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Abstract 
The article concerns optimization of network arch bridges. 
This is challenging optimization problem involving even for 
conventional scheme of network arch bridge the identification 
of some topological parameters as well as shape configura-
tions and all sizing parameters of structural members, seeking 
the minimum weight. Optimal bridge scheme is sought tuning 
a large set of design parameters of diverse character: the type 
of hanger arrangement, the number of hangers, their inclina-
tion angles and placement distances, the arch shape and rise, 
etc. Mathematically, the optimization of the bridge scheme is a 
mixed-integer constrained global optimization problem solved 
employing stochastic evolutionary algorithm. Plane heavy/
moderate/and light-deck bridges of 18, 30, 42 and 54 m spans 
were optimized using proposed optimization technique. The 
decisive design parameters and their promising ranges were 
revealed. Also, the influence of some simplifications is shown: 
changing the arch shape from elliptical to circular, placing the 
hangers at equal distances, etc.

Keywords 
network arch bridge, weight minimization, topology, shape 
and sizing parameters 

1 Introduction 
In order to reduce the costs and consequently the material 

consumption, the construction of recent bridges is dominated 
by slender structures. Taking into account a sufficient load car-
rying capacity and durability, reduction of the bridges’ costs 
can be achieved only by optimizing the bridge structures. This 
work is dedicated to the overall optimization of network tied 
arch structures for pedestrian bridges of moderate span. A net-
work arch bridge is one of the most slender bridge schemes. 
Intersecting incline hangers are optimal for uneven or changing 
external loads, leading mainly to the axial internal forces in the 
members of bridge. Scheme of tied arch with vertical hangers 
leads to a substantially heavier design.

The behaviour and design of network arch bridges were 
investigated in details by Tveit [1]. The main his conclusion is, 
an optimal network arch will remain the world‘s most slender 
bridge. Teich [2] in his dissertation tackled the development of 
optimal structure for network arch. Teich recommends using 
up to 50 hangers since their efficiency reduces significantly 
above 50. An essential parameter is the arrangement of hang-
ers. Teich analysed five different arrangement types and con-
cluded that the radial arrangement and arrangement with con-
stantly decreasing slope of hangers are the best choices. Teich 
also suggests designing the arch of elliptical shape or arch with 
double radii, and of height 1/5 to 1/7 of the span length. On the 
contrary, Brito [3] asserts that for a bridge of 100 m span and 
of 17 m arch rise the variable hanger slope configuration is the 
least efficient arrangement scheme. However, in these works 
the influence of different parameters to the objective function 
(i.e., the cost of the structure or its equivalent form – the mass 
of structure) was studied independently. 

Mathematically, optimization of bridge scheme is constraint 
optimization problem with numerous discrete and continu-
ous design parameters. For large-scale optimization problems, 
the high-dimensional design space contains usually numerous 
local minima scattered throughout the space. Common gradient 
optimization methods find the local minima close to the start-
ing position, and are not suitable for larger optimization prob-
lems, and only the stochastic global optimization methods can 
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be successfully applied to similar problems. Lute et al [6] con-
clude that the robust tool for optimization is genetic algorithm 
(GA) that can easily handle larger sets of variables, and can 
conveniently accommodate discrete and continuous optimiza-
tion variables. Hasancebi [7] also uses GA but claims the main 
disadvantage of all GA is that they are computationally inten-
sive and some approximate techniques should be considered 
to remedy this drawback. Rana et al. [4] and Ahsan et al [5] 
suggested special global optimization evolutionary algorithm 
EVOP and solved mixed integer optimization problem of two-
span pre-stressed concrete bridge with 13 design parameters, 
showing that for similar problems the evolutionary algorithms 
can be an effective tool.

The optimal scheme of the network arch bridge can be 
sought by tuning a large set of parameters: starting from the 
cross-sections of all structural elements, the number of hang-
ers, their arrangement type, and finishing with the hanger slope 
angles and the distances between adjacent hangers. The maxi-
mum effectiveness of optimization can be achieved by tuning 
all those parameters simultaneously since the parameters are 
interdependent. 

