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Abstract
Traditionally, the design of tunnels is based on determinate 
parameter values. In practice, both the performance and 
safety of tunnels are affected by numerous uncertainties: for 
example,it is difficult for engineers to predict uncertainties in 
geological conditions and rock mass properties. The purpose 
of reliability-based optimization (RBO) is to find a balanced 
design that is not only economical but also reliable in the pres-
ence of uncertainty. In the past few decades, numerous reli-
ability optimization techniques have been proposed for taking 
uncertainty into account in the design of engineering struc-
tures. In the present study, the first-order reliability method 
(FORM) was used to compute the reliability index using Excel 
Solver. The least squares support vector machine (LSSVM) 
approach was adopted to build a relationship between reli-
ability index and design variables,and the artificial bee col-
ony (ABC) algorithm was employed for the reliability-based 
optimization. A proposed LSSVM/ABC-based reliability opti-
mization method was applied to the case of a tunnel with rock-
bolt reinforcement. The mechanical parameters of the rock 
mass, in-situ stress and internal pressure were considered 
as the random variables. The reliability index of tunnel was 
analysed. The length, distance out of plane and the number 
of rockbolts were determined and optimized considering the 
uncertainty based on RBO. The proposed method improved 
the efficiency of RBO while maintaining high accuracy. The 
results showed that the proposed method not only meets the 
design accuracy, but also improves the efficiency of reliabil-
ity-based optimization.

Keywords
reliability-based optimization, reliability analysis, first-order 
reliability method, artificial bee colony, least squares support 
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1 Introduction
The design and performance of tunnels are usually affected 

by some uncertainties that can be costly and time-consuming 
for tunnel construction projects. Traditional empirical and 
deterministic design approaches do not include uncertainty in 
tunnel support design [1–3], but tend to be based on trial-and-
error processes that consider safety and cost [4–6]. Reliability-
based optimization (RBO) makes provision for the uncertainty 
of structures by adding probabilistic constraints. This is quite 
straight forward if the results of the reliability analysis are 
accurate and precise so that no question arises as to whether 
a given design satisfies safety requirements. The purpose of 
RBO is to find a balanced design that is not only economical 
but also reliable in the presence of uncertainty [7].

Over the past few decades, numerous reliability optimiza-
tion techniques have been proposed [6,8,9]. Younes and Alaa 
overviewed the various RBDO approaches using mathemati-
cal and finite element models with different levels of difficul-
ties [10]. Marcos and Gerhart (2010) produced a detailed liter-
ature review on reliability-based optimization [11]. Although 
RBO has some evident advantages overdeterministic optimi-
zation design, it is often computationally inefficient. Response 
surface methodology has been applied in RBO in attempts to 
improve its efficiency [12,13]. Zhang et al. applied the mean 
first-order reliability method (MFORM) to the optimization of 
geotechnical systems [6]. Those methods improved the com-
putational efficiency but decreased the accuracy of the reli-
ability analysis, which affects the results of RBO. The selec-
tion of an optimization method is critical to RBO applications, 
especially for complex nonlinear optimization problems. Gen 
and Yun reviewed the application of soft computing methods 
in reliability optimization [14]. Genetic algorithms and par-
ticle swarm optimization have also been applied to RBO [7, 
15]. Lee et al. proposed a methodology to convert an RBDO 
problem requiring very high reliability to an RBDO problem 
requiring relatively low reliability by appropriately increas-
ing the input standard deviations for efficient computation in 
sampling-based RBDO [16].
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In this paper we propose a LSSVM/ABC-based reliabil-
ity optimization approach to the design of tunnel support, 
which meets the requirements both of efficiency and accuracy. 
The artificial bee colony (ABC) [17] was used to search the 
design variables in global search space. The ABC algorithm, 
which simulates the intelligent foraging behaviour of honey 
bee swarms, was originally proposed for optimizing numeri-
cal problems. It is a very simple, robust and population-based 
stochastic optimization algorithm. To improve efficiency, 
LSSVM was adopted to establish the relationship between 
the reliability index and the design variables. The design vari-
ables and objective function were computed by the proposed 
method. The results were verified by comparison with other 
methods, and they indicate that the proposed method provides 
reliability-based optimization with both high efficiency and 
accuracy.

