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Abstract
A timber-concrete composite system is increasing the use of tim-
ber in construction. Some structures cannot be built by timber 
alone, but this type of composite system makes it a possibility. 
The deterioration of structures in service is generally uncertain 
over time. The appropriate approach therefore for a structural 
analysis is a time-dependent reliability analysis which consid-
ers the randomness and uncertainties of the deterioration pro-
cess over a specific time period. This paper describes two meth-
ods for time-dependent reliability analysis, a random variable 
deterioration rate model and a gamma process deterioration 
model. It also, compares the deterioration prediction as well 
as service life estimation of timber-concrete composite beams 
under normal use, based on proposed models. 
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1 Introduction
All structures are required to be safe for use during their 

projected service life. They should withstand particular envi-
ronmental influences along with a service load which has an 
effect on their deterioration. Application of reliability analysis 
is becoming increasingly important in civil engineering. Based 
on time dependency, reliability analysis could be generally 
classified into two categories, time-invariant and time-depend-
ent reliability analysis [1]. Time-invariant reliability analy-
sis considers the state of the structure’s condition at a certain 
moment and does not change over time. Structural reliability, 
however, is a function of time for the majority of problems 
within engineering. Considering that deterioration of struc-
tures in service is generally uncertain over time, it should be 
represented ideally using a probabilistic deterioration model. 
Therefore, a more appropriate approach for a structural analy-
sis is a time-dependent reliability analysis which considers the 
randomness and uncertainties of deterioration process over a 
time period.

The limit state function can be generally defined as follows:

where X(t) is a probabilistic deterioration model.
The time-dependent reliability is given by:

The time-dependent reliability tells us the likelihood that no 
failure will occur over a certain time period.

The corresponding probability of failure in the considered 
time interval is then:

The timber-concrete composite (TCC) structure is a struc-
tural system in which a timber beam is connected to an upper 
concrete flange using different types of connectors. This struc-
tural system has successfully been used in bridges all around 
the world, in strengthening existing timber floors as well as in 
constructing new floors in residential and office buildings [2].  

g X t( )( ) = 0

R T P g X t t T( ) = ( )( ) >  ∀ ∈[ ]0 0, ,

p T P g X t t Tf ( ) = − ( )( ) >  ∀ ∈[ ]1 0 0, ,

(1)

(2)

(3)
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Generally, this composite system increases the use of timber 
in construction because some structures cannot be built by 
timber alone. This becomes a possibility with a TCC system. 
Yeoh et al. [3] presented a survey on the current state of art in 
TCC research during recent years. Because of its lower weight 
compared to the reinforced concrete section, TCC has reduced 
seismic effects. The stiffness of the timber section is signifi-
cantly increased by connecting to concrete flange. Many prop-
erties of  a timber floor are improved in that way: for example, 
load carrying capacity, thermal and sound insulation and fire 
resistance. The long-term behaviour of the TCC composite sys-
tem is a very complex problem and it depends on the creep, 
mechano-sorptive creep, swelling, shrinkage and hydrothermal 
changes within the constituent elements [4]. The fluctuation in 
deflection of TCC beams over time under the constant load is 
caused by variations of environmental temperature and rela-
tive humidity. A reduction in temperature causes an increase 
in deflection because of the different thermal expansion coeffi-
cients and conductivities of timber and concrete. Additionally, 
a reduction in timber moisture content produces a decrease in 
deflection. Explanation of this type of behaviour is based on 
the shrinkage/swelling produced by temperature and moisture 
content variations. The differential shrinkage/swelling of the 
concrete flange and timber beam cannot freely occur due to the 
connection system which restrains the possibility of either part 
to move relative to the other. Consequently, additional defor-
mations will be induced in the composite beam [5].

2 Probabilistic Deterioration Models
Time-dependent processes have been modelled tradition-

ally without consideration of the variations in the process over 
time using deterministic models [6]. In order to find the rela-
tion between the average deterioration path and time, a regres-
sion model is appropriate to use. In this model, the increase in 
deterioration is modelled using a deterministic regression func-
tion which could be chosen based on past experiences or expert 
judgment. In most of engineering problems, expected average 
deterioration in time t can be represented using a power function:

where a is the rate parameter and b is the time order param-
eter. Estimation of the regression model parameters is usually 
performed using the least-squares fitting method.

