
144 Period. Polytech. Chem. Eng. O. Ilgen, S. Yerlikaya, F. O. Akyurek

Synthesis of Solketal from Glycerol 
and Acetone over Amberlyst-46 to 
Produce an Oxygenated Fuel Additive

Oguzhan Ilgen1*, Senol Yerlikaya2, Funda Oguzkaya Akyurek2

Received 10 December 2015; accepted after revision 03 April 2016

Abstract
Recently, with rapid consumption of fossil fuel sources all over 
the world, the interest in alternative fuels has increased. Bio-
diesel is one of the most preferable one produced by transes-
terification of triglyceride with alcohol, yielding glycerol as 
the by-product. As a drawback, increase in biodiesel produc-
tion has lead to an increase in availability of glycerol. In this 
work, glycerol was converted to solketal in 84 % chemical yield 
under optimum conditions via reaction of acetone over Amber-
lyst-46 heterogeneous catalyst. Solketal was blended 3, 5, 7 
and 10 vol% with oxygenate free gasoline. When compared to 
unblended gasoline the higher values of research octane num-
ber and motor octane number were obtained with blended ones.
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1 Introduction
Both global warming and decrease in fossil fuel sources are 

the basic causes of searching for alternative fuels [1]. Biofuels 
are considered to be an attractive alternative to fossil fuels due 
to their environmental and renewable nature [2]. As biodiesel 
consists of very low sulfur and has low toxicity, leading to the 
emission of green house gases during combustion, it has been 
accepted as the “future fuel” [3, 4]. Therefore, the European 
Union has proposed to blend diesel with biodiesel by 10 % in 
the transportation industry by the end of 2020, which gives rise 
to 17.4 million tons of biodiesel production per year [5]. Trans-
esterification of vegetable oils or animal fat with alcohol gener-
ally methanol or ethanol over basic catalysts affords biodiesel 
and glycerol is to be formed as a by-product of biodiesel pro-
duction by 10 wt% [6, 7]. By 2020, it is predicted that global 
glycerol formation will be 41.9 billion liters [8]. Corresponding 
glycerol cannot be used for food and pharmaceutical industries 
because of its high contamination of methanol [9]. Further-
more, its high boiling polar triol property prevents to utilize it 
directly as a fuel additive. Hence, transformation of glycerol 
into valuable chemicals via various catalytic process involv-
ing oxidation, dehydration, hydrogenation, etherification and 
esterification has received much attention in recent years [10-
13]. Apart from the glycerol, acetone which is the other feed-
stock for solketal production, is commercially obtained from 
petrochemical processes. However, acetone is also produced 
from the non-petroleum feedstock such as acetone-butanol-
ethanol (ABE) fermentation process. Specifically, the conden-
sation of glycerol to yield ketals and acetals has been offered as 
fuel additives [14]. Solketal which is synthesized from the ket-
alization reaction of acetone and glycerol can be used as a fuel 
additive to reduce particulate emission and enhance the cold 
flow properties of liquid transportation fuels [15]. Moreover, it 
decreases the gum formation, improves the oxidation stability, 
and the octane number when added to gasoline [14]. In addi-
tion, water in fuel storage tanks may cause problem due to the 
back hydrolysis to acetone and glycerol. Homogeneous cata-
lysts, such as H2SO4, HCl, HF, and p-toluenesulphonic acid, 
can be applied for the ketalization of glycerol [16]. Although 
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the homogeneously catalyzed processes give high conversion 
of glycerol, large amount of waste is produced during the sepa-
rating and cleaning the catalyst. The use of heterogeneous cata-
lysts has advantages to overcome the drawback. Hence, hetero-
geneous catalysts like Amberlyst-15 [17], Amberlyst-36 [18], 
montmorillonite K-10 [19], zeolites [17, 20], silica supported 
heteropoly catalysts [21], and mesoporous silicates containing 
arylsulfonate groups [22] are more favorable.

In this work, the influence of reaction conditions such as 
reaction time, catalyst amount, temperature and molar ratio 
of acetone to glycerol was investigated for the ketalization 
of glycerol to yield solketal over Amberlyst-46 catalyst. The 
reason of selection of Amberlyst-46 is its surface sulpho-
nated structure which might provide easy accessibility of the 
acid sites and external adsorption and desorption during the 
reaction. Additionally, reusability of the catalyst was studied 
and EN 228 Standard- Automotive fuels - Unleaded petrol - 
Requirements and test methods: research octane number (ISO 
5164) and motor octane number (ISO 5163) applications were 
applied with oxygenated free gasoline blended with solketal.