2 Background
2.1 Analytical solution of a circular tunnel with 
rockbolt reinforcement

A radial cross-section through the rockbolt-reinforced tun-
nel to be designed is shown in Fig. 1: a straight tunnel of radius 
a was to be excavated in a rock mass subject to a uniform far-
field stress σ0 [18]. The rock mass was assumed to be isotropic, 
homogeneous and elastic, with shear modulus G and Poisson’s 
ratio μ. The tunnel was to be reinforced with nb equally spaced 
rockbolts of diameter db and length Lb.

The plane strain displacement solution for the tunnel wall 
considers the cases of both grouted and anchored rockbolts 
is illustrated in Fig. 1. The displacements for region B when 
ps ≤ pf for both grouted and anchored rockbolts are given by 
Carranza-Torres (2009) as: 

Where ur
INIT is the initial radial displacement before instal-

lation of the rockbolt, and σr
* is the radial stress at the bound-

ary between regions A and B in Fig. 1 [18].

Fig. 1 Definition of variables in the axisymmetrical problem of a straight 
reinforced circular tunnel

In the convergence–confinement method of tunnel support 
design, ur

INIT = 0. In other situations, ur
INIT can be calculated from:

The displacements in region A when reinforced by grouted 
rockbolts is given by:

The radial stress σr
* at the boundary of regions A and B for 

grouted rockbolts is given by:

Where the coefficients N1, N2, N3, N4, N for grouted rock-
bolts are given as follows:
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The axial stress in anchored rockbolts is given by:

and in grouted rockbolts by:

2.2 FORM algorithms
The reliability index is a measure of the stability of engi-

neering systems that takes into account the inherent uncer-
tainty of input variables. The widely used Hasofer–Lind index, 
β is defined as the minimum distance from the mean value 
point of the random variables to the boundary of the limit 
state surface [19], in directional standard deviation units. It is 
expressed as follows:

Where X is a vector representing the set of random variables 
xi; μ is a vector of mean values; C is the covariance matrix; and 
F is the failure domain. Low and Tang (2007) proposed aneffi-
cient algorithm for FORM [20], which changes the dimension-
less number ni, so that Eq. (12) maybe rewritten as:

Where R is the correlation matrix and where n is a column 
vector of ni given by:

Where μi
N and σi

N are the equivalent normal mean and 
equivalent normal standard deviation, respectively, for ran-
dom variable xi .

2.3 Reliability analysis of a rockbolted circular 
tunnel

In this study, Low and Tang’s (2007) method was used to 
compute the reliability index using Excel Solver. The elastic 
modulus E, in-situ stress σ0 and pf are the random variables, 
and the other parameters are determinate variables. To inves-
tigate the reliability analysis of a circular tunnel with rockbolt 
reinforcement, the performance function is given by the dis-
placement solutions of the tunnel wall and the radial stress in 
the rockbolt:

Where εL is the limiting inward displacement of the tunnel 
wall; ur

w is the deformation criterion; σr is the radial stress in 
the rockbolt; and σr

T is the tensile strength of the rockbolt. The 
performance function becomes negative when the inward dis-
placement of the tunnel wall ur

w ≥ εL .
εL and σr were calculated from Eqs.(1) and (11)using Micro-

soft Visual Basic for Applications (VBA). Fig. 2 shows a typi-
cal Excel spreadsheet for computation of the reliability index 
for the tunnel when considering two failure modes: the defor-
mation exceedance criterion, and rockbolt failure.

(b)
Fig. 2 Reliability index using Excel Solver, based on: (a) surrounding defor-

mation; (b) tensile strength of rockbolt

2.4 Least squares support vector machine (LSSVM)
LSSVM is an alternative formulation of the Suykens and 

Vandewalle SVM regression method [21] of establishing 
the relationship between reliability index and design vari-
ables. Consider a given training set of N data points {xk, yk} 
(k = 1, 2, …, N) with input data xk  RN and output yk  R where 
RN is the N-dimensional vector space and R is the one-dimen-
sional vector space. The LSSVM model is given by:

Where k(x, xk) is the kernel function; α is the Lagrangian 
coefficient; and b is the scalar threshold. The values of α and 
b are obtained from:

where y = [y1,…, yN]; I = [1, …, 1], Ω = k(xk, xl ); k, l = 1, …, N. 
Choosing γ > w ensures that the matrix:
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is invertible. The analytical solution of α and b is then given 
by:

The three general kernel functions are: the polynomial ker-
nel K(X,Y) = ((X ∙ Y) + 1)d, d = 1,2,..., n

the radial kernel K X Y
X Y
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and the sigmoidal kernel K(X,Y) = tanh(ϕ(X ∙ Y) + θ).

