

ticle of an electron gas with uniform or r -independent spin 
densities n↑  and n↓ . Eq. (1) is exact for spin densities that 
are uniform or that vary slowly-enough over space. The local 
density approximation [1]

E n d rn nxc
LDA

xc
unif[ ] = ( )∫ 3 ε

will give the same total energy as Eq. (1) only when the system 
is fully spin-unpolarized, with n r n r n r↑ ↓= =( ) ( ) ( )

  

2 . This is 
the case for the He atom ground state, but not for the fully 
spin-polarized H atom ground-state with n r n r↑ =( ) ( )

 

 and 
n r↓ =( )


0 . Yet both atoms see a spin-independent external po-
tential.

Tong [5] made an early LDA calculation of the cohesive 
energy of metallic sodium, i.e., the energy per atom to convert 
the solid to a vapor of atoms. He found a value 23% larger 
than the experimental result. Kohn [6] argued that LDA should 
be accurate for solid sodium (in which the spin-unpolarized 
valence electron density resembles a uniform gas), and that 
the error must be in the energy of the atom. Gunnarsson, Lun-
dqvist, and Wilkins [7] applied LSDA to the partly spinpolar-
ized sodium atom, and found a cohesive-energy error of only 
4%. It is understandable that approximate spin-density func-
tionals can be more accurate than the corresponding approxi-
mate density functionals. The spin-density functionals get more 
input information about the electrons, and don’t have to be as 
“smart” as the density functionals would have to be to achieve 
the same level of accuracy.

The cohesive energy of a solid was never of great interest 
to condensed matter physicists, who were typically more inter-
ested in crystal structures, lattice constants, bulk moduli, pho-
non frequencies, band structures, etc. However, around 1993 
chemists also started to be interested in density functional the-
ory. To a chemist, the atom is rightly the building block of all 
ordinary matter. As a result, an era began in which the atomi-
zation energies of molecules were a kind of “gold standard” 
for density functionals. (In theoretical chemistry, atomization 

energies were traditionally used for the calculation of the 
standard enthalpies of formation, because early wavefunction 
theory was unable to yield reliable energies for elements in the 
solid state. In physical chemistry, atomization energies are not 
required, as the enthalpies of formations require only the stand-
ard-state enthalpies of the reagents and the product.) In those 
earlier days, empirical functionals were fitted to large data sets 
of atomization energies, and all functionals were judged by 
their error statistics for atomization energies. That era is now 
ending, with the availability of much larger and more diverse 
molecular data sets and direct calculations of the energies of 
solid state elements.

Perdew and Schmidt [8] have proposed a “Jacob’s Ladder” 
of spin-density functional approximations:

E n n

d rn n n n n

xc
approx

xc
approx

↑ ↓

↑ ↓ ↑ ↓ ↑ ↓

  =

∇ ∇( )∫
,

, , , , , , .3 ε τ τ 

The inputs at each point 
r  are the local spin densities (the only 

inputs in LSDA), their gradients (added in a generalized gradi-
ent approximation or GGA), the orbital kinetic energy densities

τ ψσ ασ
α σ

 r r( ) = ∇ ( )∑ 2

2
,

(further added in a meta-GGA), etc. The inputs displayed ex-
plicitly in Eq. (3) are all available at each point 

r  in a Kohn-
Sham calculation, making the first three rungs (LSDA, GGA, 
and meta-GGA) semilocal and computationally efficient in this 
hierarchy. The ingredients not displayed explicitly in Eq. (3) 
are fully nonlocal, so the higher rungs (hybrid-like and random 
phase approximation (RPA)-like approximations) are computa-
tionally more demanding.

Given that the exact total energies for atoms, molecules and 
solids in the absence of magnetic fields must be the same, we 
can ask whether for example MAE(DFT)-MAE(SDFT) gets 
smaller as we climb up the ladder and approach the exact theory. 
Here MAE is the mean absolute error for some property over 
a data set, applying the same functional in density functional 
(DFT) and spin-density functional theory (SDFT). We hope to 
answer this question numerically in future work. The answer is 
currently unknown, since nearly all studies are based on SDFT.

3 Atomization Energy Puzzle
As we climb the Jacob’s Ladder of approximate spin-density 

functionals from LSDA (which is more or less unique) to vari-
ous flavors of GGA and meta-GGA, there is a clear decrease in 
the MAE of the atomization energies of molecules and solids, 
as one would expect.