In past decades, there has been significant research done in 
the field of time-dependent performance prediction of deterio-
rating structures. Most of them had the aim to improve the accu-
racy of models which can predict structural performance under 
time-dependent deterioration. The performance prediction pro-
cess can be seen as the main part of the life-cycle manage-
ment of the structures and infrastructures. Frangopol and Soli-
man [7] provided a brief overview of the recent achievements 
in the field of the life-cycle management of the deteriorating 

infrastructure systems. They have discussed various proba-
bilistic performance prediction and evaluation approaches. In 
general, probabilistic deterioration models appear to be more 
flexible in modelling the deterioration process of structures in 
comparison to deterministic deterioration models. Unlike the 
widely used deterministic deterioration models, such as the 
regression model that has limited validity, because they can-
not capture temporal effects in deterioration process, proba-
bilistic deterioration models are trying to imitate uncertainty 
of the deterioration in real conditions [8]. For the proper life-
cycle maintenance management of structures, it is necessary 
to include uncertainties associated with the performance pre-
diction, damage initiation and propagation and the effect of 
maintenance actions on structural [7]. Deterioration is usu-
ally assumed to be a Markov process, stochastic process with 
independent increments. Types of Markov processes which are 
used for modelling stochastic deterioration are discrete time 
Markov process (Markov chains) and continuous time Markov 
process [9]. The Markov chain model is a widely applied tech-
nique in the performance assessment for deteriorating struc-
tures [10]. In this model, the structural deterioration process 
is regarded as structural condition state changes over discrete 
time intervals. It is represented by the transition probabilities 
from one condition state to another. Regrettably, in reality the 
transition probabilities are usually unknown. They should be 
determined from a reverse calculation based on accumulated 
inspection data. In the traditional Markov chain model all the 
transition probabilities are considered to be deterministic. Con-
sidering that the structural deterioration process is uncertain 
over the life-cycle of the structure, Zhang et al. [11] proposed 
refined Markov chain deterioration model where all the transi-
tion probabilities are modelled as random variables. This novel 
approach brings the randomness of the transition probabilities 
into consideration, instead of utilizing only the mean as in the 
previous approaches [12]. As we mention earlier, modelling 
of deterioration processes could also be done using continu-
ous time Markov processes, such as the Brownian motion with 
drift and the gamma process. The gamma process has only 
independent increments which makes it more adequate for 
modelling deterioration that is monotone process, compared to 
Brownian motion with drift which has the independent incre-
ments and decrements.

This paper considers two different probabilistic deteriora-
tion models, random variable deterioration rate model and 
gamma process deterioration model, and compares the deterio-
ration prediction as well as service life estimation based on the 
proposed models.

2.1 Random variable deterioration rate model
Random variable (RV) deterioration rate model presents a 

parametric process that could be generally presented as a deter-
ministic function of time and random parameter [13]:

E X t at tb b( )  = ∝� � (4)
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The main idea of this approach is to model different rates of 
deterioration within the population as random variable R with 
the certain probability density function. 

This model does not consider temporal uncertainties, but 
only a sample uncertainty of the deterioration process (Fig-
ure 1). Deterioration of each sample within the population is 
a deterministic function with a known form and has a specific 
deterioration rate which is constant over time.

where j is number of samples in population, xj(t) is the reali-
zation of the stochastic process and rj is specific sample of dete-
rioration rate.

The gamma distribution is chosen for modelling deteriora-
tion rate and its probability density function is given by:

with shape parameter η > 0 and scale parameter δ >0 ,where 

is the gamma function for a >0.
We can have X(t) denote the deterioration at time t, t ≥ 0, 

and have the probability density function of X(t), in conform-
ity with the definition of the random variable deterioration rate 
model, be given by: 

Fig. 1 Simulated sample paths of RV deterioration rate model and average 
deterioration path 

Mean, variance and coefficient of variance of X(t) are given 
respectively:

The presented probabilistic deterioration model is more 
appropriate for modelling the processes with relatively con-
stant conditions, such as corrosion and wear [13,14]. There-
fore, variations in the deterioration rate over population appear 
as a result of individual differences among samples.

