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Abstract 
The paper shows the results of failure rate prediction using 
non-parametric regression algorithm K-nearest neighbours. 
The whole data set for years 1999-2013 was divided randomly 
into two groups (learning – 75% and testing – 25%). Besides, 
data from year 2014 were used for verifying the model. The 
dependent variable (failure rate) was forecasted on the basis 
of independent variables (number of installed house connec-
tions, total length and number of damages of water mains, 
distribution pipes and house connections). Four types of dis-
tance metric: Euclidean, quadratic Euclidean, Manhattan and 
Czebyszew were checked and four KNN models were created. 
Taking into consideration all constraints and assumptions, 
models using Euclidean and quadratic Euclidean distance 
metrics gave the most optimal prediction results. The optimal 
number of K nearest neighbours equalled to 2 and 3 concern-
ing models KNN-E, KNN-E2, KNN-C and KNN-M, respec-
tively. Validation error was the smallest for models KNN-E 
and KNN-E2 and amounted to 0.0130, for model KNN-M was 
equal to 0.0152 and for KNN-C to 0.0150.
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1 Introduction
Water-pipe networks are one of the most important part of the 

whole water supply system and belong to the critical infrastruc-
ture. The technical condition of the water conduits and amount 
of water provided to the consumers [1] should be maintained at 
the proper level concerning forecasting, suitable management 
and failure analysis. Research devoted to the determination of 
the water conduit failure intensity indicator and other factors 
having a bearing on the proper functioning of municipal water 
networks (e.g. impact of water losses on the soil surrounding 
the pipe [2]) has been conducted in Poland and in the world 
for many years [3], [4], [5], [6]. Failure rate of water pipes (λ) 
should be estimated not only on the basis of operational data, 
but also using the best available mathematical techniques and 
models, e.g. [7], [8]. On the other hand, failure analysis could 
be established using models based on the artificial intelligence 
[9], [10] or other statistical and probabilistic methods used in 
water and sewerage systems [11], [12], [13].

Recently, a lot of regression methods (e.g. support vector 
machine – SVM, regression tress – RT and K-nearest neigh-
bours – KNN) were used to solve many engineering problems. 
For instance, the localization of leakages from water-pipe net-
work was estimated using SVM algorithm [14], the building 
damage was assessed by means of RT [15] and KNN algo-
rithm was used relating to time series analysis in industrial 
processes [16]. The main aim of this paper is to check if non-
parametric regression algorithm KNN could be also useful for 
prediction of indicator λ of water conduits (water mains, dis-
tribution pipes and house connections). 

2 Material and methods 
K-nearest neighbours algorithm is the relatively simple one 

among other learning methodologies. It is assumed that similar 
data are grouped to the same class. The prediction is based on the 
comparison whether forecasted values belong to the exemplary 
set or not [17]. In the regression problems continuous depend-
ent variable is predicted on the base of independent variables. 
The choice of the number of K nearest neighbours has significant 
meaning. This parameter is the most important concerning the 
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prediction quality. The smallest K, the bigger prediction vari-
ance. The optimal number of K is not known a priori and usage 
of V-fold-cross-validation algorithm is recommended to find the 
best K. The main idea of cross-validation method is based on such 
approach: the data are divided into V (chosen randomly) separate 
parts. The analysis is carried out for certain values of parameters 
using V-1 data sets as learning examples. In regression problems 
the prediction error is calculated as sum of squares of residuals. 
The procedure is repeated for all V data segments and at the end 
the errors are averaged. Cross-validation algorithm is related to 
the estimation of prognostic quality of the model using testing 
sample which was not known for the model during its creation. 
In other words, the model is created using learning sample and 
the real model accuracy is checked using testing sample [17]. 
After selecting the proper number of K, the prediction could be 
carried out. In regression problems, the average for K nearest 
neighbours is calculated according to the equation (1) [17]:

where yi is the output value for i learning example and y 
is the value of output variable for new example. The result 
is obtained on the base of the K nearest neighbours of new 
point. Following this assumption, it is needed to have some 
kind of measurement of the distance between examples. There 
are four types of distance metric: Euclidean (E) – equation 
(2), quadratic Euclidean (E2) – equation (3), Manhattan (M) – 
equation (4) and Czebyszew (C) – Equation (5) [17]: 

where D(x, p) is the distance metric, x is the new point and p is 
the learning example. The regression or classification precision 
depends mainly on the metric used to calculate distances [18]. 

