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Abstract 
The principal aim of this research was to find out if artificial neu-
ral networks could be employed to predict the availability fac-
tor for water mains, distribution pipes and house connections. 
Modelling by means of artificial neural networks (ANNs) was 
carried out using the Statistica 10.0 software package. Operat-
ing data from the years 1999–2005 were used to train the ANNs 
while data from the next seven years of operation were used 
to verify the model. The optimal model (characterized by the 
lowest mean-square error) contained 11 hidden neurons acti-
vated by the exponential function. The linear function was used 
to activate the 3 output neurons. 185 training epochs sufficed to 
train the ANN, using the quasi-Newton method. The correlation 
between the availability indicator experimental values and the 
modelling results would remain high, amounting during model 
verification to R2 = 0.740, R2 = 0.823, R2 = 0.992 for respectively 
water mains, distribution pipes and house connections. As the 
availability indicator prediction example shows, the artificial 
neural networks are a promising tool enabling quick and easy 
analysis of failure frequency. It is possible to train the ANN fur-
ther and change the number of training epochs and hidden neu-
rons as well as the activation functions and training methods.

Keywords 
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1 Introduction
Research on the frequency of failure of water supply networks 

has been conducted in Poland and in the world for many years 
[1–4]. Still, besides determining the failure frequency level of 
water conduits on the basis of operating data, it is also necessary 
to supplement such studies with the results of the modelling, 
using typical models or artificial intelligence and Monte Carlo 
simulations: probability of the failure occurrence and values of 
failure rate [5–8] or the amount of water losses through pipe 
breaks [9]. Therefore one of the aims of this research was to 
show that mathematical modelling could be used to determine 
the availability indicator and reliability level of water conduits. 

1.1 Reliability and failure analysis
An analysis of the failure frequency of civil and environ-

mental engineering structures is one of the elements in the 
assessment of their operational reliability level. The deep fail-
ure and reliability analysis of water supply as well as sewer-
age systems in Poland were carried out by M. Kwietniewski 
and J. Rak [10]. Authors indicated and described the results of 
previous studies as well as pointed out that new methods, e.g. 
mathematical modelling should be used for the assessment of 
technical condition of buried infrastructure in the future. This 
subsection presents basic information on broadly understood 
reliability. In the next subsections artificial intelligence would 
be used for assessing one chosen reliability indicator.

The operational reliability of an engineering structure is a 
property (expressed by reliability indicators) consisting in the 
ability of the structure to perform, over a specified time and in 
given operating conditions, the functions imposed on it [11]. One 
of the principle functions of an engineering structure is its oper-
ability. When damage occurs, the structure becomes more unreli-
able than before the failure. Although damage does not result in 
the total loss of reliability, it brings down its level. The latter can 
be estimated using selected reliability indicators and an analysis 
of failure frequency in the given operating conditions [11].

The water distribution network (guaranteeing treated 
water transmission, under proper pressure and in the required 
amount, to individual consumers and industry) is one of the 
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major components of the whole water supply system and is 
called as critical infrastructure [12]. It should be characterized 
by high operational reliability and a low failure frequency. 
Therefore the risk of damage and other adverse factors which 
lower the operational reliability of the system should be prop-
erly assessed and reduced to an acceptable level by means of 
the available mathematical methods, e.g. Bayesian model [12] 
or methods of good management [13, 14]. This means that the 
failure frequency of the particular water supply network com-
ponents (pumping stations, clean water reservoirs, fittings and 
water conduits) should be thoroughly analyzed. Line compo-
nents, i.e. pipelines (water mains, distribution pipes and house 
connections) can be quite easily analyzed with regard to fail-
ure frequency since water companies should, as a rule, have 
the operating data (such as material, diameter, length, year of 
construction and type and date of failure) needed to determine 
the principal reliability indicators. In this paper, a reliability 
analysis is carried out on the basis of water distribution system 
line components. Water conduits are considered to be renew-
able elements, i.e. they can be repaired and upgraded during 
their operation, whereby they can be made fully operational 
[11]. The failure frequency of renewable components can be 
analyzed on the basis of, among other things, the following 
reliability indicators [11]: average time between failures, aver-
age renewal time, renewal intensity μ, failures stream param-
eter ω and availability indicator AI. The failure frequency 
analysis and the assessment of the reliable operation of water 
conduits in a selected water distribution network carried out in 
this paper are based on one of the above reliability indicators, 
i.e. the availability indicator.