The pedestrian bridges of moderate span are considered. 
The usual scheme of the bridge is a double arch tied by hori-
zontal deck that is suspended by a network of hangers (Fig. 
1). The arches are connected together with a lateral bracing to 
provide the horizontal stability. If the arches are parallel and 
not considering the lateral bracing, it is possible to optimize the 
arches separately, thus significantly diminishing the size of the 
optimization problem.

(a)

(b)
Fig. 1 Scheme of the network tied arch bridge (a). Single network tied arch of 

the bridge (b)

Thus, in this work an integrated technique for simultane-
ous topology, shape and sizing optimization of network arch 
bridges is suggested. Pure topology optimization is usually 
understood as optimization of continual structure seeking for 
optimal distribution of material over the space of the structure 
thus finally arriving to a discrete structure. However, in case of 
network arch bridges we considerably constrict the topology 
search space to the conventional elliptical shape of bridge but 
allow arbitrary number of hangers of conceivable in engineer-
ing sense schemes of their placing and inclination.

Thus the topology of the bridge is identified by the num-
ber of hangers and their arrangement type. The shape of the 
bridge is defined by the shape of the arch, its height and by the 
slopes of all hangers and distances between hangers. The sizing 
parameters include the cross-sections of all structural elements 
of the bridge. In case of moderate span, the load-bearing ele-
ments of deck and arch can be made of industrial steel profiles. 
In this work we consider, the deck beam is made of I-shape pro-
file from the European IPE assortment, and the arch is a square 
or rectangular hollow tube from EN 10210-2:2006 assortment. 
The hangers are solid round strips.

The discrete nature of cross-sections of structural elements 
from specific assortments does not allow achieving the global 
minimum of optimization problem and cause non-smoothness 
of results. Therefore, the optimization is repeated also treating 
continuous welded hollow-tube shape cross-sections. 

The total number of design parameters is up to 11. Some 
parameters are integers: the number of hangers, and the numbers 
of I-beam and arch cross-sections in the assortments. All remain-
ing design parameters are treated as continuous variables.

Provided the following initial data on the structure:
• Span of the bridge;
• Material data on structural elements;
• Data on dead and traffic loadings and loading cases;
• Maximum allowable deflections at the deck of bridge;
• Lower and upper limits for the radius of hangers;
• Profile assortment tables,

the optimization programs should yield the optimal, i.e. 
lightest scheme of bridge with a “one button click”. 

In mathematical terms, the problem is a constraint mixed-
integer global optimization problem, since the landscape of 
the objective function is complex and cannot be obtained in a 
closed form. The results of numerical experiments definitely 
point to an actually multimodal character of the problem. Since 
the number of design parameters is rather large, we use sto-
chastic evolutionary optimization algorithms (EA) from Mat-
Lab that do not require the sensitivity information. Stochastic 
algorithms do not guarantee the global solution to the problem, 
but in engineering practice it is more important finding a better 
local solution than the solution that is currently known.
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A direct problem in obtaining the objective function value 
supposes a linear static analysis of bridge structure via the 
finite element method (FEM) and checking constraints. The 
constraint optimization problem is converted to the uncon-
strained one employing the static penalization technique. 
Slight improvement in optimization results can be obtained 
using hyper-heuristics combining the evolutionary algorithm 
and consecutive pattern search.

In this paper, the plane load-bearing structures of pedes-
trian network arch bridges of 18, 30, 42, and 54 m spans are 
designed. Also, it is shown that for different types of decks, i.e. 
heavy/ moderate/light-deck, very different optimal topologies 
of load-bearing structure should be used.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes the idealizations of the bridge structure, 
the mathematical model for the optimization problem, as well 
as the suggested optimization technique. Section 3 provides 
several examples of application of the proposed technique 
and shows the influence of some initial conditions, which are 
usually taken in engineering practice on the design variables. 
Obtained optimization results of network arch bridges of dif-
ferent spans are compared with corresponding results on the 
competing bridge scheme – under-deck stayed bridge; the com-
parison confirms Tveit’s conclusion about the advantages of 
network arch scheme. The last section presents conclusions.

