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Abstract 
The knowledge of the main mechanical constants of a rock 
mass (such as strength, deformability and the Poisson’s ratio) 
is one of the most important for rock engineering design on or 
in rock mass. Until now, several empirical relationships were 
determined for calculating these material constants based on 
both the quality of the studied rock mass (ie. RMR or GSI val-
ues) and the mechanical parameters of an intact rock. 
The goal of this paper is to review the empirical relationships 
between the mechanical properties of rock masses and the rock 
mass classification systems. The engineering properties involve 
not only the uniaxial compressive strength and deformation 
modulus of rock masses, but also Poisson’s ratio and tensile 
strength, among the others, which are of crucial for designing 
rock engineering structures. 
These different methods are compared and a general equation 
is determined in this paper.
The presented expressions are yet to be tested with experimen-
tal data and empirical relationships should not replace in situ 
tests for final design. 

Keywords
rock mass strength, deformability, Poisson’s rate, empirical 
rock mass classification

1 Introduction
Large scale rock mass characterization introduces material 

parameters related to mechanical properties. The most impor-
tant properties are the deformation modulus; the unconfined 
strength and the Poisson’s ratio value of the rock mass in inter-
est. These material parameters are frequently related to labora-
tory data characteristics of intact rock samples and to the clas-
sical rock mass classification systems (e.g. RQD, Q, RMR or 
GSI). These rock mass quality measures quantify the relation 
between the rock mass and the intact rock. 

The established empirical relations between the mechanical 
parameters of rock masses (unconfined compressive strength, 
deformation modulus) and the rock mass classification systems 
(RMR or GSI values) show exponential increasing deformation 
modulus and compressive strength with the increasing quality 
of the rock mass.

The paper summarizes the observed correlations published 
between the mechanical properties of rock masses and one of the 
rock mass classification systems. It was found, that the deforma-
tion modulus and the strength of a rock mass data may reflect 
a simple exponential relationship of the observed quantities. 
According to analysis of different proposed equations a new for-
mula is suggested and the modification ratio (i.e. ratio of the defor-
mation modulus and the strength of rock mass) is also determined.

However, it is important to note, that there are huge differ-
ences between the published date and the empirical formulas. 
The reason for this variance is the difference in situ testing 
methods, that may give different values of mechanical param-
eters even for the same rock mass. According to Bieniawski [1], 
even a single testing method, such as flat jack test, can lead to 
a widely scattering results even where the rock mass is very 
uniform. The other reason for the discrepancy in the different 
calculation methods is the directional effect. Most rock masses 
are anisotropic and do not have single deformation modulus [2].

There is no mechanical (physical) interpretation of the 
above empirical equations but these were analysed by e.g. [3]. 
Recently, Ván and Vásárhelyi [4] suggested a damage mechani-
cal approach to analyse them. In this paper their method will be 
also presented.
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2 Nomenclature
ci: cohesion of intact rock
cm: cohesion of rock mass
D: Disturbance factor (0: undisturbed to 1: very disturbed 

[16])
Em:  deformation modulus of rock mass
Er: deformation modulus of intact rock
GSI:  Geological Strength Index (values between 0 and 100)
MR Modification Ratio (ratio of the deformation modulus 

and the strength of the rock [3])
Q Rock Quality according to Barton [24]
RMR: Rock Mass Rate (values between 0 and 100) [11]
RQD: Rock Quality Designation (values between 0 and 100) 

[5]
WD weathering degree (values between 1 and 4 according 

to [42])
ϕi: internal friction angle of intact rock
ϕm: internal friction angle of rock mass
νm: Poisson’s ratio value of rock mass
νr: Poisson’s ratio value of intact rock
σc: unconfined compressive strength of intact rock
σcm: unconfined compressive strength of rock mass
σt: tensile strength of intact rock
σtm: tensile strength of rock mass

3 Deformation modulus of rock masses
In the literature several relationships have been suggested of 

the deformation modulus and the rock mass quality measures. 
These commonly used equations are the deformation modulus 
and RQD, RMR, GSI and Q systems

