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Abstract
In this paper the appropriate size of an intermediate storage 
is investigated. The input process is described by a stochastic 
process and the output process is deterministic. Both filling 
time points and filled amounts of material are described by 
discrete random variables. We focus on the necessary volume 
of the intermediate storage for the material in order to avoid 
the overfilling. To solve the sizing problem for a given reli-
ability, an auxiliary function is defined and a difference equa-
tion is set up for it. In special cases it is solved analytically. 
Overflow probabilities and expected time of overflow are com-
pared in continuous and discrete models. Analytic results are 
compared to the results arising from Monte-Carlo simulations 
as well. In general cases approximate solutions are presented 
and used for determining the necessary volume of storage for 
the change of material.

Keywords
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1 Introduction
Intermediate storages are frequently applied in many fields 

of industry, e.g. food industry, pharmaceutical industry, chemi-
cal industry [1, 2], in environmental systems, logistic, supply 
chain [3], information technology, in data storage systems, etc, 
consequently the investigation of their operation is important 
in practice. Their applications serve to compensate the differ-
ences in the operations of different kinds of producing systems. 
They supply spare material in case of failures; they are suitable 
to handle the shortfall due to maintenances or uncertainties 
arising from the possibly stochastic operation. In the designing 
phase of a producing system, it is a relevant information how 
much spare volume is needed to avoid the damages originating 
from the random effects. 

The material stored in the buffer is produced and processed 
by different operational systems. One can distinguish determin-
istic and stochastic systems. In random systems, the operation 
can be modelled by either continuous or by discrete random 
variables as well. In insurance mathematics similar problems 
are investigated but mainly continuous random variables are 
applied therefore the methods and results are mainly elaborated 
for these models (see [4] and the references therein), but some-
times one can find discrete models as well [5].

Two main aspects of investigation are distinguished, namely 
the determination of the initial amount of material [6, 7] and 
the determination of the necessary size of the storage to avoid 
the overflow [8]. In earlier papers we presented results for con-
tinuous [6, 8] and discrete distributions [7], this paper is the 
fourth one in this series.

The problems of the initial amount of material and sizing are 
similar and different at the same time. The problem statements 
are congenial but the governing equations differ from each 
other. Consequently, their solutions have different forms. The 
idea of finding the solution of an equation in a special form is 
very useful and it can be applied after thorough investigation 
of the equation. We use this technique. We analyse the equa-
tions governing the process, we solve them analytically in some 
special cases and in the general case we try to approximate the 
solution in that special form. The parameters of the function of 
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the special shape are determined by parameter fitting applying 
least square method. The points for which the functions are fit-
ted arise from Monte-Carlo simulation. The approximate func-
tion is useable for determining the appropriate size of the stor-
age to a given reliability level. We investigate the role of the 
distributions and we present the effect of the dispersions as well.

2 The investigated model
In this paper the intermediate storage connects two types of 

processing subsystems, the input and the output subsystems. 
Both subsystems work that is fill and withdraw material in 
batches. The input subsystem produces the material and fills 
it into the buffer and the output subsystem withdraws it for 
further processing. A schematic figure of this system can be 
seen in Fig. 1.

The operation of the filling subsystem is assumed to be 
stochastic. The fillings happen at random time points and the 
amount of the filled material is random as well. 

The time interval between the  kth  and  (k+1)th  filling is 
given by the random variables  tk , k = 1,2,… and  t0 = 0. We 
suppose that  tk k = 1,2,… are independent, identically distrib-
uted nonnegative discrete random variables with nonnegative 
integer values.

