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Abstract
This paper presents a new algorithm for volume-constrained 
expected compliance minimization of continuum structures 
with probabilistic loading directions using analytically deter-
mined exact objective and gradient functions. The algorithm 
is based upon the finding that for a particular set of statistical 
parameters the integration in the expected compliance func-
tion can be done symbolically and automatically using sym-
bolic manipulation software. In this study, Mathematica was 
used to integrate and simplify the highly nonlinear expected 
compliance function. It will be demonstrated by examples that 
the result of the symbolic pre-processing step is a simple linear 
function defined on a particular subset of the inverse stiffness 
entries which is needed in the compliance computation. The 
coefficient set of this linear function forms the base of the exact 
analytical gradient computation used in the optimal solution 
searching optimality criteria (OC) method to define the steep-
est descent direction. Naturally, the applied OC method can 
be replaced by any other appropriate nonlinear solver. Matlab 
codes of the algorithm for 2D and 3D structures with exact 
analytical sensitivities have been developed using the topol-
ogy optimization codes presented by Andreassen et al. [1] for 
2D and Liu and Tovar [2] for 3D structures as starting points. 
Illustrative examples with Mathematica and Matlab codes are 
presented to demonstrate the essence and viability of the pro-
posed approach and highlight the potential of the automatic 
symbolic computation in structure optimization.

Keywords 
topology optimization, uncertain parameters, probabilistic 
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1 Introduction
In the real-world topology optimization problems, the opti-

mal performance obtained using conventional determinis-
tic methods can be dramatically degraded in the presence of 
sources of uncertainty. The source of uncertainty may be the 
variability of applied loads, spatial positions of nodes, mate-
rial properties, and so on. Various deterministic and stochastic 
approaches have been developed to account for different types 
of uncertainty in structural design and optimization methods 
to get robust and reliable solutions. The interested reader is 
directed to Bendsøe and Sigmund [3] and Deaton and Grandhi 
[4] which contain extensive bibliographies on this subject. In 
this paper, it is assumed that the only source of uncertainty is the 
variability of the applied load directions and the compliance is 
used as performance measure in the in the volume-constrained 
topology optimization. The volume-constrained structural opti-
mization models of continuum structures which are able to take 
into account the directional uncertainty of the applied loads can 
be divided into two groups [5]: (1) deterministic and (2) sto-
chastic. A critical examination and comparison of the volume-
constrained deterministic and stochastic topology optimization 
models with uncertain load directions, from engineering point 
of view, was presented by Csébfalvi and Lógó [6]. 

The deterministic models which try to minimize the vol-
ume-constrained worst compliance on the set of feasible load-
ing directions can be formulated by several different ways. De 
Gournay et al. [7] presented an approach for shape and topol-
ogy optimization of the robust compliance via the level set 
method which minimizes the worst-case compliance using a 
semi-definite programming method to select the best descent 
direction in the iteration process. Thore et al. [8] presented a 
large-scale robust topology optimization method under load-
uncertainty where the loads vary in uncertainty sets. The prob-
lem can be formulated as a semi-infinite optimization problem, 
which can be replaced by a non-linear semi-definite problem. 
A worst-load-direction oriented unified common framework 
was presented by Csébfalvi [9] for robust optimization of both 
continuum and truss structures with uncertain load directions, 
which can be used for volume minimization of continuum 
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structures with compliance constraints and weight minimiza-
tion of truss structures with displacement and stress constraints. 