3.1 RQD based methods
The Rock Quality Designation (RQD) method developed by 

Deere [5] and couple of years later [6] it was suggested, that 
this method can be also used for determining the deformation 
modulus of rock masses, as well. Collecting several in situ meas-
urements Coon and Merritt [7] developed the first relationship 
between the modulus ratio (Em/Er, i.e. the ratio deformation mod-
ulus of rock mass and intact rock, respectively) and the RQD 
value. In Fig. 1 their published results is shown. Later, Gardner 
[8] improved their approach and suggested the following form:

where 

For RQD > 57 %, Eq. (1) is the same as the relation of Coon 
and Merritt [7], while for RQD < 57 % the Eq. (1) gives Em/Er= 
0.15. Note that, this method is adopted by the American Associa-
tion of State Highway and Transportation Officials in the Stand-
ard Specification for Highway Bridges [9]. This equation has the 
following limitations (according to Zhang and Einstein [10]):

• The range of RQD < 60 % is not covered only an arbi-
trary value of Em/Er can be selected in this range

• For RQD = 100 %, Em is assumed to be equal to Er. This 
is obviously unsafe in design practice because RQD = 
100 % does not mean that the rock is intact. There may 
be discontinuities in rock masses with RQD= 100 % and 
thus Em may be smaller, then Er even when RQD = 100 
% [10].

Fig. 1 Variation of Em/Er with RQD [7]

Zhang and Einstein [10] added further collected from pub-
lished literature to cover the entire range 0 ≤ RQD ≤ 100 % 
(see Fig. 2). 

Fig. 2 Em/Er in function with RQD according to [10] (see Eq. (2)

Zhang and Einstein [10] analysed the followings: (1) testing 
method; (2) directional effects; (3) discontinuity conditions; (4) 
intensity of RQD to discontinuity frequency and they proposed 
the following relationships between RQD and Em/Er (see Fig. 2)

E Em E r=α

αE RQD= ≥( ) −0 0231 1 32 0 15. . .

(1a)

(1b)
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Lower bound:

Upper bound:

Mean:

Eq. (2c) in exponential form [4] the mean value can be recal-
culated in the following form:

RQD does not consider the discontinuity conditions, how-
ever they have a great effect on the rock mass deformation 
modulus [2]. Kayabasy et al. [12] derived the following relation 
form a database of 57 tests showing the influences of weather-
ing degree of the discontinuities on the rock mass deformation 
modulus:

where WD is the weathering degree (1: fresh, 2: slightly 
weathered, 3: moderately weathered, 4: highly weathered – 
according to [42]. Applying multiple regression analysis, and 
considering the same independent variables, the following 
equation was obtained [12]:

By assigned 58 new test values to the database of Kayabasy 
et al. [12], Gokceoglu et al [18] derived the following correla-
tion based on regression analysis:

The prediction graph for the deformation modulus of rock 
mass in function of RQD and the weathering degree is pre-
sented in Fig. 3, according to Gokceoglu et al. [18].

3.2 RMR or GSI based methods
The proposed correlations between the deformation modu-

lus of rock mass and the RMR/GSI values can be divided into 
two parts: 

• the deformation modulus of the rock mass calculate 
independently the deformation modulus of the intact 
rock

• the deformation modulus of the intact rock is also used 
for determining the deformation modulus of the rock 
mass.

In this chapter there are not differences between the RMR 
and the GSI values, they used parallel.

Fig. 3 Prediction graph for the deformation modulus of rock mass, in the func-
tion of RQD and the weathering degree [18]

3.2.1 Independent equations
Firstly Bianiawski [13] suggested a linear relationship 

between deformation modulus of the rock mass and the RMR 
value. He studied seven projects and assumed the deformation 
modulus of the rock mass is independent of the deformation 
modulus of intact rock:

This equation does not give modulus values for RMR < 50% 
(see Fig. 3), thus it cannot be used for poorer rock masses.

Later, Serafim and Pereira [14] proposed the more known 
expression, which can be used from poor to very good rock 
mass quality:

According to the suggestion of Serafim and Pereira [14], the 
deformation modulus of rock mass is independent of the defor-
mation modulus of intact rock. Fig. 4 shows graphically both 
expressions and their comparison. 