2.2 Gamma Process Deterioration Model
Gamma process (GP) deterioration model was first proposed 

by Abdel-Hameed as an appropriate approach for modelling the 
deterioration randomly occurring in time [9]. Gamma process is 
a stochastic process with independent non-negative increments 
that are gamma distributed with an identical scale parameter 
(Figure 2). We observe the gamma process with shape function 
k(t) > 0 and scale parameter θ > 0, as continuous-time stochas-
tic process {X(t); t ≥ 0} with the following properties:
• X (0) = 0 with probability one;
• ΔX(t) = X(t +Δt) –X(t) ~ Ga(Δk(t), θ) ; Δk(t) = k(t +Δt) - k(t) 
• ΔX(t) are independent.

where k(t) is supposed to be a non-decreasing, right-contin-
uous, real-valued function for t ≥ 0, with k(0) ≡ 0. 

Fig. 2 Simulated sample paths of Gamma process deterioration model and 
average deterioration path 
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Probability density function of X(t), according to the defini-
tion of the gamma process deterioration model could be given as:

with mean, variance and coefficient of variation

The gamma process deterioration model presents the proper 
model for gradual damage accumulating monotonically over 
time, such as wear, fatigue, creep, crack growth, erosion, cor-
rosion and swell [9]. Beside this, the gamma process deteriora-
tion model has been considered as an appropriate approach for 
building element deterioration prediction [15] and for bridge 
deterioration prediction [16].  

3 Estimation of deterioration model parameters
Being that the deterioration models present a basis for 

predicting the end of service life of structural elements and 
planning for maintenance actions, an accurate estimation of 
the parameters of the deterioration process models from avail-
able inspection data is of critical importance. We assume that 
a typical inspection data set consists of time of conducted 
inspections ti, i = 1, … , n, where 0 = t0 < t1 < … < tn, and cor-
responding observations of the cumulative amounts of dete-
rioration for each inspected sample xij, 0 = x0j ≤  x1j ≤ … ≤ xnj, 
where j = 1, …, m and m is number of samples in population. 
The method of maximum likelihood, well-known estimation 
method in statistics, has been applied in this paper.

3.1 Maximum likelihood estimation of RV 
deterioration rate model parameters 

Estimation of RV deterioration rate model parameters, η 
and δ, can be obtained based on the available inspection data 
set. Maximum likelihood estimation can be done by maximiz-
ing the logarithm of the likelihood function for the considered 
population of deterioration rates rj, j = 1, … , m. Likelihood 
function is given as follows:

Based on the given likelihood function, log-likelihood func-
tion is:

According to the first partial derivatives of log-likelihood 
function with respect to η and δ, the maximum-likelihood esti-
mates η and δ could be obtained based on following system of 
equations:

3.2 Maximum likelihood estimation of GP 
deterioration model parameters

In a similar way, already described above, we are able to 
estimate GP deterioration model parameters c and θ. Statisti-
cal data required for this approach is deterioration increments 
of each observed sample over time interval between two 
inspections, ∆xji = xji – xji−1, j = 1,…, m; i = 1, …, n. Likelihood 
function is represented as a product of independent probability 
density functions:

Considering the logarithm of the likelihood function, we get 
corresponding log-likelihood function:

First partial derivatives of obtained log-likelihood function 
with respect to c and θ are presented as follows:

where the function ψ(.) is digamma function. The maximum-
likelihood estimates c and θ could be obtained by numerically 
solving system of equations.
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4 Time-dependent reliability of TCC beams in the 
serviceability limit state

The main cause for the deterioration and the reduction in 
safety and reliability of the existing structures and infrastruc-
tures are environmental conditions. In order to estimate the 
probability of failure, it should be recognized that both applied 
loads and the resistance of a structure may fluctuate in time dur-
ing the lifetime of the structure. When considering long-term 
deflection of timber-concrete composite beams, as the most 
serious criterion in the serviceability limit state, time-depend-
ent reliability analysis is appropriate because of diverse effects 
which develop in a different manner over time in the life cycle. 

The aim of this paper is to demonstrate the application of the 
two different reliability-based deterioration prediction models 
for assessing the service life of TCC beams using available 
inspection data. We observe a simply supported TCC beam 
(Figure 3) of span 4.5m. The shear connectors are glued-in 
steel rods ϕ20/150 mm, which are embedded in the pre-drilled 
holes perpendicular to the grain and coated with epoxy resin, at 
constant intervals of 240 mm. The concrete flange is made of 
concrete strength class C25/30, the timber beam of sawn soft-
wood timber structural strength class C27 and the steel rods are 
made of the steel grade S235.