2.5 Artificial bee colony (ABC) algorithm
In the ABC algorithm(Karaboga,2005), which is a swarm-

based, meta-heuristic algorithm, the colony of imaginary bees 
consists of three categories of bee: employed bees, onlookers 
and scouts. The position of a food source represents a possible 
solution for the problem under consideration, and the amount 
of nectar in the food source represents the quality of the solu-
tion based on its ‘fitness’ value [22, 23]. In the minimization 
problem, the fitness can be computed by the objective function.

Half of the colony consists of employed bees and the other 
half consists of onlookers. The numbers of employed and 
onlooker bees is equal to the number of solutions in the popu-
lation. In the first step, the algorithm generates a randomly dis-
tributed initial population of solutions and the fitness of each 
solution is calculated from:

where x(i, j) is the candidate solution of problem;  
i = 1, 2,…,  SN in which SN denotes the population size;  
j = 1, 2, …, D in which D is the dimension number of each solu-
tion; rand(0,1) is a random number between 0 and 1; and x j

min 
and x j

max are the lower and upper bounds of each solution.
After initialization, the search carried out by the bees 

maybe summarized as follows:
•	 Employed bees locate a food source within the neighbour-

hood of the food source in their memory.
•	 Employed bees share their information with onlooker bees 

in the hive,and then the onlookers select one of the food 
sources.

•	 Onlookers select a food source within the neighbourhood of 
the food sources chosen by them.

•	 When an employed bee abandons the food source, it 
becomes a scout and starts a random search for a new food 
source.
To produce a candidate food location from the old one in 

memory, the algorithm uses the following expression:

where k{1, 2,..., SN} and j{1, 2,..., D} are randomly cho-
sen indexes. Although k is determined at random, it must be 
different from i. ϕij is a random number between −1 and +1. It 

controls the production of neighbouring food sources around  
x(i, j),and represents the comparison between two food posi-
tions visible to a bee. It is seenfrom Eq. (22) that, as the differ-
ence between the parameters of the x(i, j) and x(k, j) decreases, 
the perturbation on the position x(i, j) therefore also decreases. 
Thus, as the search approaches the optimum solution within the 
search space, the step length is adaptively reduced.

An onlooker bee chooses a food source based on the prob-
ability pi that the food will be in a selected position. This is 
calculated by:

Where fitnessi is the fitness of the solution.
In ABC, a food source position that cannot be improved 

further through a predetermined number of cycles is assumed 
to be abandoned. Therefore, the value of the predetermined 
number of cycles, termed the“limit for abandonment”, is an 
important control parameter in the algorithm. Assuming that 
the abandoned source is x(i, j), the scout discovers a new food 
source and replaces it with an updated value of x(i, j). This 
operation is defined by Eq.(21) above.

Once each candidate source position v(i, j) is locatedas in 
Eq. (22), it is evaluated by the bee and its performance is com-
pared with the previous v(i, j). If the new food source contains 
nectar that is equal to or better than the previous source, it 
replaces the earlier one in the memory. 

The three control parameters in the ABC algorithm are: the 
number of food sources,equivalent to the number of employed 
or onlooker bees (SN); the value of the limit of abandonment; 
and the maximum cycle number (MCN).The ABC flowchart 
is shown in Fig.3.Briefly, the ABC algorithm procedure is as 
follows:
Step 1: Determine the values of the control parameters SN, 

MCN and abandonment limit.
Step 2: Generate the initial population x(i, j) from (Eq.(21)) and 

evaluate the fitness of each solution.
Step 3: For each employed bee, generate new solution v(i, j)

from Eq.(22) and evaluate its fitness.
Step 4: Calculate the probability values pi for the solution x(i, 

j) by Eq.(23).
Step 5: For each onlooker bee, select a solution x(i, j) and, 

according to pi, produce a new solution v(i, j) and calculate 
its fitness.