Fig. 4 Correlation between the in situ deformation modulus  
of deformation and RMR 
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Comparing Eq. (7) with in situ measurements it was found, 
that it can be used for good quality rocks, however, for poor 
quality rocks it appears to predict too high values [15]. Based 
upon practical observations and back analysis of excavation 
behaviour in poor quality rock masses, the following modifica-
tion to Serafim and Pereira’s equation [14] is proposed for σc 
< 100 MPa:

Note that, GSI has been substituted for RMR in this equation 
and that the modulus Em is reduced progressively as the value 
of σc falls below 100 MPa. This reduction is based upon the 
explanation that the deformation of better quality rock masses 
are controlled by the discontinuities while, for poorer quality 
rock masses, the deformation of the intact rock parts contrib-
utes to the overall deformation process [15]. Eq. (8) is plotted 
in Fig. 5.

Fig. 5 Deformation modulus versus GSI [15], see Eq. (8)

Later, Hoek et al. [16] empirically estimated Em based on 
GSI and D (Disturbance factor) in the following form:

σc < 100 MPa

σc > 100 MPa
Similarly to Eq. (1), Galera et al. [17] found linear connec-

tion in case of RMR > 50 % values:

In case of poorer rock masses, i.e. RMR < 50 %, they pro-
posed the following form [17]:

Some researchers suggest that there is an exponential cor-
relation between the deformation modulus of rock mass and 
the RMR/GSI values:

where a and b constants. Table 1 shows the published data.

Table 1 Pubslished constants of Eq. (11)

a b Ref.

0.33 0.064 [2]

0.0736 0.0755 [18]

0.1451 0.0654 [18]

Finally, Hoek and Diederichs [19] suggested the following 
equation (see Fig. 6):

Fig. 6 Plot od Simplified Hoek and Diederichs equation (9) according to [19]

Note that the constant a = 100 000 in Eq. (12) is not directly 
related to the physical properties of rock masses [19]. The sen-
sitivity of Eq. (12) was analyzed by Ván and Vásárhelyi [52, 
53]. According to their results, the deformation modulus of the 
rock mass highly sensitive for the D and GSI values.

3.2.2 Normalized equations 
Several researchers normalized the deformation modulus of 

rock mass by the deformation modulus of intact rock. Using 
these results usually the regression coefficient is better than 
the previously presented method, mostly for the poorer quality 
rock masses.

In this chapter, the published Em/Er relationships are pre-
sented and they are recalculated in the following form, if it is 
possible [4]:

where A is a general constant.
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Firstly, Nicholson & Bieniawski [20] suggested a power 
equation for calculating the ratio of the deformation modulus 
of rock mass and the elastic modulus of intact rock:

This equation can be transformed to exponential form with 
slight differences:

Mirti et al [21] has developed the following empirical cor-
relation:

Using the version of 2002 Hoek-Brown criteria [16], Son-
mez et al. [22] determined the following equation:

Where s and a are Hoek-Brown parameters, which are 
depend on the GSI value in case of undisturbed rock mass:

and

Recalculating Eq. (16) to exponential form:

Note that, s value can be also calculated in case of very dis-
turbed rock mass, i.e. the disturb factor (D) is equal to 1 [16]:

In this case the simple form is:

Carvalcho [23] suggested similar equation as Sonmez et al 
[22], assuming, that the ratio of the deformation modulus of 
rock mass and the elastic modulus of intact rock depend only 
on the Hoek-Brown constant (s):

Where according to Eq. (17) 

i.e. 

This equation corresponds to another suggestion of Galera et 
al. [17], which is based on pure empirical calculation. Accord-
ing to Eq. (22) the calculation of disturbed s value is:

Hoek and Diederichs [18] recalculated several Chinese and 
Taiwanese in situ measured data thus they suggested the fol-
lowing equation (see also Fig. 7):

where D is the disturbance factor [16].

Fig. 7 Plot of normalized in situ rock mass deformation modulus against Hoek 
and Diederichs equation (26). Each data point represents the average of multi-

ple tests at the same site in the same rock mass [19]

The sensitivity of Eq. (27) was calculated by Ván and Vásár-
helyi [52, 53]. Their results show that the calculated value are 
highly depend on the exact calculation of both GSI and D factor.

Based on the developed and applied proposed correlations, 
Ván and Vásárhelyi [4] collected the pure exponential relation-
ships, according to Eq. (13). 

In Table 2 the selected values are summarized in the cases of 
disturbed and undisturbed rock mass. In Table 2 the equation of 
Zhang and Einstein [10] is also used.