2 Problem formulation
2.1 Idealizations

The load-bearing structure of the network arch bridge is ide-
alized as a plane frame system. The catenary effect, the sag of 
the longest hangers for the moderate spans is not relevant and 
is neglected. All connections between structural elements are 
treated as ideal contacts, i.e. all connections are perfectly rigid. 
The fatigue and vibration effects are not investigated – though 
fatigue can be controlled by the given allowable design stress. 
Many vibration and fatigue effects, and also risk of loss of local 
stability can be avoided if the relaxation of hangers is sup-
pressed. This condition is included into the constraint system 
of optimization problem: if compression occurs in any hanger 
for any load case, the structure is treated as an infeasible. How-
ever, despite the fact that hangers receive only tension forces 
and are slender, all structural elements are idealized as 2-node 
beam finite elements. As shown in [8], the linear analysis of the 
structure is valid, and when compared to the non-linear analy-
sis, the discrepancies in results are on the safe side. Finally, 
the outer hangers have negligible influence on the behaviour of 
structure and therefore can be removed.

Since the bridges of moderate span are considered, the 
cross-sections of the arch and tie are constant. Also all hangers 
have the same cross-section.

According to the Eurocode 1, the bridge structure is ana-
lysed for the self-weight of the bridge itself plus four loading 
cases of a traffic load: distributed loading over the whole span, 
half of span, middle-half of span, and over both outside quar-
ters of span.

2.2 Optimization technique
The complete set of optimization programs consists of four 

independent parts: a meshing program that from the set of design 
parameters prepares the whole data set for the FEM analysis 
program, the FEM linear static analysis program, evolutionary 
algorithm from MatLab [9], and the program for evaluation of 
objective function value. The main module of program system is 
the EA. At the start, it randomly generates the given number of 
initial sets of the design parameters – in terms of EA, the popula-
tion of individuals. Meshing program renders those individuals 
into the complete data sets for FEM program. The last program 
on the basis of FEM analysis results evaluates the objective 
function, verifies the constraints and, in case of constraint viola-
tion, penalizes the objective function so that the infeasible indi-
viduals would have lower probability to be included into the next 
population. Since the bottleneck in global optimization problems 
generally is the computational time, the fast problem-oriented 
meshing, original FEM analysis and post-processing programs 
in Fortran were employed. All Fortran programs are connected 
to the EA algorithm as the “black-box” programs. The short 
computation time is the main reason, why we cannot rely on the 
standard FEM packages and more precise analysis types.

On the basis of the obtained results EA generates the new 
improved population using special genetic operators of muta-
tion, crossover and selection. This loop continues until one of 
the following criteria is reached: the maximum given number 
of populations is achieved, or the objective function value did 
not change over the given number of the last populations (called 
the “number of stall generations”), or the change in weighted 
average of objective function per stall generations is less than 
a given tolerance. 

The best obtained (local) solutions then can be refined using 
other derivative-free heuristics, e.g. pattern search (PS) algo-
rithm. For problems with a larger number of design variables it 
improves the solution up to 2%.

All the genetic parameters have to be tuned to the problem. 
Nevertheless, generally each numerical experiment ends up 
with different results therefore the optimization is repeated tens 
of times until the median values of objective function in final 
populations stabilize.

2.3 Statement of optimization problem
In mathematical terms, the optimization problem is formu-

lated as follows:
f f x

x D

*
min= ( )

∈

(1)
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for all load cases subject to:
• Structure equilibrium constraints;
• Strength constraints on all structural elements;
• Stability constraints on the arch elements;
• Relaxation constraints on the hanger elements;
• Displacement constraints on the deck nodes.

f(x) in (1) is a nonlinear objective function of continuous and 
integer variables f : Ân→Â, n is the number of design parame-
ters x, and D Ì Ân is a feasible region of design parameters. The 
global minimum f * at minimizers x* : f(x*) = f * should be found. 
No assumptions on unimodality are included into the formula-
tion of the problem, i.e. a number of local minima may exist.