The calculations were performed in the programme Sta-
tistica 12.0. Operating data from the time span 1999–2014 
(received from Water Utility) in one Polish water-pipe network 
were used for prediction purposes. The whole data set for years 
1999-2013 was divided randomly into two groups (learning – 
75% and testing – 25%). Besides, data from year 2014 were used 
for verifying the model. The verification data were not shown 
to the model previously. The failure rates of: water mains-λm, 
distribution pipes-λr and house connections-λp were forecasted 
value (dependent variable) on the basis of independent vari-
ables: number of installed house connections-LP, total length 
and the number of damages of water mains, distribution pipes 
and house connections-Lm , Lr , Lp and Nm , Nr , Np, respectively. 

The short description of the water-pipe network and the city 
is as follows: The selected city is one of the oldest in Poland. 
It is located on the left bank of the Oder River in the western 
part of Poland. The town was founded in the 10th century. The 
first mentions of a water supply system being built in this city 
date from the middle of the 15th century [19]. At that time wells 
were dug from which water was supplied via conduits made of 
hollow pine wood to reservoirs. In the 16th century also pipes 
made of fired clay were used. In the next centuries the water 
supply system would be extended and rebuilt after numerous 
wars and fires. At the beginning of the 19th century some of the 
main conduits were replaced with cast-iron pipes. Towards the 
end of the 19th century water, in the amount of about 1050 m3 

per 24 h, would be supplied to consumers exclusively via cast-
iron pipelines about 12 km long. Nowadays water supply sys-
tem is fed with water from wells drilled from the Quaternary 
water-bearing horizon. After aeration, filtration and disinfec-
tion the water is pumped to the municipal system. Considered 
city has about 74000 inhabitants almost 100% of whom are 
connected to the system. The daily average supply is about 
8300 m3/d. Because of the topography and the height of the 
buildings, there are two water supply zones with pressures of 
0.36 MPa and 0.56 MPa, respectively. The network includes: 
main conduits of both grey cast iron and steel transit, with 
diameters of DN 350 to 700 mm; distribution pipes with diam-
eters of DN 80 to 250 mm, made variously of grey cast iron, 
steel, PE, PVC or AC; house connections with diameters of 
DN 25 to 200 mm, made of steel or PE [19]. The length of each 
kind of conduit is displayed in the Table 1.

3 Results and discussion
The ranges of experimental independent variables for years 

1999–2014 are listed in the Table 1. The dependent variables 
varied from 0.07 to 0.57 fail./(km·a), 0.23-0.67 fail./(km·a) 
and 0.34-1.01 fail./(km·a) for water mains, distribution pipes 
and house connections, respectively. The considered failures 
occurred only on the pipes. The damages of fittings (e.g. on 
hydrants or valves) were not taken into consideration. We 
should distinguish the failure rate of linear objects (as pipes) 
and nonlinear objects (as fittings). The failure indicator should 
be calculated separately for these two kinds of water network 
elements. In this work the author would like to put emphasis 
only on the water conduits. All types of distance metrics were 
checked (E, E2, M and C). The results of prediction using E 
and E2 distance metrics were the same. As it was mentioned 
above the whole data set (1999–2013) was divided into learn-
ing (11 years) and testing (4 years) sample. The prediction 
results displayed in the tables 2–4 are related to testing sam-
ple. The learning sample was treated only as an example and 
the prediction was not carried out. The prediction results using 
verification sample (one year) are shown in the Figures 1–3.
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Table 1 Independent variables

LP Lm , km Lr , km  Lp , km  Nm Nr Np

1999–2013

Min. 1954 28.2 99.2 35.4 2 27 15

Max. 2693 31.0 116.7 45.6 16 66 46

2014

2721 31.0 118.4 46.3 7 33 42

The analysis of failure rate prediction of water mains (Table 2) 
indicates that models using Euclidean and quadratic Euclid-
ean distance metrics are the most optimal. The convergence 
between experimental and predicted values of indicator λ is 
relatively good.  

 
Table 2 Experimental and predicted failure rate of water mains (testing)

λm , fail./(km·a)

Experimental KNN-E and E2 KNN-M KNN-C

0.32 0.32 0.27 0.22

0.14 0.18 0.14 0.13

0.14 0.13 0.14 0.13

0.17 0.13 0.13 0.13

On the other hand the best prediction of λm in verification 
step (Fig. 1) was obtained using Czebyszew distance metric. 
KNN models (relating to different distance metrics) were cre-
ated all together for water mains, distribution pipes and house 
connections. In other words one model consisting of all inde-
pendent variables LP, Lm, Lr, Lp and Nm, Nr, Np was responsible 
for forecasting three dependent variables λm, λr and λp. Taking 
into consideration this approach, it seems to be reasonable to 
choose such model which would generate the smallest discrep-
ancies between experimental and predicted values of failure 
rate relating to three types of conduits. 