The kth filling happens at ∑
=
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The quantities  tk, k = 1,2,3... are independent random variables 
with nonnegative integer values and the distribution of tk is 
given by  P(tk = j) = f(j), j = 0,1,2,… . The condition 0 < f(0) 
means that more than one filling may happen at the same time 
which is a reasonable option in the industry. The amount of filled 
material during the  kth filling is denoted by Yk, k = 1,2,3,… and 
they are also nonnegative integer valued random variables. We 
use the notation  P(Yk = i) = g(i), i = 1,2,3,… . The case  i = 0 
means that there is no filling at this time point, we do not allow 

this option. Moreover, we do not assume the independence of 
tk and Yk for fixed values of  k = 1,2,…, rather we use the two 
dimensional random variables (tk ,Yk ), with joint distribution 
P(tk = j, Yk = i) = h(j, i). Of course,  0 ≤ h(j,i) ,
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for  i=1,2,... . We suppose that (tk ,Yk ) are independent random 
variables for any values of  k = 1,2,… . As the number of fillings 
is given by  N(T), and the amounts are  Yk , k = 1,2, … , N(T) , the 
total amount of material filled to the buffer from time 0 to time

T equals Yk
k

N T

=
∑
1

( )

.

We can choose the amount of withdrawn material during one 
unit time as a unit. Withdrawal happens at the same time when 
fillings happen. More detailed, we consider the withdrawal and 
the filling process as point processes. In Fig. 2, for example at 
m = 2  we can realize that the amount of material is decreasing 
as compared to  m = 1, and in the same moment, there is a jump 
upwards representing by the arrow upside. The withdrawal 
means the waste of material, the filling is the rise in the func-
tion  V(m). The object is to determine the appropriate volume 
of the buffer in order to avoid overflow in a large time interval. 
More precisely, we determine the volume necessary for change 
of material, which has to be increased by the initial amount. As 
the filling process is stochastic, the required size can be deter-
mined to a given reliability.

First, let us consider the amount of material in the storage in 
a continuous model. If  t  denotes the time and  V(t)  the amount 
of material in the storage, then 
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Fig. 1 Schematic model of the batch subsystems connected by an intermediate storage
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We mention that the numerical value of  qt  is equal the value 
of  t  but the dimensions of these quantities differs. Keeping 
this in mind, to be as simple as it can be, we neglect the

factor q m
h

=








1

3

. If the size of the storage is  zs , then

overflow means that the inequality  zs < V(t)  holds for some 
value of  t.

In discrete models, if the time values are integer, then it is 
worth investigating the process for integer values of time and 
initial amount of material, that is 
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for  0 ≤ m,  0 ≤ k integers. Now, k  is the initial amount of mate-
rial. Keeping in mind that  q ∙ m  represents the value of the 
withdrawn material, but as
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its numerical value equals  m. Now, if s denotes the size, over-
flow means that the amount of material exceeds the storage

size. This can be written in form s k Y mi
i
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for some value of m.  s − k  is the volume for change of mate-
rial in the storage. Of course, the size of the storage can not be 
smaller, than the initial amount of material, hence we investi-
gate the case  k ≤ s , which means the inequality  0 ≤ s − k . We 
denote  s − k  by n for the further part of this paper. Then the 
inequality
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has to be investigated for  0 ≤ n . If it holds for a value of  0 ≤ m, 
then there is overflow in the process if the volume for change 
equals n. The probability of overflow is 
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for  0 ≤ n . If  n < 0 , then  u(n) = 1  obviously holds, because the 
inequality (8) is satisfied at  m = 0 . The time of overflow is the 
first time point for which the inequality (8) holds, that is 
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The change of the amount of material in the storage can be fol-
lowed step by step in Fig. 2.

Fig. 2 The amount of material in the storage in the function of time

The initial amount of material is  k = 5  and the linear peri-
ods with unit jumps stand for the withdrawal and the jumps 
emphasized by the arrows show the fillings. The time inter-
vals between the consecutive fillings have geometric distribu-
tion, and the filled amounts of material as well. The time point 
when the amount of material in the storage exceeds the level  
s = 10  equals  m = 8. This is the time of overflow belonging to 
n = s − k = 10 − 5 = 5  in this realization, that is  TV (5) = 8.

