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Abstract
In this article, thermal conductivity data of aqueous nano-
fluids of CuO have been modeled through one of the instru-
ments of empirical data modeling. The input data of 5 different 
volume fractions of nanofluid obtained in four temperatures 
through experiments have been considered as network inputs. 
Also, triangular function, due to providing the best responses, 
has been used as membership function in ANFIS structure. The 
modeling results show that fuzzy networks are able to model 
thermal conductivity results of nanofluids with good precision. 
Regression coefficient of this modeling has been 0.99.
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1 Introduction
Increase in energy cost in long time and growing need for 

energy have made scientists look for ways to conserve energy. 
One way for conserving energy in heat transfer field is to use 
operating fluids of heat transfer with better and more efficient 
transfer properties. Around 20 years ago, Choi [1] in his report 
proposed his solution for this problem by introducing suspen-
sions called nanofluids. After scientists’ familiarity with these 
fluids, a great deal of attention was drawn to them. When many 
researchers of heat transfer and mass field observed nanofluids 
potential in reducing energy consumption, they embarked on 
their researches on these new fluids and thousands of scientific 
articles in this field have been published so far.

These articles have different subjects such as nanofluids 
thermal conductivity [2-7], viscosity [8-11], heat transfer coef-
ficient [12-18] and the other subjects about nanofluids.

In addition to experimental researches, a large number of 
analytical and numerical researches have been conducted on 
this field. Beyond this level, some researchers have begun stud-
ies on experimental data modeling. These researches are con-
ducted with the purpose of nanofluids behavior modeling in 
thermophysical and hydrodynamic terms.

A report of the studies conducted to model nanofluids behav-
ior is provided in Table 1.

In this article, thermal behavior of aqueous nanofluids con-
taining CuO nanoparticles has been modeled by ANFIS net-
work. The nanofluids were prepared through a two-step method 
and the thermal conductivity data were measured based on pre-
vious work [21, 22] in five volume fractions and four tempera-
tures and the modeling results were compared with experimen-
tal data. It should be noted that in this article Sugeno method 
has been used for modeling the data through ANFIS network. 
Based on the author’s knowledge, there are no similar studies 
in literature on modeling the thermal conductivity by Adaptive 
Neuro-Fuzzy Inference System (ANFIS).1 Department of Mechanical Engineering, Imam Hossein University,
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Table 1 Research on modeling the properties of nanofluids

methodparametersCharacteristicnanoparticle(s)Author(s)

diffusional 
neural 
network 
(DNN)

temperature
volume 
fraction

viscosity
CuO, TiO2, 
SiO2 and Al2O3

Yousefi et 
al. [19]

ANN with 
radial basis 
function

nanoparticle 
volume 
concentration, 
nanoparticle 
diameter, 
nanoparticle 
density and the 
viscosity of 
base fluid

viscosity
CuO and
Al2O3

Zhao et 
al. [20]

artificial 
neural 
networks 
(ANN)

temperature, 
diameter of 
particles, and 
solid volume 
fraction

thermal 
conductivity 
and dynamic 
viscosity

ferromagnetic 
nanoparticles

Hemmat 
Esfe et al. 
[21]

artificial 
neural 
networks 
(ANN)

temperature 
and solid 
volume 
fraction

thermal 
conductivity

Al2O3
Hemmat 
Esfe [22]

ANN–GA

temperature 
and solid 
volume 
fraction

density
Al2O3, CuO, 
Sb2O5 and 
ZnO

Karimi 
and 
Yousefi 
[23]

ANN

temperature, 
solid volume 
fraction 
and thermal 
conductivity of 
nanoparticles

thermal 
conductivity

γ-Al2O3, TiO2 
and CuO

Hojjat et 
al. [24]

ANN

temperature, 
solid volume 
fraction 
and particle 
diameter

thermal 
conductivity

MgO
Hemmat 
Esfe et al. 
[25]