Following suggestions from Dewar [9] and Delley [10], as 
further explored by Delley [11], and Grimme [12], Csonka, 
Ruzsinszky, Tao and Perdew [2] found that the MAE’s of the 
atomization energies for functionals on all rungs of the ladder 

(1)

(2)

(3)

(4)
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could be reduced, sometimes drastically, by using atomic ener-
gies shifted by the addition of empirical constants, with one set of 
atomic constants for each functional. {Very recently, optimized 
atomic correction energies were successfully applied to direct 
RPA (dRPA) and dual-hybrid dRPA75 [13].} Large atomic shifts 
indicated an inconsistency between a functional’s description of 
atoms and its description of molecules built up from those atoms. 
(The shifts were almost negligibly small for the TPSS [14] meta-
GGA.) The fact that the empirically-corrected MAE’s were so 
small indicated that most functionals were more consistent for 
molecules than for their constituent atoms. Thus the functionals 
were expected to be (and are) much more accurate for reaction 
energies (e.g., 2H2O → 2H2 + O2) and formation energies involv-
ing no free atom than for atomization energies.

Goerigk and Grimme [15] framed the problem in a different 
way. They looked at many large data sets of molecular proper-
ties, and at many functionals, and found that the errors that a 
functional makes for atomization energies are almost uncorre-
lated with the errors that it makes for other molecular properties.

Those are the facts, but what is the explanation?
Atoms obviously differ from molecules and solids in sev-

eral ways: (1) The density of an atom is more confined, and 
further from the slowly-varying limit, than is the density of a 
molecule or solid. (2) Open-subshell atoms like carbon might 
be expected to have smaller gaps between the highest-occu-
pied and lowest unoccupied orbital energies than molecules or 
semiconducting solids do, leading to near-degeneracy correla-
tion, although SCAN calculations (Table 1) do not support this 
expectation. (3) Open-subshell atoms like carbon have ground-
state densities that are non-spherical, with shapes very differ-
ent from the shape of the external potential. (4) Open-subshell 
atoms are partly spin-polarized, while most molecules and 
solids are spin-unpolarized, so spin-polarization errors can be 
more troublesome for atomization energies than for reaction or 
formation energies that involve no free atom. So which of these 
differences explains the atomization energy puzzle?

Table 1 Energy gap (eV) between the lowest-unoccupied and 
highest-occupied atomic orbital energies, from SCAN

atom Δ atom Δ

H 8.6 Ne 19.0

He 23.5 Na 1.7

Li 2.1 Mg 3.6

Be 4.0 Al 0.7

B 1.4 Si 0.4

C 1.4 P 3.3

N 5.6 S 0.7

O 2.4 Cl 1.3

F 27 Ar 12.6

The early work [7] on the cohesive energy of sodium metal, 
described in section 2 of this paper, suggests that the spinde-
pendence of the approximate functionals provides the right 
explanation. But that work (largely unknown to chemists) was 
done on the lowest and least-accurate rung of the ladder. Com-
plicating the answer is the fact that the exchange-correlation 
energy can be written as

E E Exc x c= + ,

the sum of a large exchange energy and a small correlation 
energy. Nearly every approximate density functional for ex-
change satisfies the exact spin-scaling relation [16]

E n n E n E nx x x↑ ↓ ↑ ↓  =   +  , .2 2 2 2

Thus, given a sufficiently accurate Ex [n], errors in the spin de-
pendence must arise from the relatively small correlation en-
ergy E n nc ↑ ↓ , . To show that these are responsible for the 
atomization energy puzzle on the higher rungs of the ladder, 
we need a very accurate spin-density functional. As discussed 
in the next section, we have one now.

4 Exact Constraints and the SCAN Meta-GGA
Although the exact E n nxc ↑ ↓ ,  is incomputable, there are 

exact formal expressions for it which can be used to derive its 
mathematical features. These features can be regarded as exact 
constraints, and used to construct approximations that are fully 
or partly nonempirical. Since the exact constraints are univer-
sal (independent of the external potential), constraint-based 
approximations can be reliable even for systems unlike those 
on which they have been tested and benchmarked.