Fig. 3 Cross section of the timber-concrete composite beam

It is supposed that these beams are in indoor conditions, 
where temperature (T) is 22 ± 4 °C and the relative humidity 
(RH) is 50 ± 5%. The relative mid-span deflection of the beam 
over time under normal use conditions is defined as follows:

where u(t) is mid-span deflection at time t and uel is the elas-
tic deflection measured immediately after applying the service 
load that is assumed to be an initial deflection, deflection at 
time t0. Based on the relative mid-span deflection definition, we 
could establish maximum permissible value of X(t) as ρ:

In agreement with the Eurocode 5 [17], suggested service-
ability limit value for long-term deflection uL of simply sup-
ported beam is l/200, where l is the span length. It is assumed 
that observed TCC beam will reach serviceability limit state 
when the maximum mid-span deflection exceeds the proposed 
serviceability limit value of relative mid-span deflection. In our 

case, the serviceability limit value of relative mid-span deflec-
tion is 4.9518 and it is presumed to be constant over time.

For a comprehensive time-dependent reliability analysis of 
TCC beams under normal use conditions, we need to define 
the limit state function. In this paper we consider serviceability 
limit state of maximum deflection that could be expressed as:

According to this definition, probability of failure for con-
sidered TCC beams is given as follows:

In the absence of deterioration measurement data under nor-
mal use conditions and because time-consuming experiments 
under normal operating conditions are costly, accelerated aging 
test was applied. Accelerated deterioration data has been gen-
erated using an available deterministic model. This model is 
based on conducted experimental tests, presented by Fragi-
acomo [18]. This approach serves to simulate the condition of 
the set of 30 identical beams exposed to indoor conditions. The 
observed beams are monitored through periodic inspections at 
year 10 and year 20. In that way inspections reveal the pro-
gress of the deterioration of each inspected beam. Deterioration 
increase in each time interval is not constant within the consid-
ered population, rather it is random due to the uncertain influ-
ence of the environment over the life-cycle. The uncertainties 
of the deterioration process in a large population of structural 
elements are simulated by Monte Carlo simulation technique. 
Variation in environmental conditions will cause dispersion of 
mid-span deflection within the population over time (Figure 4), 
and therefore variation in lifetime among the samples.

To obtain the relation between the average deterioration 
level and time, available inspection data was fitted by the   
power function. This is performed based on the regression 
analysis using a least-squares fitting method, also suggested by 
Nicolai et al. [19]. As the regression of available data fits a 
power function very well with high coefficient of determination  
(R2 = 0.9175), the expected deterioration of TCC beams under 
normal use conditions can be modelled as follows:

where E[X(t)] presents the expected deterioration of rela-
tive mid-span deflection under indoor conditions at time t. 
Having parameter estimate of the power b, we are able to esti-
mate the other two parameters of the proposed RV deterio-
ration rate model and GP deterioration model, the shape and 
scale parameters.

Maximum likelihood estimation of shape and scale param-
eters of RV deterioration rate model is obtained according to 
procedure previously described in chapter 3.1. As we have 
available data from two conducted inspections at year 10 and 
year 20, random variable deterioration rate is given as follows:
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Respectively, the deterioration rate of specific sample is:

Parameter estimation of the suggested gamma process 
model using method of maximum likelihood is conducted in 
the manner described in chapter 3.2.

Table 1 Estimated parameters of time-dependent reliability analysis meth-
ods at year 20

RV deterioration rate model Gamma process model

Shape (η) Scale (δ) Shape (c) Scale (θ)

834.069 0.0039 699.912 0.0047

4.1 Deterioration prediction
The continuous challenge in optimizing the maintenance of 

structures is manifested in the accurate assessment and model-
ling of the structural lifecycle performance over time. In the 
available literature we can find various deterministic deteriora-
tion models for predicting long-term behavior of TCC beams 
presented by different authors [18], [20], [21]. These determin-
istic prediction models have inherent limitations in real condi-
tions, because they do not include any variations and uncer-
tainty in model variables. Hence they provide point estimation 
of the future condition of the structure. A more appropriate 
approach for deterioration prediction of existing structures is 
based on the analysis of the physical deterioration in accord-
ance with engineering knowledge and experience. It is also 
based on the statistical data obtained from the condition inspec-
tions which reveal the current state of the deterioration. 