To investigate  u(n)  and  TV (n), for  1 ≤ z  we introduce the 
sequence of functions 
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w
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with the penalty function  w R R:
0 0

+ +→ . The penalty function 
is able to penalize the overflow. φz

w n( ) ( )   defined by (13) is a 
sequence for any fixed value of  z, and it is a function for any 
fixed value of  n. The penalty function depends on the measure 
of the overflow, which is not indifferent in case of environ-
mental systems. The continuous version of (13) is defined in 
[9] and is called the Gerber-Shiu penalty function in insurance 
mathematics. The properties of the Gerber-Shiu function for 
the continuous case are investigated in insurance mathematics 
[4, 10, 11].

For the rest of this paper we frequently deal with the special 
case  w ≡ 1  and omit w from the notation. Substituting  w ≡ 1  
into (13) we get 

(6)
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which is the  z   transform of  pm(n) [12].
Substituting  z = 1 , we can easily see, that
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3 Mathematical investigation of φz
w n( ) ( )

Applying theorems of renewal theory, the  φz
w n( ) ( )   satisfy 

the following difference equation:
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Eq. (17) has a unique solution for any fixed value of  1 < z in the 
set of bounded functions assuming  k z f j z j
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Remark The condition  k(z) < 1  is satisfied if  1 < z  and
f (0) < 1 . The property  f (0) = 1  expresses that each filling hap-
pens at time 0, which is out of interest. 

If   w ≡ 1, then  φz (n)  defined by (14) satisfies  0 ≤ φz (n) ≤ 1, 
which means that it is bounded. Moreover, if  w ≡ 1, then 
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1 . Therefore, the bounded solution of

(18) is unique for any fixed value of  1 < z  if  f (0) < 1 . This 
unique bounded solution of (18) equals  φz (n)  defined by (14).

If  z = 1, then the bounded solution is not unique. We are 
interested in the one which is the limit of functions  φz (n)  when  
z  tends to  1. If we focus on    φ1 (n) = u (n)  defined by (9), then 
applying probabilistic argument one can prove that  u(n) = 1  
for any value of  n, if the inequality 

E t E Yi i( ) ≤ ( )

holds, consequently we deal with the case  E(Yi ) < E(ti ). In-
equality (20) expresses, that, in average, the filled amount of 
material during one unit is more than or equal to the withdrawn 
material. This is the reason of the material aggregation and it 
causes overflow.

Further properties of  φz
w n( ) ( )   are the following:
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exponential.                               □

4 Analytic solutions in special cases
In the remaining part of the paper we restrict ourselves to 

the case  w ≡ 1. We assume the independence of the time and 
the amount of material, that is, the property  h ( j, i) = f (j) ∙ g(i) . 
We provide analytic solutions of (18) in two special cases con-
cerning the distributions of time intervals and filled amount of 
material. One of these cases is when both the time intervals 
and the filled amounts of material have geometric distribution. 
First we transform Eq. (18) into a less complicated form, then 
we try to find its solution in a special form. Since we know 
that the solution of (18) is unique, the special form provides 
the function defined by (14). This technique demonstrates the 
importance of the analysis of the equations presented in the 
previous section.

Let f j f f
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We look for the solution of (22) in the form 

φ µz z z
nn c( ) = ⋅ ( ) .

Now,  μz  satisfies the following (characteristic) equation 
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If  1 < z , then (24) has two real roots, one of them is larger than 
1, the other is between 0 and 1. This latter provides a bounded 
solution of (22), therefore it is the function defined by (14).

If  z = 1 , then Eq. (24) has two real roots as well, one of 
them is 1, the other one is less than 1, and it provides a positive 
function tending to zero.