Table 2 Collecting the different relationships’ constants, using Eq. (13)
Ref. A Note

Undisturbed
(D = 0) 

Disturbed
(D = 1)

[20] 22.94 Not defined
[22] 38.11 25.04
[23] 36.00 24.00
[10] 22.52 Not defined

Average 37.06 24.38
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3.3 Q based methods
Until this point, the developed empirical formulas are inde-

pendent of the deformation modulus of the intact rock. 
The first relationship between rock mass quality (Q-value) 

and the deformation modulus of the rock mass was published by 
Barton et al. [24]. The following equation was proposed:

where c is a general constant: minimum 10, maximum 40 and 
the mean value is 25 (see Fig. 8). Eq. (27) is only applicable to 
Q > 1 and generally hard rocks.

Couple years later, Barton [25] modified Eq. (29) (see Fig. 8):

According to the last modification of Barton [26] the defor-
mation modulus of the rock mass depends on the unconfined 
strength of the rock, as well:

Fig. 8 Estimation the rock mass deformation modulus using the Q value [25]

4 Strength of rock mass
4.1 RQD based methods

First, Kuhawy and Goodman [27] suggested the calculation 
method from the RQD value:

• unconfined compressive strength (σcm) of rock masses is 
0.33 σc if the RQD < 70 %.

• in case of RQD = 100 %, the σcm = 0.8 σc. 
• there is a linear relationship between the two values, i.e.:

The suggestion of the AASHTO [9] is similar:

According to the AASHTO [9], the strength of rock mass is 
equal to the strength of intact rock, if RQD = 100 %. 

Zhang [28] analysed the equations above and recognised, 
that in case of a very poor rock mass quality (RQD < 25 %) 
and a fair quality rock mass (RQD = 50-75 %), different σcm/σc 
values should be expected.

Until this point, several researchers in rock mechanics 
and rock engineering have studied the relation between the 
unconfined compressive strength ratio σcm/ σc and the deforma-
tion modulus ratio Erm/Er and found that these can be related 
approximately by the following equation (Ramamurthy [38]; 
Singh et al. [40]; Singh and Rao [41], Galera et al. [17]):

in which the power q varies from 0.5 to 1.0 and is most 
likely in the range of 0.61 to 0.74 with an average of 0.7. How-
ever, using e.g. the AASHTO [9] the upper bound value is q = 
1. The power q value in Eq. (33) may vary significantly for dif-
ferent rock types and discontinuity conditions [28]. Using the 
average value of q (= 0.7) and the Em/Er versus RQD relation in 
Eq. (2c) [36], the new formula is the following:

Fig. 9. shows a comparison of the σcm/σc versus RQD rela-
tion, according to Zhang [28]. It was mentioned [28], that the 
Eq. (34) covers the entire range (0 ≤ RQD ≤ 100 %) continu-
ously. For RQD > 70 %, Eq. (31) corresponds with suggestions 
of [27] and [9].

Fig. 9 Comparison of σcm/σc versus RQD relations  
by different methods (according to [28])
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4.2 RMR or GSI based methods
4.2.1 Independent equations

There was only one equation in which the strength of the 
rock mass is independent of the strength of the intact rock. 
According to Asef et al [29], the strength of rock mass expo-
nentially increases with the rock mass rate (RMR), indepen-
dently of other parameters:

4.2.2 Normalized equations
To estimate the unconfined compressive strength (σcm) of rock 

masses, there are various suggested correlations considering the 
discontinuity characteristics. Their functional form is exponen-
tial but with different parameters. Excepts one, all the equations 
were recalculated to the following form, according to [4],

where B is a general constant.
Yudhbir et al. was the first at 1983 [30] who suggested the 

following equation:

This equation can be transformed:

• Two years later Ramamurthy et al. [31] found the fol-
lowing empirical correlation:

• Kalamaras and Bieniawski [32] published this relation-
ship:

• Using high number of measured data, Sheorey [33] 
determined the following empirical relationship:

These equations are based on empirical results, except the 
equation of Hoek et al. [34]. With the Hoek-Brown strength 
criterion for rock masses, the unconfined compressive strength 
can be expressed as

where s is the Hoek-Brown constant [35] can be calculated 
for:

• undisturbed (or interlocking) rock masses:

i.e. using Eqs. (42) and (43):

This equation corresponds to the Hoek’s suggested one, 
which is published in the paper of Zhang [36]:

• disturbed rock masses:

i.e. using Eqs. (42) and (46):)

Using the version 2002 of the Hoek-Brown equation [16], 
the ratio of the strength of the rock mass and the intact rock is:

Where 

and in case of undisturbed rock mass:

in case of disturbed rock mass: 

According to Eqs. (42) and (51), in case of undisturbed rock 
mass:

And in case of disturbed rock mass:

In Fig. 10. the above presented relationships are shown by 
the publication of Zhang [2]. 