The stochastic models apply parametric statistical tools to 
describe the directional uncertainty of the loads. The most 
popular model minimizes the volume-constrained expected 
compliance with loading directional uncertainty, where the 
directional uncertainties are assumed normally distributed 
and statistically independent. The expected compliance mini-
mization model can be transformed to a standard volume-
constrained multi-load compliance-minimization problem by 
several different ways where the load cases and weights are 
derived analytically or numerically. However, it is not straight-
forward how could be select the load cases to ensure that all 
critical cases are considered in the sampling schema which 
needed to obtain an accurate approximation of the original con-
tinuous problem. Naturally, the discretization of an originally 
continuous problem always means simplification which should 
be avoided as much as possible. Dunning et al. [10] proposed 
a “pseudo-sample-based” stochastic method for considering 
loading directional uncertainty in topology optimization in 
order to produce robust solutions. In the volume-constrained 
expected compliance minimization problem the uncertainties 
are described by statistically independent continuous normal 
probability functions. Starting from the exact expected compli-
ance function after lengthy symbolic manipulation and simpli-
fication, the authors get a model which is analogous to a multi-
load topology optimization problem where the load cases and 
their weights are derived analytically. Lógó [11] presented a 
new type of probabilistic optimal topology design method for 
continuum type of structures where the points of application 
of the loads are given randomly. In the proposed probabilistic 
topology optimization method the minimum penalized weight 
design of the discretized structure is subjected to compliance 
constraint and side constraints. The compliance expression 
is probabilistic one. Carrasco et al. [12] presented a sample-
based approach for the volume-constrained expected compli-
ance minimization in topology optimization with stochastic 
load directions. In this paper, it was shown that the compli-
ance minimization problem can be transformed into a standard 
multi-load topology optimization problem in which the loading 
scenarios are related to the variance of the random main load. 
Liu and Wen [13] presented a topology optimization model 
for continuum structures with uncertainty in loading direction. 
In their approach, the original stochastic volume-constrained 
expected compliance minimization problem was replaced by 
a standard volume-constrained deterministic multi-load prob-
lem, where the load cases are derived to accurately compute 
the expected compliance. The loading directional uncertainties 
were described by interval variables without considering their 
distributions, which in the sampling process were approxi-
mated by their deterministic midpoints. Guo et al. [14] pre-
sented a multi-scale robust concurrent optimization framework 

for varying material structure with unknown-but-bounded load 
uncertainties modelled by well-known ellipsoid model.

Similarly to the Dunning et al. [10] model, the presented 
new approach is also based on the exact analytical form of the 
expected compliance function but it exploits the finding that 
when the numerical values of the statistical parameters of the 
directional uncertainties are known then the highly nonlinear 
expected compliance minimization problem can be solved as 
a volume-constrained single-load topology optimization prob-
lem where the single load is the mean load. In the new model 
the objective is the exact analytical expected compliance func-
tion in an extremely simple form generated symbolically and 
automatically using symbolic manipulation software. In the 
expected compliance minimization process exact analytical 
sensitivities can be used to define the steepest descent direc-
tion. The paper is organized as follows. Section 2 focuses on 
the mathematical formulation of the considered problem. The 
examples used to illustrate the proposed approach are presented 
in Section 3. Finally, some concluding remarks are presented in 
Section 4.

2 The proposed exact approach
The traditional deterministic 2D topology optimization 

problem can be formulated as follows:

where x is the matrix of design variables (the element densi-
ties), c(x) is the compliance, U and Fare the global displace-
ment and load vectors, respectively, K is the global stiffness 
matrix, V(x) and V0 are the material volume and design domain 
volume, respectively, and φ is the prescribed volume fraction. 
The design domain is assumed to be rectangular and discretized 
with n = ex × ey square elements with four nodes per element 
and two degrees of freedoms (DOFs) per node: x = {xij | j ϵ 
{1,2, ..., ey}, i ϵ {1,2, ..., ex}. Both nodes and elements are num-
bered column-wise from left to right, and the DOFs 2i – 1 and 
2i correspond to the horizontal and vertical displacements of 
node i, i ϵ {1,2, ..., 2n}, respectively. The optimization problem 
(1-4) can be solved by, for example, the well-known optimality 
criteria (OC) method.

For sake of simplicity and without loss of generality the pro-
posed exact approach will be described only for 2D structures 
with only one load with magnitude f and normally distributed 
loading direction which is characterized by the mean direction μ 
and standard deviation σ. In Figure 1, the essence of the applied 
probabilistic approach is shown, where the first two dimensions 
define the 2D angle set around the nominal load direction and 

c x U KU( ) = ′ → min

V x V( ) = ϕ 0

KU F=

0 < x < 1

(1)

(2)

(3)

(4)
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the third dimension describes the normal probability density 
function normal (μ, σ, α) in the μ – 3σ < α < μ + 3σ interval 
where the mean direction is μ = 2π/3 and the standard devia-
tion as the measure of the spreading around the mean direction 
is σ = π/18. According to the well-known three-sigma-rule the 
angle set describes the so-called “natural fluctuation” of the 
load directions around the mean (nominal) direction with 

probability which can be approximated by one. A single 
2D point load with magnitude f which is acting in an arbi-
trary direction can be written in terms of two orthogonal loads 
according to the horizontal x and the vertical y directions:

Fig. 1 Natural fluctuation of the nominal load direction with + μ/6 loading 

directional uncertainty with 0.9973 probability

Firstly, we define the expected-compliance function ͞c in 
exact analytical form: 

where the m = 2 × (ex + 1) × (ey + 1) dimensional sparse load 
vector F(α) has at least one and at most two non-zero entries in 
the function of α and the integration limits are set according to 
the full circle of 2π.