Fig. 4 Inspection data for observed beams
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Fig. 5 Coefficient of variation of expected deterioration X(t) 
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Considering that the RV deterioration rate model depends 
on only one random variable whose mean and standard devia-
tion are constant over time, the coefficient of variation of this 
probabilistic deterioration model is constant over time as well. 
Furthermore, coefficient of variation of GP deterioration model 
is variable over time and presents the function of time with the 
negative exponent, t –(b/2). According to this fact, coefficient of 
variation of GP deterioration model has higher value within the 
first couple of years. Its value however is rapidly decreasing 
and quickly becomes lower than the coefficient of variation of 
the RV deterioration rate model, which is an indicator of qual-
ity and stability for long term predictions (Figure 5).

Based on figure 6, we can conclude that gamma process 
model gives a more stable prediction of expected deterioration 
than the RV deterioration rate model.

4.2 Service life prediction
Service life analysis considers the maximum time at which 

the expected deterioration will exceed the service life thresh-
old. The first time when the sample path of deterioration X(t) 
exceeds the proposed serviceability limit value of relative mid-
span deflection ρ could be assigned as the service life T.

In case that the deterioration is modelled using a random 
variable deterioration rate model, the cumulative distribution 
function of service life could be presented as:

where

is the incomplete gamma function for x ≥ 0 and a > 0.
Taking into account that expected deterioration is presented 

by gamma process deterioration model, the cumulative distri-
bution function of service life can be given as:

   

Fig. 6 Comparison of expected deterioration X(t) at year 50, using prediction based on GP deterioration model and RV deterioration rate model

F t P T t X tT ( ) = ≤ ( ) ≥ ρ

F t GA t t
T

b
b

( ) = − ( ) = −









( )
1 1ρ η δ

η ρ
δ
η

; ,

,Γ

Γ

Γ a x t e dt
t x

a t
,( ) =

=

∞
− −∫ 1

Fig. 7 Comparison of probability density functions of service life, obtained from GP deterioration model and RV deterioration rate model

F t GA ct
ct

ctT
b

b

b( ) = − ( ) = −









( )1 1ρ θ

ρ
θ

; ,

,Γ

Γ

(27)

(28)

(29)

(30)



725Time-dependent Reliability Analysis of Timber-Concrete Composite Beams 2017 61 4

The survival function offers the answer on question what is 
the probability that the considered structure will survive past a 
certain time (Figure 8). This function is defined as:

5 Conclusions
The continuous challenge in optimizing life-cycle mainte-

nance of structures is manifested in the accurate assessment 
and modelling of the structural life-cycle performance over 
time. The widely used deterministic deterioration models  have 
inherent limitations, because they cannot capture temporal 
effects in the deterioration process. Unlike them, probabilis-
tic deterioration models are trying to imitate uncertainty of 
deterioration in real conditions. When considering long-term 
deflection of TCC beams, as the most serious criterion in the 
serviceability limit state, time-dependent reliability analysis is 
appropriate because of the diverse effects that develop in a dif-
ferent manner over the life-cycle. 

This work has presented the application of two methods for 
time-dependent reliability analysis on TCC beams under normal 
use. Compared to the random variable deterioration rate model, 
the gamma process deterioration model is better for deteriora-
tion analysis. RV deterioration rate model does not consider 
temporal uncertainties, only sample uncertainty of the deteriora-
tion process. The main idea of this approach is to model differ-
ent rates of deterioration  for each sample within the population 
and therefore this model incorporates variability in deterioration 
process across the population. However, the gamma process 
deterioration model considers deterioration increase as the sum 
of the series of non-negative random increments. In this model, 
deterioration rate in each time interval is not constant, rather it is 
random due to the uncertain influence of the environment over 
the life-cycle. Considering that the RV deterioration rate model 
depends on only one random variable which mean and standard 

deviation are constant over time, the coefficient of variation of 
this probabilistic deterioration model is constant over time as 
well. Furthermore, coefficient of variation of the GP model is 
variable over time and presents the function of time with the 
negative exponent, t –(b/2). According to this fact, coefficient of 
variation of GP deterioration model has higher value within the 
first couple of years. However, its value rapidly decreases and 
quickly becomes lower than the coefficient of variation of the 
RV deterioration rate model, which is an indicator of quality 
and stability for long term predictions.  

In summary, a careful consideration of the temporal uncer-
tainty associated with the evolution of deterioration is very 
significant for a time-dependent reliability analysis of timber-
concrete composite structures.    
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