According to the calculation of Ván and Vásárhelyi [4], the 
general constants of Eq. (37) are the following (Table 3).
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Fig. 10 Variation of ratio of rock mass unconfined compressive strength (σcm) 
to intact rock unconfined compressive strength (σc)  

with RMR or GSI ratings [2]

Table 3 Collecting the different relationships’ constants, using Eq. (37)
Ref. B Note

Undisturbed
(D = 0)

Disturbed
(D = 1)

[27] - 13.07 Not defined

[28] 18.5 - Not defined

[29] 24.00 - Not defined

[30] 20.00 - Not defined

[31]) 18 12 -

[33] 15.24 10.16 -

Average 19.15 11.74 -

4.3 Q methods
Similarly to the deformation modulus of rock mass, the 

strength of rock mass can be calculated from the Q value. 
According to Bhasin and Grimstad [37] and Singh and Goel 
[38] the following equation is proposed:

where fc = σc/100 for Q > 10 otherwise fc = 1; and γ is the 
unit weight of the rock mass in [g/cm3]. It means, the strength 
of intact rock does not influence the strength of rock mass for 
poor rock mass quality. 

5 Connection between the deformation modulus and 
the strength of rock mass

According to Galera et al. [17], there is an expression involv-
ing both rock mass modulus (Em) and rock mass strength (σrm):

The expression above has the merit of a useful cross-check 
and it conforms to an old practice proposed by Deere and Miller 

[43]: a strength - deformation representation featuring the con-
cept of the “modulus ratio (MR)”, i.e. the deformation modulus 
may be estimated from the uniaxial compressive strength (see 
also [3, 19, 44]:

According to Ván and Vásárhelyi [4], theoretically the fol-
lowing relationships were determined:

6 Tensile strength of rock mass
6.1 RMR or GSI methods

The failure criteria of Hoek-Brown can also be used to obtain 
the tensile strength of rock mass. It can be determined by:

where mb and s are the Hoek-Brown constants (material con-
stant of rock mass and the characteristic of rock mass, respec-
tively).

Aydan et al [45] presented an empirical calculation method 
from Tokashiki’s PhD thesis:

6.2 Q methods
According to Singh and Goel [38], the tensile strength of 

rock mass can be obtained by the similar Eq. (54):

where fc = σc/100 for Q > 10 otherwise fc = 1; and γ is the unit 
weight of the rock mass in [g/cm3].

7 Poisson’s ratio value
The experiments on the Poisson’s ratio of rock masses are 

quite rare. Due to the lack of a huge number of in situ data, 
there are not many suggestions for the calculation of the Pois-
son’s ratio value in the rock mass classification system.

Aydan et al [46] analysed several uniaxial compressive 
strength tests and found that the Poisson’s ratio decreases with 
increasing uniaxial compressive strength. According to their 
laboratory observations, they proposed the following form for 
rock masses:
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Eq. (61) consists of only the unconfined compressive 
strength of rock mass, which can be calculated from one of the 
above mentioned equations.

Tokshiki and Aydan [47] proposed a direct method of deter-
mining the Poisson’s ratio from the RMR value (the prediction 
is plotted in Fig. 11):

Using Eq. (62), the Poisson rate (n) is 0.3 and 0 in case of 
RMR = 100 (i.e. intact rock) and RMR = 0 (extremely poor rock 
mass), respectively.

Later, Aydan et al [48] modified Eq. (62). According to their 
publication, if the Poisson’s ratio of the rock is known, the 
following relationship can be used to determine the Poisson’s 
ratio in the function of the Rock Mass Rate (RMR):

Fig. 11 Poisson rate in the function of the Rock Mass Rate [47]

Vásárhelyi [49] estimated the Poisson’s ratio value of the 
rock mass based on theoretical background. He found a linear 
relationship: as the quality of the rock mass decreases, the Pois-
son’s ratio increases. Two correlations were determined:

• if the Poisson’s ratio of the intact rock is known:

• in case of the Hoek-Brown constant (mi) is known:

In Fig. 12 the Poisson ratio values are plotted in the function 
of GSI value in case of different Hoek-Brown constants (mi).