The total mass of the bridge is considered the objective 
function. 

The complete set of design parameters along with their char-
acteristics and bounds is listed in Section 2.4, Table 1.

The constraint optimization problem is converted to an uncon-
strained problem using static penalties proportional to the extent 
of constraint violation. In any trespass of any allowable value of 
requirement ci, the value of objective function is penalized:

The penalty factor p depends on the problem; in comparable 
problems of bridge optimization [10] the factor p = 2 demon-
strated the best results.

The overall structure equilibrium constraints are checked 
solving the static problem via the FEM program. All the 
strength, stability and displacement constraints are formulated 
according to the Eurocode 3. Any occurrence of compression 
force in any hanger is penalized proportionally to the average 
value of tension axial forces in all hangers. Finally, the vertical 
displacement of any node at the deck due to the traffic load is 
constrained to 1/400 of the span.

2.4 Design variables and bounds
The typical plane load-bearing structure of the network arch 

bridge is shown in Fig. 2.
Since the literature on the optimal scheme of network arch 

bridges provides sometimes contradictory recommendations, 
in this work the set of design parameters that encompasses most 
practical topologies and shapes of the scheme is employed. 

The most discussed topic is the arrangement scheme of the 
hangers. Thus, we construct the complete hanger arrangement 
combining two anti-symmetrical sets of hangers (Fig. 2 (b), 
(c)). Also we treat constantly changing inclination angles of 
hangers and changing distances between adjacent hangers. Two 
hanger slopes are included in the design variables: the inclina-
tion angle of the first hanger and the angle of the last hanger αf 

(Table 1, initial and final slopes).
Consequently, each hanger has different inclination angle. 

It should be noted that those two design parameters cover also 
simpler cases of hanger arrangements: the hanger placement 

at equal inclination angles or the vertical hanger placement. 
Denoting the number of sections at the tie produced by one set 
of hangers by n, the angle change then is

The widths of all sections are also constantly varying. In the 
set of design variables we include only the width of the first 
section wi measured by the average section width wa. Then the 
width of each subsequent section is obtained augmenting the 
last width by 

(a)

(b)

 (c)                                       (d)
Fig. 2 Scheme of the arch bridge and the design variables (a). Hanger ar-

rangement (b). Hanger sets 1 (c) and 2 (d)

At this type of hanger arrangement, some hangers’ attach-
ment points at the arch and tie may approach each other. When 
the distance between adjacent hanger attachment nodes is less 
than a given allowable value (it is an input for the meshing 
program; 0.1 m for all calculations in this work), the meshing 
program merges both nodes.

One of the crucial design parameters is the rise of the arch 
and its shape. We treat the arch as a part of ellipse and include 
into the design parameters the rise h and the ratio between 
ellipse radii k = Rhorizontal /rvertical. The k = 1 gives the circular 
shape, and the k < 1/2 and the small height of the arch resem-
bles the section of parabola.

The section properties of the tie element – the I-shape beam 
are taken from the European IPE assortment (50 different pro-
files), and of the arch – from the European square and rectangu-
lar hollow section assortment (76 and 73 different profiles, 149 
in total). The main problems associated with the use of those 
assortments in the optimization are that the discrete values of 
sectional geometrical properties are distributed in the range une-
venly: for some table profiles of the same height the differences 

f p c c ci i allowable i: (| |) /= − 
 

∆α α α= − −( ) / ( )i f n 3

∆w w ni= − − −( ) / ( )2 2 1

(2)

(3)

(4)
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between adjacent values of the second area moments reach 
25%, while for other profiles – up to 13–15%. Evidently, the 
rectangular cross-sections are better suited for absorbing bend-
ing in the arch, however, for some variants of the bridge, the EA 
results with a square hollow cross-section. Also with increasing 
numbers of profiles in the assortment table, the values of section 
properties, e.g. the section area or the second moment of the 
area, sometimes decrease. This hinders EA taking proper deci-
sions on a needed number of the profile.