The volume constrained expected compliance minimization 
problem can be written in the following form:

where x is the matrix of design variables (the element den-
sities), ͞c(x) is the expected-compliance function, U and F are 

the nominal displacement and load vectors, respectively, K is 
the global stiffness matrix, V(x) and V0 are the material vol-
ume and design domain volume, respectively, and φ is the pre-
setting volume fraction. We have to note it again that when we 
know the numerical values of the statistical parameters then 
after symbolic integration and simplification we can eliminate 
the statistical parameters from the objective function. There-
fore the result will be a standard nonlinear optimization prob-
lem which can be solved by several different ways. The result 
of the optimization will be a robust expected-compliance-
minimal design for the prescribed φvolume fraction. It will be 
demonstrated by examples in Section 3 that the result of the 
symbolic pre-processing step will be a simple linear function 
defined on a particular subset of the inverse stiffness entries 
which is needed in the compliance computation. As we are only 
interested in linear elastic structures, the stiffness matrix K and 
its inverse K-1 are symmetrical. For the numerical treatment of 
the examples presented in Section 3 the standard OC method 
was used with exact analytical sensitivities: ∂ ( ) ∂c x x/ .

3 Examples
In this section, we present two numerical examples with 

uncertain loading direction to demonstrate the efficiency and 
simplicity of the exact analytical objective function formula-
tion. The first example is a simple symmetric “academic” two-
dimensional (2D) problem with one uncertain load for which 
in the case of trusses, as a function of side loads, the analytical 
solutions are known. The second example is a three-dimen-
sional (3D) analogy of the first one.

It will show that when the numerical value of the mean and 
standard deviation is known then the simplified exact ana-
lytical form of the expected compliance function ͞c(x) can be 
generated symbolically and automatically. To the best of our 
knowledge this result is new in the literature. In this study, for 
the symbolic computation the state-of-art Mathematica pack-
age was used. In its simplified form the expected compliance 
is a linear function of a 2 × 2 (2D) or 3 × 3 (3D) dimensional 
Q matrix which consists of the entries of K-1 which are needed 
in compliance computation. It is important to note that Q  can 
be generated without computing the full inverse of K which, 
from computational point of view, a very important result. For 
example, in Matlab the following simple code can be used to 
select column Cj from the inverse S –1 of an n × n symmetric 
matrix S:W = zeros (n, 1); W(j) = 1; C = S/W;.

The generated simple form of the expected-compliance can 
be used as the starting base of the new SIMP-type expected 
compliance minimization algorithm. Matlab codes of the algo-
rithm for 2D and 3D structures can be developed with straight-
forward modifications from the topology optimization codes 
presented by Andreassen et al. [1] for 2D and Liu and Tovar 
[2] for 3D structures. Each code has been developed using the 
99 line code presented by Sigmund [15] as a starting point. It 
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will be demonstrated in a forthcoming paper that the presented 
approach based on the symbolic pre-processing can be gen-
eralized to handle more than one uncertain loads without any 
difficulties because replacing the trigonometric functions with 
their complex exponential forms the argument of the multiple 
integral will become an “integration-friendly” expression and 
the number of the nonzero entries of the load vector is very low 
comparing it with the load vector size. 

In the following, it will be shown that ∂ ∂−K x ji
1
/ , where j 

ϵ {1,2, ..., ey} and i ϵ {1,2, ..., ex} can be expressed in the fol-
lowing form:

Starting with the definition of the inverse

and differentiate, yielding

rearranging the terms yields

According to the above expression the load specific deriva-
tive entries ∂ ∂Q x ji/  can be generated by simple matrix 
manipulations. In the next sections, the Matlab codes for the 
presented 2D and 3D examples well-illustrate the essence of 
the sensitivity generating process. In the Matlab codes the 
readability was preferred against the computational efficiency. 
It has to be note that the presented exact algorithm and the 
correctly described benchmark problems with reproducible 
numerical results may be used for testing the quality of new 
exact and heuristic solution procedures to be developed in the 
future for structural optimization with varying load directions.