2 Materials and methods
Glycerol and acetone (both > 99wt% purity) were purchased 

from Merck. Solketal (1,2-isopropylideneglycerol, 97wt%) 
was purchased from Sigma Aldrich to use in blends for MON 
and RON analysis and as calibration standard for GC analysis. 
The catalyst in solid form: Amberlyst-46 was procured from 
Dow Chemical. The properties of Amberlyst-46 were presented 
in Table 1.

Table 1 Properties of Amberlyst-46 catalyst.

Matrix & Type Description
Surface 
area

Temp. 
limit

Moisture 
content

Macroreticular
& Strong acid

Sulfonated 
divinylbenzene /
styrene 
copolymer

75 m2/g 120 °C 26-36 %

The condensation of glycerol (5 g, 0.054 mol) with acetone 
by using 6:1 acetone/ glycerol molar ratio over heterogeneous 
acid catalyst Amberlyst-46 of different % (w/w) ratios was car-
ried out through reflux in a 250 mL three-necked round bottom 
flask in an oil bath using condenser and a magnetic stirrer under 
inert (N2) atmosphere. The reaction temperature was controlled 
with an external thermostat equipped with an external thermo-
couple with 0.1 °C accuracy immersed in reaction mixture. The 
stirring speed was set to 500 rpm in all experiments.

Product mixture was analyzed with a gas chromatograph, 
equipped with a mass spectrometer detector [Agilent 5975 C 
GC/MS (EI), Agilent 7890 A GC equipped with capillary col-
umn (30 m x 0.25 mm ID x 0.25 μm film)]. As a carrier gas 

helium was used with a flow rate of 1.2 mL/min. Oven tem-
perature was adjusted at 450 °C . NIST and WILEY library 
provided to name the components in the mixture. Product for-
mation as means of solketal yield was calculated after calibra-
tion by using GC-FID (Agilent 6890N) under the conditions of 
pressure: 80 kPa, flow: 4.4 mL/min, oven: 80 °C/250 °C.

Solketal was mixed in 3, 5, 7 and 10 vol% with oxygenate-
free gasoline. The corresponding blend was subjected to an 
analysis of EN 228 Standard- Automotive fuels - Unleaded 
petrol - Requirements and test methods: research octane num-
ber (ISO 5164) and motor octane number (ISO 5163) [23, 24]. 
The results were compared to the unblended gasolines. 
All experiments and analyses were repeated three times and 
average values were used.

3 Results and Discussion
3.1 Solketal synthesis

Condensation of glycerol with acetone over Amberlyst-46 
catalyst provided to reach the target compound. In order to 
determine the optimum reaction conditions, time of reaction, 
catalyst amount, temperature, acetone/glycerol mol ratio were 
studied. As shown in Fig. 1 the optimal reaction time was 
reached at 30 minutes and it was observed that the solketal 
yield remained stable at following times. The solketal yield and 
glycerol conversion reached to 84 % at 30 min and remained 
almost constant (between 84 % and 85 %) up to 300 min.

Fig. 1 Influence of reaction time on the yield of solketal (Reaction conditions: 
acetone/glycerol molar ratio, 6:1; catalyst amount, 1 wt. %; temperature, 60 °C).

Furthermore, the effect of catalyst dosage on solketal yield 
was investigated by varying the Amberlyst-46 loading from 
0.5% (w/w) to 5% (w/w) while the other reaction param-
eters kept as constant (See Fig. 2). In absence of the catalyst 
no solketal formation was observed. Solketal yields were 
increased significantly and reached to 59 % and 84 % in the 
presence of 0.5 % (w/w) and 1 % (w/w) of catalyst amounts. 
Increase in the solketal yield can be explained by the increase 
in active sites of catalyst. Whereas, when the catalyst amount 
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was further increased to 3 % (w/w) and 5 % (w/w), no further 
improvement was observed in the solketal yield. This was due 
to the reaction that had already reached equilibrium before the 
30 min with the catalyst loadings higher than 1 % (w/w). So, 
the catalyst amount of 1 % was used in following experiments.