The complete set of the design parameters along with their 
bounds is provided in the Table 1.

Table 1 Set of design parameters

No. of a 
parameter in 
the genotype

Parameter Type Lower 
bound

Upper 
bound

1 Height of the bridge h Continuous w/10 w/2

2 Ratio of the ellipse radii k Continuous 0.1 1.5

3 Number of tie sections in 
one set of hangers n Integer 8 50

4 Width of the first section wi Continuous 0.2 wa 1.8wa

5 Slope of the first hanger in a 
set αi, in degrees Continuous 70 110

6 Slope of the last hanger in a 
set αf, in degrees Continuous 20 90

7 Number of the I-beam pro-
file in the IPE assortment nb

Integer 1 50

8
Number of the hollow 

section in the hollow tube 
assortment nt

Integer 1 149

9 Radius of the hanger rh, 
in m Continuous 0.005 0.02

3 Numerical results and discussion
As an example, the plain load-bearing structures of network 

arch pedestrian bridges of 18, 30, 42 and 54 m spans are opti-
mized. After the Eurocode 1, the load-bearing structure of the 
bridge should pass all the strength, stability, and slenderness 
constraints for 4 loading cases of live traffic load (clarified in 
Section 2.1); in all cases also the dead weight of the load-bear-
ing structure and the deck must be appended. The intensity of 
the live loading is 13 kN/m, while the intensity of dead loading 
depends on the type of deck: 13 kN/m for the light bridge, 26 
kN/m for moderate deck, and 39 kN/m for the heavy one. For 
the sake of simplicity, these dead loading cases will be denoted 
by L1, L2, and L3, correspondingly. Thus, 12 different load-
bearing structures were optimized in total.

To summarize, the following specific data on the bridge do 
not vary in the optimization process and remain constant:
• Span l – 18, 30, 42, or 54 m;
• Steel yield strength – 355 N/mm2;
• Specific weight of steel – 7.70x104 N/m3;
• Young’s modulus of steel elements – 2.10x1011 N/m2;
• Dead loading – 13, 26, or 39 kN/m;
• Traffic loading – 13 kN/m.

The following genetic parameters of the EA were chosen 
after a few numerical experiments:
• Population size – 100 individuals;
• Number of generations – 150;
• Stopping criterion – the first met, of: maximum number of 

generations – 200; number of stall generations – 100; objec-
tive function tolerance – 1e-6;

• Crossover probability – 0.8;
• Crossover type – Laplace crossover [11];
• Mutation type – power mutation [12]

 Every optimization problem is solved 50 times; more runs 
do not change significantly the median results. Evidently, it 
is not known whether the EA solution is precisely a global 
or even a local minima point. The exact minima point in the 
neighbourhood of the obtained solution can be reached using 
other heuristics, e.g., pattern search (PS) algorithm. After the 
best optimization results are defined, we start the PS from the 
three best solutions allowing 16000 additional objective func-
tion evaluations with initial mesh size 1, mesh expansion fac-
tor 2, and function tolerance 1e-6. In almost all optimization 
problems the best result after the PS is achieved when starting 
the algorithm from the best result of EA. However, the gains in 
total mass of structure do not exceed 1.5%; i.e., the EA locates 
the solution points with a sufficient precision. Hereafter, only 
the best results after PS will be refereed.

Solution time depends on the number of FEM mesh nodes 
that, in turn, is determined by the number of typical sections n. 
50 independent runs of the program package usually take from 
4 to 24 hours on a typical PC.