In order to set against the formulas experimentally, we com-
puted the analytic solution of (18) and compared it to the values 
arising from Monte-Carlo simulation. The process can be eas-
ily simulated as overflow can happen only at filling time points. 
Expectations can be estimated by the average. We simulated 
the process to  T = 1000 N = 10000 times. We applied geomet-
ric distribution with f = 0 8.   for time intervals and geometric 
distribution with  g = 0 6.   for filled amount of material. The 
analytic solution,  φz (n)  can be seen in Fig. 3, and the differ-
ences between the analytic and simulated results are plotted in 
Fig. 4. This proves the compliance of the Monte-Carlo simula-
tion as well.

One can see that the largest difference is smaller than 0.002.
The results for the overflow probabilities are plotted in Fig. 5.
Another special case when the analytic solution can be given 

is the following. Let  ti  be the sum of two independent random 
variables with geometric distribution. More precisely,
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Now, if we try to find the solution in the form of (23), then  μz  
satisfies the following (characteristic) equation
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where  μz  is the root of a cubic equation. For  z = 1, Eq. (28) is 
simplified to 
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One can easily check that  μ1 = 1  is a root of (29). Simplifying 
(29) by  μ1 − 1, the remaining quadratic equation to solve is
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One can prove that the largest root of (30) is larger than 1 for any 
value of  0 1< <f ,  1/3 ≠ f . The smaller one is between zero 
and 1 for 1 3 1< <f  and it is also greater than one if  0 1 3< <f . 
Moreover, both of them are equal to 1, if f =1 3 . This means 
that we have a bounded solution in the case of  1 3< f . As 
for the reason of the condition  1 3< f , take into consideration

that E t
fi( ) =

−
2

1
, therefore the expectation of the filled 

amount of material during one unit time is 3 3

2
1

E t
f

i( )
= −( ) ,

which is greater than 1 assuming f <1 3 , and smaller than 1 
assuming 1 3< f  coinciding with (20).

The exact overflow probabilities and the simulated ones in 
case of (26) and (27) with  f = 0 35.   can be seen in Fig. 6. The 
number of simulations was 10000, the time interval on which 
the process is investigated is  [0,10000]. Solving (30) we get 
(u1)1 ≈ 0.9055,  (u1)2 ≈ 3.809,  therefore 

u n c( ) = ⋅
1
0.9055

n
,

where    c1 = u(0). In those cases when  c1  can not be computed 
analytically, it may be determined by Monte-Carlo simulation. 
In the present case  c1 = 0.9002. Figure 6 presents very good 
coincidences between the analytic result and the simulated 
values.

Fig. 3 Analytic solution of (18)

Fig. 4 Differences between the analytic results and the 
results provided by Monte-Carlo simulation
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(31)
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Fig. 5 The overflow probabilities by analytic 
formula and Monte-Carlo simulation

Fig. 6 Solution given by (31) and simulated 
values for the overflow probabilities

5 Approximate solutions by parameter fitting
We are far from thinking that exact solutions have always the 

form of (23). Nevertheless, it can be useful to approximate the 
solutions by a formula given by (23). First, we provide some 
estimated values of overflow applying Monte-Carlo simulation, 
then we fit a curve on them by the least square method. In those 
cases when we have analytic solutions as well, we compare the 
fitted curve and that provided by the analytic formula. In the 
case of the example presented secondly in the previous section, 
that is when the distribution of the filling times is defined by 
(26) with  f = 0 35.   and the distribution of the filled amount 
of material is defined by (27), the approximate formula results 
in  u*(n) = 0.9027 ∙ 0.9058n

 . This function is plotted in Fig. 7. 
One can see that this approximate formula is very close to (31).

The largest difference between the approximate values and 
the formula (31) is about 0.01, which is the error of the simula-
tion. This can be seen in Fig. 8.