Availability function AI(t) defines the probability of object 
operability maintenance at any time t. It is worth saying that 
probabilistic models are also used for other purposes, e.g. flood 
protection [15] and proper dimensioning of sewerage system 
[16]. This function (relation (1)) is also called a nonstation-
ary availability indicator describing the sum of probabilities of 
occurrence of individual object operational event Bi [10, 11].

In practical engineering considerations, for a selected (suf-
ficiently long) time interval and water conduit operating data 
(length L, [km], failure intensity λ [fail./(km·year)] and average 
renewal time To, [year]) one can use the following stationary 
availability indicator [10, 11, 17]:

Thus the stationary availability indicator defines the prob-
ability that a given object will be operational at any instant t 
sufficiently distant from the time when the object was put into 
service [11].

One of the main aims of research on the analysis of fail-
ure frequency and operational reliability of underground infra-
structure (e.g. water conduits) is to identify the causes of the 
failures in order to adopt proper methods of preventing them. 
Moreover, it is vital to assess the effect of a given component 
which keeps failing on the reliable operation of the whole sys-
tem. It should be noted that all the investigations are conducted 
during normal water supply system operation. Considering that 
the whole system operates in real time, the above fact is impor-
tant from the point of view of the analysis of the failures which 
have occurred. Therefore one should bear in mind that the data 
used in the analysis of failure frequency and to determine the 
reliability level are operating data acquired from water and 
sewerage companies. The latter should keep reliable records 
on the whole technical infrastructure under their supervision. 
Appropriate protocols and reports should contain survey infor-
mation (e.g. material, diameter, age, water conduit laying depth, 
specifications of local pumping stations and water reservoirs), 
information on the failures which have occurred, the repairs 
and rehabilitations done and the planned upgrades. Each water 
distribution network is different (has its peculiarities), whereby 
the records and the ways of keeping archives differ between 
water companies. This means that one should adopt an indi-
vidual approach to the analysis of the failure frequency of each 
water supply network, which sometimes makes it difficult to 
make generalizations.

Mathematical modelling based on operating data is used to 
determine the failure frequency and reliability of water con-
duits. Kleiner and Rajani [18, 19] reviewed the main statistical 
models and models based on the physical properties of water 
conduits. They indicated the advantages and disadvantages of 
the models used to determine the failure frequency of water sup-
ply networks. A few years earlier Khomsi et al. [20] had used 
computer simulation (a program written in TURBO PASCAL) 
to estimate the operational reliability level of a water distribu-
tion network. According to the authors [20], the model devel-
oped by them can be used not only to determine the reliability 
level of the existing water supply networks, but also to design 
new water distribution networks. Authors [20, 21] proposed fol-
lowing relationship for availability indicator calculation:

 Tabesh et al. [21] used fuzzy logic and artificial neural net-
works (ANNs) to determine the failure frequency and opera-
tional reliability levels of water conduits. They also used a rela-
tion (equation (3)) proposed by Khomsi et al.

The present paper continues and further elaborates the sub-
ject discussed in the previous paper [22] by the author. Since 
stationary indicators λ and AI can be relatively easily deter-
mined on the basis of operating data they are most often used 
to estimate the failure frequency and operational reliability 
levels. Therefore as part of the present research indicator AI 
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(further referred to as the experimental availability indicator) 
was determined on the basis of the operating data (using rela-
tion (2)) made available by the water company in a medium-
sized Polish town. The experimental availability indicator was 
then compared with the one predicted by means of artificial 
neural networks. In addition, it was checked whether the val-
ues calculated from the formula proposed by Khomsi et al. 
[20] were similar to the ones obtained from the modelling by 
means of ANNs.