Fig. 3 The best three solutions for the bridge of 54 m span and load case L2: 
6773.2, 6827.7, and 6850.8 kg

The results of optimization clearly indicate the multimodal 
character of objective function. For example, in Fig. 3 the 
topologies of the three best solutions for the bridge structure of 
54 m span and traffic load case L2 are shown. At close values 
of objective function – the total masses of 6773.2 kg (n = 42), 
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6827.7 kg (27), and 6850.8 kg (19) – besides different geo-
metrical parameters, the obtained arrangements of hangers dis-
tinctly point to the discrepant topologies. In this case, also the 
difference in objective function values for three best solutions 
is highest, reaching 1.1%. Here we should note one advantage 
of using stochastic optimization algorithms that generally pro-
duce several solutions with close objective function values but 
distant topologies: the designer may choose the third solution 
with only 34 hangers and lower arch rise instead of slightly 
lighter solution with 80 hangers.

Since the objective function values of few best solutions are 
very close, in the Table 2 only the results on the best solutions 
for each span and each load case are provided along with lead-
ing design parameters and the vertical stiffness ratios between 
the tie and arch. In the Table 2 also the median and maximum 
objective function values of all 50 independent numerical 
experiments are shown in order to characterize the optimiza-
tion quality. Evidently, the discrete geometrical properties of 
cross-section assortments burden the optimization process. 

This is clearly seen, e.g., from the results on 18 m span and 
different load cases: the EA chose the same profiles for vari-
ous loadings. Since the design parameters are interdependent, 
it results in rather far-off values of remaining parameters. 

In common, in engineering practice the simpler network 
arch bridge design is preferable: the circular arch shape, and the 
equidistant placement of hangers along the tie. Therefore, next 
we optimise the same bridge schemes at different initial condi-
tions: only allowing the circular shape of bridge and alternating 
distances between hangers, and circular shape plus equidistant 
placement of hangers. The obtained results are compared in the 
same Table 2.

In two cases the circular arch shape provides even better opti-
mization results than the more general arch shape – the cases of 
18 m L1 and 42 m L1. The gains do not exceed 1.6% and can be 
explained by a well suited pair of I-beam and hollow tube profiles 
for those particular span/load cases. In all remaining cases the 
results are as expected: more freedom in geometrical parameters 
produces better results. Going from elliptical arch to a circular 

Table 2 Optimization results at different initial conditions and taking discrete cross-sections palette
Span 