Fig. 2 Effect of catalyst amount on the yield of Solketal (Reaction conditions: 
acetone/glycerol molar ratio, 6:1; reaction time: 30 min; temperature, 60 °C).

The effect of reaction temperature was investigated at three 
different temperatures as shown in Fig. 3.

Fig. 3 Effect of reaction temperature on the yield of solketal 
(Reaction conditions: acetone/glycerol molar ratio, 6:1; 

catalyst amount, 1 wt. %; reaction time: 30 min).

Comparatively lower solketal yields obtained at 20 °C and 
35 °C, and a significant increase was observed at 60 °C of tem-
perature. According to the study of Nanda et al. [25-26], thermo-
dynamically higher reaction temperature results lower equilib-
rium yield since reaction is exothermic. Kinetically, the reaction 
rate increases with temperature while lower reaction temperature 
requires longer reaction time to reach equilibrium yield.

In this study, apart from 1:1 mol ratio of acetone/glycerol, 
three excess ratios of 3:1, 6:1 and 9:1 were investigated to see 
the effect of molar ratio. According to stoichiometry, more 

than one mole of acetone is necessary in order to improve the 
solketal yield. As shown in Fig. 4, by the use of 3:1 and 6:1 
mol ratios, higher solketal yields were observed according to 
1:1 mol ratio. On the other hand, for 9:1 mol ratio, the solketal 
yield remained as constant. The reason may be that the cata-
lyst concentration decreased with increase of acetone content 
which increased the total volume.

Fig. 4 Effect of acetone/glycerol molar ratio on the yield of solketal (Reaction 
conditions: catalyst amount, 1 wt. %; reaction time: 30 min; temperature, 60 °C).

3.2 Reusability of the catalyst
The reusability of the catalyst is really crucial to provide 

economic applicability of the solketal production process. In 
addition, it makes the process much more environmentally 
friendly than the homogeneous catalytic system, containing the 
simple separation from reaction mixture. In this study, for each 
following runs, the catalyst was separated by filtration and then 
reused after washing with acetone. 

The reusable performance of the catalyst on solketal yield 
is shown in Fig. 5. As seen, after first cycle reused catalyst 
provided 68 % the solketal yield which was 19 % lower than 
the fresh catalyst and negligible decrease was observed for 
following cycles. The constant solketal yield of 62 % was 
obtained after 7th, 8th and 9th cycle of the reaction with same 
catalyst which was 26 % lower than the fresh catalyst. The rea-
son of drop may be due to the active site blockage by adsorbed 
by-products or feed contaminants which were not cleaned 
by washing process. It will be worth for further study for the 
regeneration of the catalyst. 

3.3 MON and RON analysis results of oxygenate free 
gasoline blended with solketal 

Octane is an important measure for gasoline quality. As 
respect to other parameters, octane serves to inform how well 
a vehicle will perform when fueled with such gasoline. Spe-
cifically, the octane rating measures a tendency of fuel to resist 
preignition in the combustion chamber [27].

In this work, the oxygenated compound solketal enhanced both 
MON and RON. It was blended 3, 5, 7 and 10 % with oxygenate 



147Synthesis of Solketal from Glycerol and Acetone over Amberlyst-46 2017 61 2

free gasoline by indicating good solubility. When compared 
blended ones according to the unblended gasoline, an increase in 
MON and RON were observed as shown in Figs. 6 and 7. 

Fig. 5 Reusability of Amberlyst-46 catalyst for solketal synthesis (Reaction 
conditions: acetone/glycerol molar ratio, 6:1; catalyst amount, 1 wt. %; 

reaction time: 30 min; temperature, 60 °C).

Fig. 6 Influence of solketal content on MON.

Fig. 7 Influence of solketal content on RON.

4 Conclusions
Conversion of glycerol with acetone over heterogeneous 

catalyst to solketal was optimized. Amberlyst-46 demonstrated 
effective performance to obtain required ketal. 84 % yield 
was achieved under optimal reaction conditions as %1 (w/w) 
catalyst, 60 °C of temperature, 30 minute reaction time. Cor-
responding solketal was blended 3, 5, 7 and 10 vol% with oxy-
genates free gasoline and subjected to MON and RON analysis 
according to ISO 5163 and ISO 5164 standards. Consequently, 
it was seen that the octane number of blends were improved as 
compared with unblended gasoline. 
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