3.1 A 2D example 
In this section, a simple “academic” 2D example is presented 

to illustrate the essence of the proposed new volume con-
strained expected compliance minimization topology optimiza-
tion approach. The example, shown in Figure 2, is a cantilever 
beam, with a ground structure of 40 × 80 rectangular elements 
and an external load f is acting in the end-middle position of 
the beam and its value is f = –10 and its mean (nominal) direc-
tion is μ = 0 and the standard deviation as the measure of the 
spreading around mean direction is σ = π / 18. Applying the 
well-known three-sigma rule, the “natural fluctuation” of the 
uncertain direction will be + π / 6 with probability 0.9973. The 
Young’s modulus is E0 = 1, the Poisson’s ratio is v = 0 and the 
fixed volume fraction is φ = 0.2. The penalization power is p = 
3 and sensitivity filtering is applied with filter radius rmin = 1.5 .

Fig. 2 The design domain, boundary conditions, and the external load  
with + π / 6 ”natural fluctuation” of a cantilever beam

The problem-specific expected compliance function c  in its 
exact analytical form will be the following:

where normal (μ, σ, α) is the normal density function and 

Q
Q Q
Q Q
xx xy

xy yy

=










entries of K–1 needed in the compliance computation and the 
integration limits are set according to the full circle of 2π. The 
Mathematica code of the symbolic pre-processing step is pre-
sented in Figure 3.

Fig. 3 The Mathematica code of the symbolic pre-processing step
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The result will be an extremely simple expression for ͞c:

In this example, our goal is the following: we try to find an 
expected compliance minimal robust solution for the fixed vol-
ume fraction φ = 0.2. The design domain, boundary conditions, 
and the external load with + π / 6 ”natural fluctuation” of the 
cantilever beam is shown in Figure 3.

The nominal compliance minimal shape with α = 0, and the 
expected compliance minimal shape with σ = π / 18 directional 
uncertainty are shown in Figure 4-5, respectively. Let 

c x( )
and 

c x( )  define the minimal and maximal compliance value 
function, respectively. The range function 

c x( )  is defined as 
� � �c x c x c x( ) = ( ) − ( ) . The performance measures using the 
nominal and expected compliance minimization models are 
presented in Table 1. In Figure 6, we show the nominal and 
expected compliance values on the set of the feasible load 
directions with σ = π / 18 directional uncertainty using the nom-
inal and expected compliance-minimizing models. The nomi-
nal and expected compliance values are represented by solid 
and dashed lines, respectively. The robust optimization process 
changes the nominal shape drastically. Figure 6 well-demon-
strate the smoothing effect of the expected compliance model.

Table 1 Performance measures

model ͞c(x)
c x( ) c x( ) c x( )

c → min 610.38 441.48 1870.30 1428.82

͞c → min 551.60 480.29 1083.52 603.23

Fig. 4 Nominal compliance minimal shape with α = 0 

Fig. 5 Expected compliance minimal shape with σ = π / 18 directional uncer-
tainty

Fig. 6 The compliance values with σ = π / 18 directional uncertainty using the 
nominal and expected compliance minimizing models

The Matlab code of the volume constrained expected com-
pliance minimization problem can be given by straightfor-
ward modifications from the top88.m program developed 
by Andreassen et al. [1] for 2D continuum structures. In the 
program, only two labelled code sections have to be modified 
to get a code for the volume constrained expected compliance 
minimization. The first code section which is labelled by “% 
DEFINE LOADS AND SUPPORTS …” defines the loads and 
supports and the second section labelled by “% OBJECTIVE 
FUNCTION AND SENSITIVITY ANALYSIS” defines the 
objective function and its sensitivities. The problem-specific 
code section replacements are the followings:

% DEFINE LOADS AND SUPPORTS (2D CANTILEVER BEAM)

ndof = 2*(nelx+1)*(nely+1);

F = sparse(ndof,1);

U =  zeros(ndof,1);

loadx = ndof-nely-1;  
Wx = zeros(ndof,1); Wx(loadx) = 1;

loady = ndof-nely-0;  
Wy = zeros(ndof,1); Wy(loady) = 1;

F(loadx,1) = -10;

fixeddofs = [1:2*(nely+1)];

alldofs = [1:ndof];

freedofs = setdiff(alldofs,fixeddofs);

% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

Qx(freedofs,1) = K(freedofs,freedofs) ... 
                \Wx(freedofs); 

Qy(freedofs,1) = K(freedofs,freedofs) ... 
                \Wy(freedofs); 

Q = [Qx(loadx,1) Qx(loady,1); ...