Fig. 12 Estimated Poisson’s rate values (νrm) in the function of the geological 
strength index (GSI) in case of different Hoek-Brown (mi) constants

In Fig. 13. the calculated Poisson ratios were calculated 
from the equation of Aydan et al. [48] (Eq. 63) and the sugges-
tion of Vásárhelyi [49], using Eq. (64a), calculating with dif-
ferent Poisson ratios of intact rock (n = 0.1…0.4). One can see, 
the result of Aydan et al. [48] is equal to the result of Vásárhelyi 
[49] if the Poisson ratio of the intact rock (ni) is equal to 0.15.

Fig. 13 Comparaison of the calculation methods: Aydan et [48]  
and Vásárhelyi [49] 

According to Vásárhelyi [49] the Poisson ratio of rock mass 
linearly depend on both Geological Strength Index (GSI) and 
Hoek-Brown parameter (mi). Recently, Vásárhelyi et al. [54] 
analyzed this constant and suggested new calculation method 
for Hoek-Brown failure criteria. Probably, using that modifica-
tion, the Poisson ratio of rock mass can be determined more 
precisely. 

8 Mohr-Coulomb parameters
The failure criteria of the studied rock masses are very impor-

tant for rock engineering design. The most important empirical 
failure criteria were collected and published by Sheorey [33]. 
It his paper, the influence of the quality of rock masses for the 
Mohr-Coulomb parameters (cohesion and the internal friction 
angle) are summarized.

For using the Mohr-Coulomb failure criterion, it is neces-
sary to estimate the cohesion and the friction angle parameters 
of the rock masses:
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where τf is the shear strength of rock mass, σn’ is the effective 
normal stress on sliding plane, cm and ϕm are the cohesion and 
the internal friction angle of rock mass, respectively. 

8.1 RMR based methods
8.1.1 Independent equation

According to Bieniawski [11] the cohesion and the friction 
angle of rock mass related to the RMR value. In the publica-
tion of Bieniawski [11] there is not exact calculation method 
between the RMR value and the Mohr-Coulomb parameters – 
he was suggested intervals for rock classes. 

Sen and Sadagah [50] suggested a continuous system for the 
calculation of these constants: 

and

According to the publication of Aydan et al. [46] the internal 
friction angle of rock mass depends on the strength of rock 
mass, i.e.:

Later, Aydan and Kawamoto [51] found a linear connection 
between the internal friction angle and the Rock Mass Rate 
(RMR) value:

In this case the cohesion can be calculated from the friction 
angle and the strength of rock mass:

8.1.2 Normalized equations
Aydan et al. [48] suggested the following form for calculat-

ing the cohesion of rock mass, which can be applied when the 
Mohr-Coulomb parameters of intact rock is known:

8.2 Q method
The cohesion of rock mass can be calculated from the differ-

ent parameters of Q-values [26]:

9 Conclusions
The different empirical methods were summarized in 

this paper for calculating the mechanical parameters of rock 
masses, such as deformation modulus, compressive and tensile 
strength, Poisson ratio and the Mohr-Coulomb parameters. 

Unfortunately, determination of the rock mass quality is not 
exact. Using the well-known rock mass classification systems 
(i.e. RMR, Q and GSI) in the radioactive waste repository at 
Bátaapáti (Hungary), the classification of the tunnel face was 
influenced by high subjectivity [55]. There is not exact rela-
tionship between the different classifications, as it is rather 
project dependent [56]. Recently, several authors published 
papers about the quantitative determination of GSI value but 
the differences among the results are extremely high [57]. It 
can be declared that the rock mass classification is not exact, 
it depends highly on the rock engineer, the applied measuring 
systems, the project, etc. 

The sensitivity of some of the presented equations were cal-
culated by Ván and Vásárhelyi [52, 53] and it was found that 
these relationships are highly dependent on the input param-
eters changing one parameter with 5 %, and the final results 
may change more than 50 %!

It would be useful to apply damage theory in rock mechan-
ics – the first results in this were published by Ván and Vásár-
helyi [4] and Kamera et al. [58].

The presented expressions are yet to be tested with experi-
mental data and empirical relationships, so these should not 
replace in situ tests for final design.
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