1.2 Artificial neural networks
Artificial neural networks have been used for forecasting, 

modelling and optimization purposes for many years. They are 
an alternative to the mathematical models used for predicting 
the failure frequency and operational reliability of water supply 
networks. ANNs constitute a tool which can be used to quickly 
and accurately predict and forecast many dynamically changing 
parameters, such as the failure intensity (failure rate) indicator 
and the availability indicator of water conduits. The structure 
of artificial neural networks is created on the basis of existing 
data sets and fitted to the vectors of the training images in order 
to obtain the best possible verification results. Thanks to the 
fully automatic estimation of output vectors one can employ 
ANNs to solve highly complex problems in the case of which 
it is impossible to unequivocally determine (experimentally or 
using typical mathematical models) the correlations between 
the phenomena occurring in the failure frequency analysis.

The variability, and also very often the randomness, of the 
above indicators is due to, e.g., the climatic conditions, the 
location of the conduits (type of soil, mining damage areas, 
etc.), their age and methods of their rehabilitation, which poses 
difficulties for typical mathematical models. Owing to the 
properties of artificial neural networks it is possible to analyze 
nonlinear phenomena and approximate the functions of many 
variables. As mentioned above, the analysis of the failure fre-
quency of water conduits is precisely an analysis of the func-
tions of many dynamically changing parameters, such as age, 
pipeline laying depth, temperature, soil and wheeled vehicle 
load. It is not possible to analyze all the factors having a bear-
ing on the failure frequency level of water conduits, since the 
data are not recorded because of the lack of time and sufficient 
funds or are virtually impossible to verify. Therefore ANNs can 
be employed in such situations.

The theory of ANNs is described in detail in the literature on 
the subject [23, 24]. Currently artificial neural networks are suc-
cessfully used to predict hourly water demand distributions [25, 
26], determine water pressure and quality in the distribution net-
work [27, 28], predict the dam water level [29] and so on.

As regards the prediction of reliability indicators and the 
general analysis of failure frequency, ANNs have been used 
mainly to determine the number of failures [30], predict the fail-
ure intensity indicator [31] and estimate pipeline construction 

costs [32]. The literature reports published so far indicate that 
the prediction of the availability indicator by means of ANNs 
is not extremely advanced, which encouraged the author to 
undertake this subject.

2 Material and methods
Operating data received from the water and sewerage com-

pany in a medium-sized town in Poland were used to predict 
the availability indicator of water mains, distribution pipes and 
house connections by means of artificial neural networks. City 
has about 70,000 inhabitants almost 100% of whom are con-
nected to the system. The water pipelines are laid almost in 
every street, so the compaction of the pipes is very high. The 
daily average supply is about 8,300 m3/d. Because of the topog-
raphy and the height of the buildings, there are two water supply 
zones with pressures of 3.6 bar and 5.6 bar, respectively. The 
network includes: (1) main conduits of both grey cast iron and 
steel transit, with diameters of DN 350 to 700 mm, (2) distribu-
tion pipes with diameters of DN 80 to 250 mm, made variously 
of grey cast iron, steel, PE, PVC or AC, (3) house connections 
with diameters of DN 25 to 200 mm, made of steel or PE.

As mentioned above the experimental availability indicator 
values were compared with the results of prediction by means 
of ANNs and with the AI values calculated from relation (3).