The quality of the prediction is also measured by the error 
of the validation. This error was equal to 0.0130, 0.0152 and 
0.0150 for models KNN-E and KNN-E2, KNN-M and KNN-C, 
respectively. It means that models using Euclidean and quad-
ratic Euclidean distance metrics seem to be the most optimal.

Fig. 1 Experimental and predicted failure rate of water mains (verification)

Table 3 Experimental and predicted failure rate of distribution pipes (testing)

λr , fail./(km·a)

Experimental KNN-E and E2 KNN-M KNN-C

0.26 0.38 0.38 0.36

0.35 0.35 0.34 0.33

0.24 0.33 0.34 0.33

0.42 0.33 0.29 0.33

Concerning the failure rate prediction of distribution pipes it 
is obvious that not only in testing (Table 3), but also in verifica-
tion (Fig. 2) KNN-E and KNN-E2 models are characterized by 
relatively good agreement between experimental and predicted 
values. For all types of conduits model KNN-C generated the 
constant value of indicator λ for three, from among four, testing 
years. It means that the model using Czebyszew distance met-
ric is rather not recommended for forecasting purposes. Moreo-
ver, the distance is measured as a maximum of absolute value 
of differences between new and example points (equation (4)). 
Probably such kind of measurement of distance between points 
is not suitable for prediction of failure rate of water pipes.

Fig. 2 Experimental and predicted failure rate of distribution pipes  
(verification)

From engineering point of view the prediction results  
(Table 4), using models KNN-E and KNN-E2, relating to 
house connections are satisfactory and could be accepted.

Table 4 Experimental and predicted failure rate of house connections  
(testing)

λp , fail./(km·a)

Experimental KNN-E and E2 KNN-M KNN-C

0.76 0.75 0.70 0.65

0.53 0.47 0.43 0.35

0.36 0.35 0.43 0.35

0.64 0.35 0.57 0.35

The analysis of verification results (Fig. 3) indicates that 
model KNN-C forecasted indicator λp the most properly in 
comparison to other models. But taking into consideration the 
constraints and assumption that the model should be suitable 
for all types of conduits, also in testing step, model KNN-C 
does not seem to be the optimal one.
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The graph of the changes of cross-validation error depend-
ing on the number of nearest neighbours is displayed in the 
Figure 4. The maximum number of nearest neighbours was 
estimated at the level of 11. This number was established by 
the algorithm in the programme Statistica 12.0. 

Maximal number of nearest neighbours depends on the 
number of independent variables and number of cases. The 
analysis of the Figure 4 shows that the lowest validation 
errors were obtained when the optimal (minimum) number of 
K-nearest neighbours was equal to 2 and 3 for models KNN-E, 
KNN-E2, KNN-C and KNN-M, respectively. After the errors 
reached the lowest value, then the errors were increasing. We 
can assume that even if the number of nearest neighbours is 
higher, the errors will be still increasing. 

Fig. 3 Experimental and predicted failure rate of house connections  
(verification)

4 Conclusions
The K-nearest neighbours algorithm could be used for predic-

tion of failure rate of water pipes. Analysis of the results obtained 
in the testing step shows that Euclidean and quadratic Euclid-
ean distance metric seem to be the most appropriate for failure 
rate prediction for all types of pipelines. On the other hand, in 
the verification step Czebyszew and Euclidean distance metrics 
were the most suitable for failure rate forecasting of water mains, 
house connections and distribution pipes, respectively. Taking 
into account all assumptions and constraints, models KNN-E and 
KNN-E2 were supposed to be chosen as optimal. In this paper 
failure rate of water mains, distribution pipes and house connec-
tions were forecasted using independent variables related to three 
types of conduits. It means that each model consisted of three 
dependent variables (λm, λr, λp). Such assumption made at the very 
beginning forced to choose one model which was responsible for 
proper prediction of indicator λ of each type of water pipe. The 
results of forecasting and also the analysis of the lowest valida-
tion error pointed that the models characterized by Euclidean and 
quadratic Euclidean distance metrics were optimal. They also 
had the lowest number of K nearest neighbours which was equal 
to 2. It means that the models KNN-E and KNN-E2 were rela-
tively simple that is quite important because among other aims 
the simplicity of the model is crucial issue in modelling.

a)

b)

c)
Fig. 4 Optimal number of nearest neighbours a) KNN-E and E2, b) KNN-M, 

c) KNN-C

The paper shows the very beginning step of failure rate 
modelling using K-nearest neighbours algorithm. The investi-
gations presented in this paper will be expanded. The next step 
of researches would be checking whether other independent 
variables like e.g. material, diameter and year of installation of 
the water pipes are significant one for prediction purposes. The 
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models, for indicator λ separately for each type of conduit, will 
be also created and checked whether the convergence between 
experimental and forecasted values is better than concerning 
one model as it was presented in this paper.  
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