The early successes of LSDA, even for metal surfaces, were 
surprising and demanded an explanation. The explanation 
[17,18] was not only that LSDA was appropriately normed on 
the only density for which it could be exact (the electron gas of 
uniform spin densities), but also that LSDA satisfied a certain 
subset of exact constraints that it inherited from that appro-
priate norm. Generalized gradient approximations (GGA’s) 
like the PBE of Ref. [19] and meta-GGA’s like the TPSS of 
Ref. [14] were then constructed to satisfy additional exact 
constraints. The added ingredients on higher rungs of Jacob’s 
Ladder can be used to satisfy exact constraints that cannot be 
satisfied on lower rungs.

Recently three of us have proposed SCAN [2], a strongly 
constrained and appropriately normed meta-GGA. We believe 
that SCAN is nearly as accurate as a computationally-efficient 
semilocal exchange-correlation functional can be. SCAN is the 
first functional to satisfy all 17 known exact constraints that a 
semilocal functional can, including a tight new lower bound 
[20] on the exchange energy. But there are still infinitely many 
ways to satisfy these 17 exact constraints. Thus, to the previ-
ous meta-GGA appropriate norms (the electron gas of uniform 

(5)

(6)
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or slowly-varying spin densities, and the one-electron atom), 
SCAN adds the exchange energies and correlation energies of 
rare-gas atoms and other nonbonded systems in which the exact 
exchange-correlation hole remains close to its electron (as it 
must if a semilocal functional is to be very accurate for a sys-
tem). It is important that, unlike empirical functionals, SCAN 
is not fitted to any bonded system. Then the SCAN predictions 
for bonded systems are genuine predictions and not fits.

SCAN is constructed as an interpolation/extrapolation on 
the dimensionless meta-GGA ingredient

α τ τ τ= −( )W unif ,

where τ τ τ= +↑ ↓
 is the exact positive orbital kinetic energy 

density,  τW = |Ñn|2 /(8n) is the von Weizsäcker kinetic en-
ergy density (exact for one- and spin-unpolarized twoelectron 
ground states), and  τunif  is the kinetic energy density of a uni-
form electron gas. We have argued [21] that α is the right meta-
GGA ingredient because it can recognize and give an appropri-
ate description to three kinds of bonds: covalent single (α = 0), 
metallic (α ≈ 1), and weak (α >> 1). Since many of the exact 
constraints are for  α = 0  or  α ≈ 1, we need an interpolation/
extrapolation guided by the remaining constraints and the ap-
propriate norms.

We have tested SCAN and other semilocal functionals on 
the G3 set (223 atomization energies of molecules), the BH76 
set (76 barrier heights to chemical reactions), the S22 set (22 
binding energies for weakly-bound molecular complexes, with 
hydrogen bonds or van der Waals bonds), and the LC20 set 
(20 lattice constants of solids). Table 2 shows the MAE’s in 
kcal/mol (first three sets) or Å (fourth set). LSDA is the local 
spin-density approximation, PBE [19] is a GGA, while TPSS 
[14] is our earlier nonempirical meta-GGA and SCAN [2] is 
our current nonempirical meta-GGA. pSCAN (proto-SCAN) 
is identical to SCAN except in the way it interpolates the α = 
0 correlation energy between fully spin-unpolarized and fully 
spin-polarized limits. pSCAN is in fact the version of SCAN 
that we first submitted for publication, while SCAN is the ver-
sion finally accepted for publication.

Table 2 Mean absolute errors of semilocal spin-density functionals for three 
molecular (G3, BH76, S22, in kcal/mol) and one solid-state (LC20, in Å) test 
sets, as described in the text. References for the test sets are given in Ref. [2].

G3 BH76 S22 LC20

LSDA 83.7 15.4 2.3 0.081

PBE 22.2 9.2 2.8 0.059

TPSS 5.8 8.7 3.7 0.043

pSCAN 12.0 7.5 0.9 0.016

SCAN 5.7 7.7 0.9 0.016

A first observation is that most calculated properties (the 
atomization energies of G3, the barrier heights of BH76, and 
the lattice constants of LC20) improve as we climb from the 
first rung (LSDA) to the second (GGA PBE) and then to the 
third (meta-GGA’s TPSS, pSCAN, and SCAN). An exception 
is the weak-interaction binding energies of S22, which actu-
ally worsen from LSDA to PBE to TPSS but then improve 
dramatically in pSCAN and SCAN. The improvement in the 
pSCAN and SCAN lattice constants is also dramatic. The 
added constraints and norms beyond those in TPSS are doing 
what they should do.