ANN
temperature, 
solid volume 
fraction

thermal 
conductivity

Cu/TiO2 
hybrid 
nanoparticle

Hemmat 
Esfe et al. 
[26]

CFD 
optimization 
using
ANN-
Genetic 
Algorithm

heat transfer 
coefficient and 
friction factor

nanofluid flow 
in flat tubes

Al2O3

Safikhani 
et al. [27]

FCM-based 
neuro-fuzzy 
inference 
system and 
genetic 
algorithm-
polynomial 
neural 
network

temperature, 
solid volume 
fraction and 
nanoparticle 
size

thermal 
conductivity

Al2O3

Mehrabi 
et al. [28]

2 Adaptive Neuro-Fuzzy Inference System 
Adaptive Neuro-Fuzzy Inference System or ANFIS is a 

category of adaptive networks functioning similar to a fuzzy 
inference system, introduced by Jang, which automatically pro-
duces a fuzzy rule base and membership functions [29].

A typical ANFIS network is composed of connected nodes 
depending on parameters that are altered by learning rules 
reducing the error criteria. The most common learning tech-
nique is the gradient method, but Jang suggested hybrid learn-
ing rule that includes the least Square or LSE Estimator.

There are several different concepts related to ANFIS that 
will be explained below [29]:

NUMMFs is the number of membership functions per unit. 
In this study, 3 membership functions have been considered per 
unit. INPUTMF is the kind of membership function for each 
unit. In this research, triangular membership function has been 
used for all input membership functions.

OUTPUTMF is the type of output membership function. It 
can be linear or constant. The latter has been used as output 
membership function in this study.

Neuro-fuzzy systems have a lot in common with artificial 
neural networks. However, they also have some differences 
from each other. There are four major differences between them:

1. In a neuro-fuzzy system, nodes and links correspond to 
a certain component in the system. For instance, First 
Layer describes the antecedent MF.

2. A node is generally not completely connected to the 
nodes in a neighbouring layer.

3. Nodes in different layers of neuro-fuzzy system usually 
perform different tasks.

4. A neuro-fuzzy system usually has more layers than neu-
ral network.

In Fig. 1, the structure of ANFIS network with two inputs 
has been shown. For each input, there are three membership 
functions. This structure has 9 rules and 9 outputs.

Fig. 1 ANFIS model structure

For a Sugeno type of fuzzy system having the rule base:
If x is A1 and y is B1, then  f1 = p1 x + q1 y + r1

If x is A2 and y is B2, then  f1 = p2 x + q2 y + r2
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Let the membership functions of fuzzy sets Ai, Bi, i=1,2, be 
μAi, μBi.

In evaluating the rules, choose product for T-norm (logical 
and).

1. Evaluating the rule premises results in

w x y ii A Bi i
= ( ) ( ) =µ µ 1 2,

2. Evaluating the implication and the rule consequences 
gives

f x y
w x y f x y w x y f x y

w x y w x y
⋅( ) = ⋅( ) ⋅( ) + ⋅( ) ⋅( )

⋅( ) + ⋅( )
1 1 2 2

1 2

Or leaving the arguments out

f x y w f w f
w w

⋅( ) = +
+

1 1 2 2

1 2

This can be separated to phases by first defining

w w
w wi

i=
+

1 2

Then f can be written as

f w f w f= +
1 1 2 2

All computations can be presented in a diagram form:

Fig. 2 Computation process of ANFIS

Fig. 3 Computational diagram of ANFIS

Basic flow diagram of computations in ANFIS
The diagrams used as membership functions in ANFIS net-

work have been shown in Fig. 4. These functions have a deter-
mining role in weight values used in empirical data modeling.

Fig. 4 Membership function gallery

In order to model the data by ANFIS, different membership 
functions have been used. A list of these membership functions 
as well as regression parameters has been provided in Table 2. 
The best response has been obtained from membership func-
tion of trimf or triangular membership function. In this table, 
MSE is Mean Squared Error, RMSE is square root of MSE, and 
STD is standard deviation of responses from empirical values.