m Load case fmin  
kg

fmedian  
kg

fmax  
kg

h  
m n αi

deg.
αf 

deg. wi k EIy arch / EIy tie

18

L1
482.2
474.1
491.5

489.1
489.0
494.5

550.5
506.1
519.0

3.64
4.11
3.56

15
16
16

94.1
103.2
87.1

34.4
30.0
42.7

0.80
0.66

1

1.19
1
1

 3.58 
 4.34
 2.38

L2
602.7
628.3
633.8

636.1
637.4
639.3

663.0
662.9
664.3

3.86
3.89
3.98

18
23
23

110.0
106.6
101.1

27.5
37.5
44.6

0.84
0.39

1

1.35
1
1

 2.17
 7.50
 5.48

L3
786.5
788.7
796.9

811.8
885.1
887.2

950.4
929.2
933.2

4.20
4.25
4.27

23
28
27

106.3
110.0
100.9

34.1
50.0
47.0

0.69
0.59

1

1.10
1
1

 2.17
 2.16
 2.16

30

L1
1677.4
1680.9
1728.9

1726.1
1726.6
1738.8

1819.1
1796.6
1860.4

5.80
5.95
5.24

23
25
25

96.8
99.3
83.7

27.4
39.7
41.4

0.87
0.54

1

1.17
1
1

3.24
3.24
2.17

L2
1982.9
1984.7
2016.7

2025.5
2017.8
2035.7

2164.7
2101.4
2174.0

7.00
7.07
6.12

26
35
29

102.3
109.9
95.9

24.5
35.2
43.0

0.80
0.33

1

1.17
1
1

3.90
3.90
2.60

L3
2355.6
2540.7
2563.8

2578.7
2608.5
2610.7

2747.5
2727.3
2735.3

6.79
6.64
6.78

28
32
32

95.0
109.2
104.2

35.3
37.4
48.4

1.39
0.57

1

1.33
1
1

2.23
3.38
3.38

42

L1
3233.0
3210.7
3255.5

3278.2
3275.8
3308.7

3405.6
3398.3
3419.1

9.62
9.27
9.54

28
36
34

101.0
100.8
95.1

36.4
28.6
28.9

0.51
0.74

1

0.96
1
1

4.92
7.37
7.37

L2
4105.1
4105.1
4186.1

4185.8
4185.8
4219.7

4319.4
4319.4
4334.8

9.41
9.41
9.97

44
44
30

106.0
106.0
97.9

25. 5
25.5
30.9

0.56
0.56

1

1.00
1
1

5.70
5.70
5.70

L3
4683.1
5248.7
5308.0

5348.1
5365.2
5394.2

5486.6
5526.5
5533.7

8.16
9.30
9.62

25
34
30

110.0
105.9
100.3

27.9
34.7
41.0

0.96
0.53

1

1.45
1
1

1.84
3.98
3.98

54

L1
5102.5
5215.1
5261.2

5244.4
5252.5
5414.3

6225.4
6100.7
6299.4

10.55
9.48
9.77

41
29
32

103.4
96.2
86.7

23.4
36.1
39.0

0.67
0.54

1

1.12
1
1

5.70
4.01
4.01

L2
6773.2
7480.0
7573.8

7541.2
7611.0
7662.3

7876.1
7849.3
7811.7

11.76
11.44
11.94

42
39
33

97.4
104.0
97.6

32.7
27.9
35.2

1.31
0.60

1

1.37
1
1

3.98 
6.12
6.12

L3
8234.3
8575.7
9038.6

8347.5
9563.4
9634.7

9637.4
9926.3
9841.6

11.22
10.90
10.89

28
15
42

105.0
109.1
97.5

25.6
49.8
50.0

0.75
0.64

1

1.21
1
1

3.60
2.07
1.48
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arch, the losses are insignificant for smaller spans but reach 7.8% 
for 42 m L3 and 12.1% for 54 m L2. Further reducing the set 
of design parameters, placing the hangers at equal distances, the 
losses are even smaller, reaching only up to 5.4% for 54 m L3. 
The largest difference between objective functions for 1st and 3rd 
sets of design parameters comprises only 13.3% (54 m L3).

Changing the shape of the arch from elliptical to circular, 
the EA apparently tries reducing the initial distance between 
hangers. Only for the elliptical arch case of 42 m L1 – this 
was the only case with ellipse radii ratio <1, the initial distance 
is increased when the arch becomes circular. In all cases the 
optimal initial distance is around 0.5–0.7 of average distance. 

Also, when going to a circular arch and then to a circular 
arch with an equidistant placement of hangers, the algorithm 
places the hangers at more upright angles: the αi diminishes 
while the αf increases. The number of hangers is rather stable 
parameter for smaller spans and lower loading, the dispersal 
increases for larger spans and loads.

Fig 4 Dependencies of the main design parameters on the spans and load 
cases; continuous cross-section palette

Generally, the discrete nature of cross-section palette pre-
vents drawing general conclusions about the optimal ranges of 
design parameters. In order to obtain deeper insights on the 
optimal values of parameters, the load-carrying structure of the 
bridge was re-optimized employing the welded hollow tube 
cross-sections for the arch and the tie. Now instead of design 
parameters No 8 and 9 (Table 1), four new continuous design 
parameters appear: the width and the height of the arch and the 
tie tubes; the range of parameters is 0.2 to 0.6 m. The thickness 
of the tube wall is chosen depending on the height of cross-
section so that the local stability constraint is satisfied.