The next figures (Fig. 9 and 10) represent the goodness of 
the fitted curves in case of Poisson and binomial distributions. 
These distributions take value zero. In order to avoid it, we 
increase the generated values by 1. Namely, let 
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The parameters are  λ1  = 1,  λ2 = 0.9. The simulation was 
executed to T = 1000 and the number of simulations was 
N = 10000. The fitted curve is  u*(n) = 0.8608 ∙ 0.9003n

 , which 
shows very good coincidence with the simulated points, as 
Fig. 9 represents.

Fig. 7 Approximate values of the overflow probabilities of form (23) (-) , the 
simulated values (*), and the exact ones

Fig. 8 Differences between the exact and fitted curve given by (31) and (23)

Fig. 9 The fitted curve in case of Poisson distribution

(32)

(33)
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The expectation of the times equals  1 + 1 = 2, the expecta-
tion of the filled amount of material is  0.9 + 1 = 1.9, therefore 
inequality (20) holds. The fitted curve and the simulated points 
coincide well, supporting experimentally that the analytic solu-
tion of Eq. (19) is close to the form in (23). 

The same phenomenon can be seen in the case of binomial 
distribution as well. Binomial distribution has two param-
eters namely nb and pb, the possible values are  0,1,2,...,nb 
and the probabilities belonging these possible values are
n
k

p pb
b
k

b

n kb







 −( ) −

1 .  In order to avoid value zero, the possible 

values were increased by 1, that is the distribution of the con-
secutive time intervals is 

f j
j

n
j

p p j nt
t
j

t
n j

t
t( ) =

=

−








 −( ) = +



− − −( )

0 0

1
1 1 1

1 1

,

, ,...,

if

if






and the distribution of the filled amount of material is 

g i
i

n
i

p p i nY
Y
i

Y
n i

Y
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=

−
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Now  E(tk ) = nt ∙ pt + 1  and  E(Yk ) = nY ∙ pY + 1 .
Figure 10 presents the simulated values of  u(n)  and the 

approximate curve of the form (23).
The parameters are  nt = 10,  pt = 0.05,  nY = 10,  pY = 0.09 . 

The simulations were executed to  T = 10000  and the number 
of simulations was  N = 10000 . The fitted curve of the form 
(23) resulted in  u*(n) = 0.8548 ∙ 0.8925n

 . Figure 10 shows the 
adequateness of the fitted curve in this case as well.

Fig. 10 Simulated values of the overflow and the approxi-
mate curve in case of binomial distribution

6 Determination of the necessary storage size to a 
given reliability

The main purpose of the investigations was to find the appro-
priate size of the storage, that is the volume enough for the 
changing material with a given reliability. As  u(n)  is the prob-
ability of the overflow, if we want to require reliability 0.95, 
then we can allow probability 0.05 for overflow. In general, 

to determine required size to reliability  1 − α , we have to 
solve the equation  u(n) = α. More precisely, we have to find the 
smallest integer value n, for which  u(n) ≤ α. Since usually we 
do not know the exact form of  u(n), we apply the approximate 
form of it, that is, we investigate the equation   u*(n) = α. The 
form of  u*(n)  can be easily treated, and

n c
=

−







 +

ln ln

ln
,

α
µ

1

1

1
*

*

and the values  c
1

*  and  µ1
∗  are determined by the fitting curve 

for the simulated values by the least square method.
In the case of binomial distribution with parameters pre-

sented in the above section,  u*(n) = 0.8548 ∙ 0.8925n  pro-
vides the results in required sizes. In the case of Poisson 
distribution with parameters presented in the previous sec-
tion   u*(n) = 0.8608 ∙ 0.9003n

 . The required sizes are quickly 
increasing in case of large reliability (Fig. 11).