A second observation, and one more relevant to the conclu-
sions of this article, is that proto-SCAN and SCAN are identi-
cal for S22 and LC20 (where all systems are fully spin-unpo-
larized). They make very similar errors for BH76, even though 
the transition states of chemical reaction are typically partly 
spin-polarized. But SCAN is much better than proto- SCAN for 
the G3 atomization energies, where the open-shell free atoms 
are typically partly spin-polarized.

The difference between proto-SCAN and SCAN arises only 
from the way in which we interpolate the α = 0 correlation 
energy between fixed fully spin-unpolarized and fully spin-
polarized limits. Let us define the relative spin polarization

ς = −( ) +( )↑ ↓ ↑ ↓n n n n .

The function that exactly interpolates the exchange energy per 
particle of a uniform electron gas between its  ς = 0  and | ς | = 
1 limits is

dx ς ς ς( ) = +( ) + −( )



1 1 2

4 3 4 3
,

which varies from 1 at  ς = 0  to  21/3 = 1.26  at  | ς | = 1. For α = 
0 correlation, proto-SCAN uses the interpolation

G dc
p

xς ς( ) = − ( )  − 2 2 11 3 1 3 ,

which varies from 1 at  ς = 0  to 0 at  | ς | = 1. The latter limit is 
needed to make the correlation energy per particle vanish for 
all one-electron (α = 0  and   | ς | = 1) densities. But SCAN uses 
a different interpolation between the same two limits,

G dc xς ς ς( ) = + − ( ) { } −( )1 2 363 1 1 12. ,

designed to make the low-density limit of the SCAN exchange-
correlation energy nearly independent of  ς  over the range 0 ≤ 
| ς | ≤ 0.7, as in TPSS. In this way, SCAN and TPSS satisfy, as 
best they can, the exact constraint that the exchange-correlation 
energy per particle in the low-density limit should be independ-
ent of ς. Thus both SCAN and TPSS yield accurate atomization 
energies, while proto-SCAN is less accurate.

(7)

(8)

(9)

(10)

(11)
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The two interpolation functions are compared in Table 3. For 
a given | ς | between 0 and 1, G Gc c

p> , so SCAN provides a lit-
tle more negative correlation energy in a partly spin-polarized 
atom than proto-SCAN does. This slightly lowers the energy of 
the atom and reduces the too-high atomization energies found 
in proto-SCAN.

Table 3 Functions that interpolate between the fully spinunpolarized 
and fully spin-polarized limits for exchange, and for α = 0 correlation 
in proto-SCAN and SCAN spin-density functionals for any system.

ς dx(ς) Gc
p ς( ) Gc (ς)

0.0 1.000 1.000 1.000

0.2 1.009 0.966 0.979

0.4 1.036 0.861 0.891

0.6 1.083 0.680 0.802

0.8 1.153 0.410 0.594

1.0 1.260 0.000 0.000

While some exact constraints can only be satisfied on a suf-
ficiently high rung of Jacob’s Ladder, others (including the 
absence of spin-polarization dependence in the low-density 
limit) are already satisfied on the first or LSDA rung and get 
harder to satisfy on higher rungs.

The effect on the atomization energies of stricter enforce-
ment of the low-density-limit constraint is rather subtle. It is 
magnified in the G3 set by the presence of numerous large mol-
ecules that contain many C atoms that “compound the error”. 
While the cohesive energy of a solid is an intensive (per atom) 
quantity, the atomization energy of a molecule is an extensive 
one; it and its density functional errors grow with the size of 
the molecule.

5 Conclusions
The atomization energy errors of a density functional can 
strongly magnify minor errors in its spin-polarization depend-
ence which are of little importance for other properties of many 
molecules and solids. Thus density functionals should not be 
judged primarily by their atomization energy errors, but by a 
wider spectrum of tests. Although SCAN atomization energies 
are not significantly better than TPSS atomization energies, 
we believe that SCAN is significantly better than TPSS. We 
already have evidence [2] that SCAN can reach a new level 
of accuracy for the energy differences between molecules or 
between solids at fixed atomic composition. In future work, 
we will test SCAN and other functionals for reaction energies, 
isomerization energies, structural energy differences in solids, 
and formation energies (and thus for relative stabilities).
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