Step 6: If a solution is abandoned by the scout, a new random 
solution is generated by Eq.(22).

Step 7: Memorize the best solution.
Step 8: Repeat Steps 3 to 7 until MCN is reached.
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Fig. 3 Artificial bee colony (ABC) algorithm flowchart

3 Reliability-based optimization using LSSVM/ABC
3.1 Reliability-based design optimization

Let d denote the design variables in the tunnel engineering, 
and let C(d) denote the cost function of the design. Suppose the 
design requirement is that the reliability index for the ith fail-
ure mode is not less than a target reliability index, βi

T. Then, let 
di be the ith element of d, and di

L and di
U be the lower and upper 

permissible values of di. The purpose of reliability-based opti-
mization is to find a set of design variables that minimizes 
the cost function, C(d), without violating any design require-
ments. Mathematically, this problem can be expressed as:

where C(d) is the objective function, such as cost; βi(d) and 
βi

T are the reliability index and reliability constraint of the ith 
failure model; di represents the design variables, for which di

L 

and di
U are respectively the lower and upper bounds of the ith 

design variables; and nm, nd are the number of reliability con-
straints and design variables. RBO differs from deterministic 
optimization in that it involves reliability constraints. In this 
study, FORM was used to compute the reliability index based 
on Low and Tang’s (2007) method, i.e. Eq. (13).

3.2 LSSVM-based relationship between reliability 
index and design variables

The algorithm of Low and Tang (2007) computed the reli-
ability index using Excel Solver in this work. Then, the ABC 
algorithm was used to search the design variables based on 
the objective function. LSSVM/ABC-based RBO is composed 
of an inner and outer loop. The inner loop mainly computes 
the reliability based on LSSVM. The outer loop searches the 
design variables using the ABC algorithm. The flowchart of 
the proposed method is shown in Fig. 4. 

The nonlinear relationship between reliability index and 
design variables is described by the LSSVM model, stated as:

Where y(X) is the reliability index, and X represents the 
design variables. 

The LSSVM model may also be expressed by:

LSSVM possesses other powerful regression capabilities. 
In order to obtain LSSVM(X), a training process based on a 
known dataset is needed. Training samples maybe acquired 
by using reliability analysis for a given set of tentative design 
variables to obtain the corresponding reliability index. In this 
study, FORM was used in Excel Solver to compute the reli-
ability based on different performance functions.

3.3 Fitness function
In the ABC algorithm, the fitness function needed to search 

for the optimal value in a large search-space RBO problem can 
be converted into the following non-constrained optimization 
form by penalty method:

Where fi(d) is the penalty function and M is the penalty 
coefficient. The choice of the penalty coefficient M is crucial 
for improving the convergence and accuracy of Eq. (27).In this 
study, fi(d) was defined as:

The fitness function of LSSVM/ABC-based RBO is defined 
as follows:

3.4 Procedure of LSSVM/ABC-based reliability 
optimization

In this study, the reliability index was computed by combin-
ing the FORM method with Excel Solver. The Latin hyper-
cube sampling(LHS) statistical sampling method [24] was 
used to build the set of input pairs of training samples, and the 
nonlinear mapping relationship between the reliability index 
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and design variables was built by LSSVM. ABC searched 
the optimal design variables based on the fitness function. A 
single loop is used in the LSSVM/ABC-based reliability opti-
mization method, which improves its efficiency and reduces 
the time taken to complete the optimization. The flowchart is 
shown in Fig. 4. The stepwise procedure is as follows:
Step 1: Set the range of design variables for the problem.
Step 2: Produce the input pairs of training samples using LHS.
Step 3: Set the random variables and statistical parameters.
Step 4: Compute the reliability index of each input pair using 

the FORM algorithm in Excel Solver.
Step 5: Build the training samples using the input pairs (design 

variables) and output (reliability index).
Step 6: Build the relationship between design variables and 

reliability index using the LSSVM algorithm.
Step 7: Determine the parameters of ABC.
Step 8: Produce the initial bee colony population.
Step 9: Compute the fitness of individual bees based on the 

LSSVM model.
Step 10: Check number of cycles. END if maximum cycle has 

been reached;if not, GOTO Step 11.
Step 11: Update the population of bee colony using ABC algo-

rithm, GOTO Step 9.