Concerning parameters on which contradictory recommen-
dations are proposed in the literature – for the number of hang-
ers and their placement scheme, we find rather scattered opti-
mal values: from 30 for both sets of hangers (18 m L1) to 60 
(30 m L3). Plausible, including into the objective function the 
additional fictitious masses due to the price of hanger/arch and 
hanger/tie connection nodes, the EA would yield lower num-
bers of hangers. However, the ratio of the total mass of hangers 
to the total mass of the whole bridge is rather stable (Fig. 4), 
falling between 0.10 and 0.13. Studying the hanger inclination 
angles it is obvious that those parameters have less influence on 
the objective function. Optimal value of the last hanger angle 
is about 30o, while the first hanger should be at an angle 100o – 
105o. Also is evident, that the hangers should be placed at alter-
nating distances between them, starting from narrower distance 
of 0.8–0.9 of an average distance, and gradually increasing it.

The average optimal values of all main parameters in three 
best solutions (ratios of ellipse radii, of the rise of arch to 
span, of vertical stiffnesses of arch and tie, and of total mass 
of hangers to the total mass of bridge) are shown in Fig. 4. 
Thus, the optimal shape of arch is clearly elliptical with ratio 
of both ellipse radii from 1.20 to 1.40, and the ratio between 
rise and span falls into narrow interval from 0.19 to ~0.23. For 
lighter bridge, the vertical stiffness of an arch must be higher 
than stiffness of the tie; with increasing span the differences 
between stiffnesses should diminish.

Table 4 Comparison two bridge schemes: network arch and under-deck 
stayed bridges

Span
m Load case

Mass of network arch 
bridge

kg

Mass of under-deck 
stayed bridge

kg

18

L1 482.2 569.4

L2 602.7 788.1

L3 786.5 985.1

30

L1 1677.4 1527.4

L2 1982.9 2164.8

L3 2355.6 2746.6

42

L1 3233.0 2943.4

L2 4105.1 4292.7

L3 4683.1 5582.0

54

L1 5102.5 5064.8

L2 6773.2 6966.8

L3 8234.3 9002.5

Lastly, we provide the comparison of two alternative bridge 
schemes: the current results on network arch bridges and the 
optimization results of the novel bridge scheme, the under-
deck stayed bridges for the same spans and loading cases under 
the adequate constraints according to the Eurocodes. [13, 14] 
claim this innovative unconventional bridge type is superior for 
medium spans. The optimized schemes of under-deck stayed 
bridges composed of steel profiles from the same assortment 
tables are provided in [15].
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Generally, the Tveit’s proposition that the network arch 
bridge is the most slender bridge scheme is true. Only for the 
least loadings the under-deck stayed bridges outperform the 
network arch scheme by 9.8–9.9% (30 m L1, 42 m L1). The 
network arch bridge is clearly more slender for the heaviest 
loads, being lighter even by 19.2–25.1% (42 m L3, 18 m L3).

4 Conclusions
A technique for the simultaneous topology/shape/sizing opti-

mization of load-bearing structures of network arch bridges has 
been suggested. The main idea of the work is presenting the 
designer a simple and fast tool for obtaining the full initial pro-
ject of a bridge by “one button click”. Later, the obtained scheme 
can be validated by subsequent non-linear and dynamic analyses.

The technique covers four independent programs: the finite 
element linear static analysis program, the meshing pre-proces-
sor, the post-processor for evaluation of constraints and objec-
tive function, and the population-based optimization algorithm. 
If required, each part can be replaced by an appropriate program.

Based on the results obtained from the optimization of 12 
moderate span network arch pedestrian bridge structures com-
posed of industrial steel profiles, it was possible to conclude 
the following:

The optimal arch shape is elliptical. However, the losses in 
the total mass of the structure when simplifying the arch shape 
to the circular are more significant only for longer spans and 
heavier loadings and reach up to 12%.

The optimal rise of the arch is the most stable parameter, for 
all cases falling into narrow interval 0.2–0.23 of the span.

The hangers should be placed at inclined angles, starting 
from an angle >90o and ending with 25–50o.

The optimal values of remaining design parameters are more 
scattered and for the particular spans, loadings and cross-sec-
tion assortments should be determined employing global opti-
mization programs. 
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