Table 2 Regression parameters

Mean of 
Error

STDRMSEMSE
R
(%)

membership 
function 
type

4.5814e-70.01130.01101.2131e-499.28trimf

2.2348e-70.05460.05290.002881.68trapmf

4.1561e-70.01490.1452.1122e-498.75gbellmf

1.3657e-70.01340.1301.6945e-499.00gaussmf

4.6802e-70.01770.01722.9614e-498.24gauss2mf

2.2293e-70.05570.05280.002980.86pimf

3.6381e-70.01800.01753.0792e-498.17dsigmf

3.6382e-70.01800.01753.0792e-498.17psigmf

After modeling the data, experimental values can be com-
pared with output values of ANFIS modeling. This comparison 
has been shown in Fig. 5. As is observed in this figure, the 
model could estimate the experimental data with good preci-
sion. Therefore, we realize that ANFIS can be a proper tool for 
modeling nanofluids thermal conductivity.

(1)

(2)

(3)

(4)

(5)



205Thermal Conductivity Modeling of Aqueous CuO Nanofluids by ... 2018 62 2

Fig. 5 Comparison between experimental data and ANFIS model

In Fig. 6, the histogram of modeling error has been shown. 
This diagram divides modeling error into five intervals and 
specifies the number of samples in each interval in vertical 
bars. If the modeling error is low, the number of samples in the 
interval close to zero is bigger. The curve in this diagram also 
shows that most of the data have an error close to zero.

The following relation can be used to obtain margin of devi-
ation of ANFIS output:

MOD
k k
k

exp pred

exp

%( ) =
−

×100

This equation yields the percentage of modeling error. The 
values obtained from this equation have been shown in Fig. 7. 
The maximum error for this modeling has been less than 4% 
that is considered an acceptable value for this modeling.

Fig. 6 Margin of deviation

Fig. 7 Comparison between experimental data and ANFIS model

In Fig. 8, modeling results at different volume fractions of 
nanoparticles in nanofluids have been compared with experi-
mental data. In this article, experimental data of 4 volume frac-
tions of 0.04%, 0.08%, 0.12%, and 0.16% as well as base fluid 
have been used. It is seen in this figure that modeling the data 
could estimate the experimental data with good precision.

Considering the data in these diagrams reveals that increase 
in thermal conductivity of base fluid from 28 to 55°C has been 
just 7% and increased from 0.605 to 0.65 W/m.K while increase 
in thermal conductivity of nanofluids with volume fraction of 
0.16% has been 38% and increased from 0.68 to 0.94 W/m.K.

The parameters of the nonlinear regression have been pro-
vided in Table 3:

Table 3 Parameters of the nonlinear regression

mean of errorRMSEMSER

8.9000e-40.01191.4158e-40.9918

By considering the results provided in Table 3 and Fig. 6, 
we conclude that the conducted modeling has been very suc-
cessful and these networks can be used for modeling more 
extensive data and for different properties of nanofluids. The 
closer R2 value to 1 shows the better prediction of experimental 
data by the proposed model [30]. As can be seen from Table 3, 
R-squared is 0.9918.

3 Conclusions
The assessment of possibility of using adaptive neuro-fuzzy 

inference systems (ANFIS) for modeling experimental data of 
CuO nanofluids thermal conductivity was investigated in this 
article. For this purpose, a number of experimental data of ther-
mal conductivity of CuO-water nanofluids are given to network 
as input and the modeling is conducted by determining the appro-
priate type of network structure and also membership function. 

(6)
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(a) (b)

(c) (d)

(e)

Fig. 8 Thermal conductivity versus temperature at different volume concentrations, A: base fluid, B: 0.04%, C: 0.08%, D: 0.12%, E: 0.16%
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The results show that these networks can model with good pre-
cision. Therefore, these networks can also be introduced as an 
instrument for post-processing the nanofluids experimental data.
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