Fig. 4 Flowchart of LSSVM/ABC-based reliability optimization

4 Illustrative examples
The reliability and optimization of rockbolt parameters 

were evaluated by the proposed method for a2 m radius circu-
lar tunnel reinforced by grouted rockbolts. The elastic modu-
lus (E) of the rock mass, in-situ stress (σ0) and internal pres-
sure pf were the random variables (see Table 1). The internal 
pressure pf represents the support provided by the tunnel face 
at the time the rockbolts are installed. Poisson’s ratio is 0.3. 
The design variables are the rockbolt length (Lb), distance of 
rockbolts out of plane(D) and the number of rockbolts in the 
tunnel section (nb).The diameter of all rockbolts is 25  mm; 
elastic modulus is 210  GPa. The displacement criterion of 
the tunnel wall and the failure criterion of the rockbolts were 
investigated. In this study, the value of εL and σr

T were taken 
to be 0.005 and 500 respectively. The objective function is the 
total length of all rockbolts. The reliability index constraints 
of the deformation and strength performance function are 3.0 
and 2.0 respectively.

Table 1 Random variables and statistical properties

Variables Distribution Mean Standard Deviation

E(MPa) Normal 270.73 27

σ0(MPa) Normal 1 0.2

pf Normal 0.7 0.07

To determine the support capability of the rockbolts, the 
ABC parameters SN/2 and MCD were chosen as 30 and 50 
respectively. The parameter γ of LSSVM was 0.001. The RBF 
kernel was adopted, with σ = 20; 300 training samples and 100 
testing samples were built using LHS. Comparisons between 
reliability index results obtained by FORM and results pre-
dicted by LSSVM are shown in Fig. 5. The comparisons indi-
cate that LSSVM effectively represented the nonlinear rela-
tionship between the design variables and the reliability index 
for both performance functions, i.e. tunnel wall deformation 
and rockbolt strength. The optimal parameters for the rock-
bolts are listed in Table 2. The values of the design variables 
obtained by ABC agreed well with those from FORM. The reli-
ability index meets the constraint requirements. The objective 
function is slightly higher than that by FORM (relative error 
< 0.7%). In addition, the running time of the proposed method 
was about 170.45 s, which was far less than the 1305.23 s taken 
by the FORM method. This demonstrates that, for this exam-
ple, the proposed method dramatically improved the efficiency 
of RBO while maintaining high accuracy. Variations in the 
fitness and design variables are shown in Figs. 6 and 7. Fig. 8 
shows the variation of population in different cycles.
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Fig. 5 Comparison of reliability index by FORM and LSSVM methods

Fig. 6 Variation of fitness by FORM and LSSVM methods

(a) Length of rockbolt by FORM and LSSVM methods

(b) Distance between rockbolts out of plane

(c) Number of rockbolts in plane

Fig. 7 Variation of design variables: (a) length of rockbolt; (b) distance 
between rockbolts out of plane; (c) number of rockbolts in plane

Table 2 Optimization results for rockbolt support

Method
Design variables Reliability index Objective function (m) Time (s)

Lb(m) nb D (m) G1 G2

FORM by ABC 1.0 26.176 0.629 3.368 2.001 41.640 1305.230 

LSSVM model by Solver 1.0 28.113 0.673 3.407a/3.370b 2.000a/2.008b 41.746 –

LSSVM model by ABC 1.0 27.329 0.652 3.273a/3.373b 2.054a/2.022b 41.930 170.450 
Notes: a. Computed using LSSVM model; b. Computed using FORM.
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Fig. 8 Fitness variation of population in different cycles

5 Summary and conclusions
In this paper, a LSSVM/ABC-based RBO method that takes 

uncertainty into account is proposed for the design of ageo-
technical system, in this case a circular tunnel in rock with 
rockbolt reinforcement. Results show that the proposed method 
can obtain accurate solutions with dramatically improved 
computing efficiency. The results were verified against an ana-
lytical solution. In fact, the proposed method can also be used 
fora tunnel with a numerical solution. The ABC method was 
used in the demonstration case, but any search optimization 
method could be used, such as a genetic algorithm, gradient 
based methods, etc.
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