Fig. 11 The required volume of the storage in the function of reli-
ability in case of binomial and Poisson distribution

One can see that the expectations are the same in both cases 
but the dispersions are smaller in the case of binomial distribu-
tion. The larger the dispersion, the larger the uncertainty, the 
larger the required size. This phenomenon can be observed in 
Fig. 12. Keeping the distributions binomial, the expected val-
ues were fixed as  E(tk ) = 2  and  E(Yk ) = 1.9, but the dispersions 
change, and the required sizes change as well. Figure 12 con-
firms the preliminary expectation, namely, the larger the dis-
persion, the larger the uncertainty of the process, hence larger 
size is required to a given reliability. In the example, the fol-
lowing parameters are used:

Table 1 Parameters of the binomial distributions in Fig. 12 

nt pt nY pY D(tk ) D(Yk ) line colour

2 1/2 2 0.45 0.71 0.67 ____

3 1/3 3 0.3 0.82 0.84 ____

5 1/5 5 0.18 0.89 0.91 ____

10 1/10 10 0.09 0.945 0.95 ____

100 1/100 100 0.009 0.995 0.996 ____

(35)

(34)

(36)



199Sizing Intermediate Storages in Discrete Models 2016 60 3

Fig. 12 The required size in the function of reliability in case of 
binomial distributions with parameters included in Table 1

7 Comparison of the discrete and continuous model
Finally, we compare the probability of overflow and the 

expected time of overflow for the discrete and continuous mod-
els. To avoid the differences caused by approximations, we 
apply exponential distributions in the case of the continuous 
model and geometric distributions in the case of the discrete 
model. It is a well-known fact that they correspond to each 
other. We chose parameters in such a way that the expectations 
are equal. In case of  f j f f

j( ) = −( )( )1  j = 0,1,2,.... , with
0 1< <f , and  g i g g i( ) = −( )( ) −1 1, i = 1,2,... . One can prove that 

E t f
fi( ) =

−1

and

E Y
gi( ) =

−
1

1
,

consequently, the probability density functions in the continu-
ous case are 

f t
t

t tf f
( ) =

<

−( ) ≤



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0 0

0

if

ifµ µexp

and
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y yg g
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




0 0

0

if

ifµ µexp

with 

µ f
f

f
=

−1

and

µg g= −1 .

If  f = 0 85.   and  g = 0 8. , the discrete distributions and the 
corresponding probability density functions are plotted in 
Fig. 13. and 14.

Fig. 13 Discrete geometric distribution with  f = 0 85.   and exponential 
probability density function with parameter  μf = 3/17

Fig. 14 Discrete geometric distribution with  g = 0 8.   and
exponential probability density function with  μg = 0.2 .

The exact overflow probabilities were computed by (23), 
(24) and (25) in the discrete model. In the continuous model 
the probabilities were computed by (12) in [8] applying c = 1. 
The probabilities show very good coincidences and they are 
presented in Fig. 15.

Fig. 15 Exact overflow probabilities in case of exponential distribution ( _ ) 
and discrete geometric distribution (*)

The expectations of overflow time are determined by (16), 
(24) and (25) in the discrete model and by (13) in [8]. The func-
tions are very similar and they are presented in Fig. 16.

(39)

(37)

(38)

(40)

(41)

(42)
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Fig. 16 The expectations of overflow time in case of exponential distribution 
(____) and discrete geometric distribution (*)

8 Conclusion
The operation of a processing system connected by an inter-

mediate storage investigated. The random effects are discrete 
and the focus is the required volume for the change of mate-
rial to a given reliability. The main restrictive assumptions of 
the model are: unity withdrawal rate is supposed and both the 
filling time and the filled amount of material are independent 
integer valued random variables.

The main results are the followings: a mathematical model 
with the governing equations is set up. The properties of the 
solution of the governing equation are analysed. In special 
cases the analytic form of the solution is given. We proposed 
this form for approximate function using the values provided 
by Monte-Carlo simulation. Goodness of the approximation is 
illustrated. Approximate solutions are applied for solving the 
problem of determination of the appropriate size to a given 
reliability. The results in the discrete and continuous models 
are compared and good coincidences are experienced. It proves 
that the discrete model may substitute the continuous model. 
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