     Qy(loadx,1) Qy(loady,1)]; 

c = 97.0448  * Q(1,1) + 2.955240 * Q(2,2);

xw = xPhys;

gx = zeros(nely,nelx);

gy = zeros(nely,nelx);

for j = 1 : nely

 for i = 1 : nelx       

30 20 10 10 20 30


500

1000

1500

c

c Q Qxx yy= +97 0448 2 95524. . (17)
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  xa = zeros(nely,nelx); xa(j,i) = xw(j,i);

  dK = reshape(KE(:)*(penal*xa(:)'.^(penal-1)... 
                    *(E0-Emin)),64*nelx*nely,1);

  sD = sparse(iK,jK,dK); sD = (sD+sD')/2;

  gx(j,i) = -Qx(freedofs) ... 
           '*sD(freedofs,freedofs)*Qx(freedofs);

  gy(j,i) = -Qy(freedofs) ... 
           '*sD(freedofs,freedofs)*Qy(freedofs);

 end

end

dc = 97.0448  * gx + 2.95524 * gy; 

dv = ones(nely,nelx);

3.2 A 3D example
In this section, a simple 3D problem is presented as a 

three-dimensional analogy of the previously investigated 2D 
problem. The example shown in Figure 7, is a cantilever beam, 
with a ground structure of 20 × 10 × 10 hexahedral elements 
and an external load f is acting in the end-middle-middle posi-
tion of the beam and its value is f = –1 and its nominal direction 
is orthogonal to the y – z plane. 

Fig. 7 The design domain, boundary conditions, and external load with direc-
tional uncertainty of the 3D cantilever beam

The Young’s modulus is E0 = 1, the Poisson’s ratio is v = 
0, and the fixed volume fraction is φ = 0.25. The penalization 
power is p = 3 and sensitivity filtering is applied with filter 
radius rmin = 1.5. First, as a straightforward 3D extension of the 
previously investigated 2D symmetric loading scenario, it is 
assumed that the random directional perturbations of the exter-
nal point load form a symmetric 3D spherical region around 
the nominal load direction which can be described by an angle 
set {α, β}, where α, 0 ≤ α ≤ 2π , follows a uniform distribution 
on the full circle of 2π and β follows a normal distribution with 
mean μ = 0and standard deviation σ = π / 18, where angle α 
defines the perturbed load direction in the y – z plane from the 

fixed loading point and angle β defines the declination from 
the nominal load direction with – π / 6 ≤ β ≤ + π / 6 ”natu-
ral fluctuation” according to the three-sigma rule. Now, using 
the previously defined particular statistical parameter set, the 
problem-specific exact expected-compliance function ͞c can be 
defined in the following analytical form: 

where

is the compliance c (α, β) as the function of angle set {α, β}, 
Q is a 3 × 3 matrix consists of the entries of K–1 which are 
needed in compliance computation, and the density function 
pdf (α, β) of c (α, β) is a product of a normal and a uniform 
density functions according to the statistical independency:

In the exact formulation the outer integration limits are taken 
to be μ + π, which integrates over the full revolution of 2π.

The Mathematica code of the symbolic pre-processing step 
is presented in Figure 8.
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Fig. 8 The Mathematica code of the symbolic pre-processing step

After automatic symbolic integration and simplification the 
result will be the following extremely simple expression for ͞c:

Note that in the expression of ͞c the coefficients of Qy
 

and 
Qz are exactly the same because the expected compliance val-
ues form a circular shape around the loading point because the 
loading condition is centrally-symmetric in the y – z plane. The 
uncertain loading scenario is presented in Figure 9. The nomi-
nal compliance minimal shape and the expected compliance 
minimal shape with σ = π / 18 spherical directional uncertainty 
are shown in Figure 10-11, respectively. The performance mea-
sures using the nominal and expected compliance minimization 
models are presented in Table 2. In Figure 12-13, the nominal 
and expected compliance values are shown on the set of the 
feasible load directions with β = + 3 × π / 18 spherical direc-
tional perturbation using the nominal and expected compliance 
minimizing models. In Figure 14, for the reason of easy visual 
comparison we show the unified plot of the results of the nomi-
nal and expected compliance models on the “natural” subset of 
the spherical directional perturbations. The expected compli-
ance minimization model results in a more balanced shape than 
the nominal compliance minimization model. In other words, a 
relatively small change in the expected compliance values may 
change the compliance shapes drastically.

Fig. 9 The loading scenario

Fig. 10 The nominal compliance minimal shape of the 3D cantilever beam

Fig. 11 The expected compliance minimal shape of the 3D cantilever beam

Table 2 Performance measures for the compliance and exact expected  
compliance minimizing models

model ͞c(x)
c x( ) c x( ) c x( )

c(x) → min 4.8991 2.4835 22.9184 -20.4349

͞c(x) → min 4.0723 3.2490 10.2138 -6.9648

Fig. 12 The compliances of the 3D cantilever beam on the set of the spherical 
direction perturbations using the nominal compliance minimal solution

c Q Qxx yy zz= + +0 970448 0 0147762 0 0147762. . . (23)
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Fig. 13 The compliances of the 3D cantilever beam on the set of the spherical 
direction perturbations using the expected compliance minimal solution

Fig. 14 The visual comparison of the compliances given by the nominal and 
expected compliance minimizing models on the set of the spherical direction 

perturbations

Now, to demonstrate the flexibility and general applicabil-
ity of the proposed exact solution searching process, the pre-
viously investigated 3D problem will be solved with two other 
stochastic loading scenarios. In each case, angle α follows a 
normal distribution with mean v = 0 and standard deviation τ = 
π / 18. In the first scenario, angle β follows a normal distribu-
tion with mean μ = 0 and standard deviation σ = π / 18 which, in 
the second scenario, is replaced by a truncated normal distribu-
tion where the feasible angle set β β β≤ ≤  is defined by the 0 
≤ β ≤ π / 6 relation. The automatically generated exact objective 
functions, in the description order, are the followings:

The performance measures are presented in Table 3. The 
loading scenarios, the probability density functions, and the 
exact optimal shapes are visualized in Figure 15 and 18, Figure 
16 and 19, and Figure 17 and 20, respectively. The presented 
loading scenarios drastically change the optimal shape of the 
3D cantilever beam. 

Table 3 Performance measures of the investigated loading scenarios

pdf (α , β) c (x) ͞c (x)

normal (v,τ,α) × normal (μ,σ,β) 2.7150 3.3191

2.9542 2.9867

Fig. 15 The pdf (α , β) = normal (v,τ,α) × normal (μ,σ,β)  loading scenario

Fig. 16 The shape of pdf (α , β)

Fig. 17 The exact optimal shape of the 3D cantilever beam

normal v normal, , , , , ,τ α µ σ β β β( )×← → ( )

c Q Q Qxx yy zz= + +0 970448 0 028679 0 000873343. . .

c Q Q Q
Q

xx yy zz

xy

= + +

+

0 970448 0 028679 0 000873343

0 26343

. . .

.

(24)

(25)
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Fig. 18 The pdf (α , β) = normal v normal, , , , , ,τ α µ σ β β β( )×← → ( )  loading 
scenario

Fig. 19 The shape of pdf (α , β)

Fig. 20 The exact optimal shape of the 3D cantilever beam

The Matlab code of the volume constrained expected compli-
ance minimization problem can be developed, for example, by 
straightforward modifications from the top3d.m program pre-
sented by Liu and Tovar [2] for 3D continuum structures. In the 
program, similarly to the 2D case, only two labelled code sec-
tions have to be modified to get a code for the exact volume con-
strained expected compliance minimization with minimal pro-
gramming effort. The first code section which is labelled by “% 
USER DEFINED LOAD DOFs” defines the loads and supports 
and the second section labelled by “% OBJECTIVE FUNC-
TION AND SENSITIVITY ANALYSIS” defines the objec-
tive function and its sensitivities. The problem-specific code sec-
tion replacements for the first 3D example are the followings:

% USER-DEFINED LOAD DOFs (3D CANTILEVER BEAM)

il = nelx; jl = nely/2; kl = nelz/2; 

loadnid = kl*(nelx+1)*(nely+1) ... 
+il*(nely+1)+(nely+1-jl);

loaddof = 3*loadnid(:) - 2; 

ndofs = 3*(nelx+1)*(nely+1)*(nelz+1);

loadx = loaddof + 0; 
Wx = zeros(ndofs,1); Wx(loadx) = 1; 

loady = loaddof + 1; 
Wy = zeros(ndofs,1); Wy(loady) = 1; 

loadz = loaddof + 2; 
Wz = zeros(ndofs,1); Wz(loadz) = 1; 

% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

Qx(freedofs,1) = K(freedofs,freedofs) ... 
                \Wx(freedofs);

Qy(freedofs,1) = K(freedofs,freedofs) ... 
                \Wy(freedofs);

Qz(freedofs,1) = K(freedofs,freedofs) ... 
                \Wz(freedofs);

Q = [Qx(loadx,1) Qx(loady,1) Qx(loadz,1); ...

     Qy(loadx,1) Qy(loady,1) Qy(loadz,1); ...

     Qz(loadx,1) Qz(loady,1) Qz(loadz,1)]; 

c = 0.970448 * Q(1,1) + 0.0147762 * Q(2,2) ... 
                      + 0.0147762 * Q(3,3);

xw = xPhys;

gx = zeros(nely,nelx,nelz);

gy = zeros(nely,nelx,nelz);

gz = zeros(nely,nelx,nelz);

for j = 1 : nely

 for i = 1 : nelx 

  for k = 1: nelz

  xa = zeros(nely,nelx,nelz);

  xa(j,i,k) = xw(j,i,k);

  dK = KE(:)*(penal*xa(:)'.^(penal-1) ... 
            *(E0-Emin));

  sD = sparse(iK(:),jK(:),dK(:));

  sD = (sD+sD')/2;  

  gx(j,i,k) = -Qx(freedofs)' ... 
            *sD(freedofs,freedofs)*Qx(freedofs);

  gy(j,i,k) = -Qy(freedofs)' ... 
            *sD(freedofs,freedofs)*Qy(freedofs);

  gz(j,i,k) = -Qz(freedofs)' ... 
            *sD(freedofs,freedofs)*Qz(freedofs);

  end

 end

end

dc = 0.970448 * gx + 0.0147762 * gy ... 
                   + 0.0147762 * gz; 

dv = ones(nely,nelx,nelz);

The Mathematica and Matlab codes for the two other load-
ing scenarios can be given by very simple modifications from 
the presented 3D codes of the first example. 
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It may be interesting to mention that in Mathematica the 
explicit product of two or more probability density functions 
(PDFs) can be replaced by a “more elegant” nested PDF[Pro-
ductDistribution[…]…] statement combination.

The presented correctly described benchmark problems with 
reproducible exact numerical results may be used for testing the 
quality and computational efficiency of exact and heuristic solu-
tion procedures to be developed in the future for structural opti-
mization of continuum structures with varying load directions.

4 Conclusions
In this paper, it was shown that when the numerical values 

of the statistical parameters of a volume-constrained expected 
compliance minimization problem are known then it can be 
solve as a volume-constrained single-load topology optimi-
zation problem where the objective is the exact analytical 
expected compliance function in a symbolically and automati-
cally generated extremely simple form. In this study, Mathemat-
ica was used to symbolically integrate and simplify the highly 
nonlinear expected compliance function. It was demonstrated 
by examples that the result of the symbolic pre-processing step 
will be a linear function defined on a particular subset of the 
inverse stiffness entries needed in the compliance computation. 
The coefficient set of this linear function forms the base of the 
exact analytical gradient computation used in the optimal solu-
tion searching OC method to define the best descent direction. 
Matlab codes of the algorithm for 2D and 3D structures with 
exact analytical sensitivities have been developed using the 
topology optimization codes presented by Andreassen et al. [1] 
for 2D and Liu and Tovar [2] for 3D structures as starting points. 
Illustrative examples using the SIMP type topology optimiza-
tion procedure were presented to demonstrate the essence and 
viability of the proposed approach and highlight the potential 
of automatic symbolic computation in structure optimization. 
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