Modelling by means of ANNs was done in Statistica ver. 
10.0. Data from the years 1999–2005 were used to train artifi-
cial neural networks while data from the next 7 years of service 
(2006–2012) were used to verify the model (the availability indi-
cator was forecasted on the basis of the latter data). 50%, 25% 
and 25% of the data were used to respectively learn the ANNs, 
test the created models and validate them. The procedure was 
as described below. Twenty artificial neural network models 
were built and trained on the basis of the operating data for the 
years 1999-2005. Five models characterized by the lowest root 
mean-squared error and the relatively good agreement between 
predicted and experimental (calculated from relation (2)) avail-
ability indicator values  were selected. The five models (No. 2, 
3, 6, 7 and 14) were verified by inputting data for the next years 
(2006–2012) and determining their root mean-squared errors. 
The main parameters of these five models are listed in the table 
1. It seems reasonable to choose optimal model on the basis 
of results from verification step because the data from years 
2006–2012 were not known for the model previously. Finally, 
one model characterized by the lowest error and the best fit of 
the values generated by the ANN to the experimental results 
was selected. Further in this paper this model is referred to as 
the optimal model. One of the simplest and most popular artifi-
cial neural network structures, i.e. a multilayer perceptron with 
input neurons W, hidden layer neurons U and output neurons 
O (MLP W-U-O), was used to predict the availability indica-
tor. When creating ANN models respectively minimum and 
maximum 1 and 12 hidden neurons were used in a single hidden 
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layer. The ANNs were trained using the quasi-Newton method, 
the steepest descent method and the conjugate gradient method. 
The best results would be obtained when the first method was 
used. The number of training epochs would range from 1 to 
672. The linear function, the logistic function, the exponential 
function and the hyperbolic tangent were used to activate the 
hidden and output layer neurons. A simplified (in comparison 
with the previous research [22]) approach to the selection of 
input variables for the ANN was adopted in this study. Similar 
approach as here was proposed in another author’s work [5] but 
in relation to another reliability indicator prediction –  failure 
rate. The aim was to find out whether by inputting the most 
basic information, which can be easily recorded by any water 
company, into the ANN model one would obtain results conver-
gent with the experimental data. The following parameters were 
treated as input signals (6 neurons): the number of water mains 
failures (Nm), the number of distribution pipes failures (Nr), the 
number of house connections failures (Np), the length of water 
mains (Lm), the length of distribution pipes (Lr) and the length 
of house connections (Lp). Three neurons being the indicators of 
availability of water mains AIm, distribution pipes AIr and house 
connections AIp were output signals. An exemplary ANN archi-
tecture is shown in fig. 1.

Table 1 Main parameters of five ANN models

No. Model Number of learn-
ing epochs

Activation 
function-hidden 

layer

Activation 
function-output 

layer

2. MLP 6-12-3 243 logistic linear

3. MLP 6-8-3 118 logistic hyperbolic tangent

6. MLP 6-6-3 235 logistic hyperbolic tangent

7. MLP6-10-3 12 exponential linear

14. MLP 6-11-3 185 exponential linear

The range of variation of the input parameters and that of the 
experimental availability indicator during training and verifica-
tion step are shown in table 2.

Fig. 1 Exemplary architecture of ANN model for availability  
indicator prediction

 

Table 2 Range of input and output parameters

Learning step (1999–2005)

Nm Nr Np Lm, km Lr, km

5–16  37–66 20–26  28.0–28.3 99.2–107.5

Lp, km AIm AIr AIp

35.4–
39.2

0.985533–
0.995386

0.942776–
0.967080

0.975858– 
0.982218

 Verification step (2006–2012)

Nm Nr Np Lm, km Lr, km

2–11 27–48 15–32 28.3–29.6 108.9–115.1

Lp, km AIm AIr AIp

39.8–
45.0

0.990056–
0.998201

0.957719–
0.975581

0.971744–
0.986613

3 Results and discussion
The optimal model selected from 20 ANN models showed the 

best agreement between the predicted results and the experimen-
tal ones. The figure 2 shows the correlation between experimen-
tal and predicted values of availability indicator of water mains, 
distribution pipes and house connections in verification step 
concerning one chosen optimal model No. 14 with the highest 
determination. The model (MLP 6-11-3) had 11 hidden neurons 
activated by the exponential function. The linear function was 
used to activate the 3 output neurons (AIm, AIr, AIp). 185 training 
epochs were enough to train the ANN. The training quality of 
0.99 was achieved in the training process while the testing qual-
ity during verification was at the level of 0.86. In the approach 
adopted in this study the ANN model contained 3 output neurons 
representing the three indicators of availability (of water mains, 
distribution pipes and house connections). This means that the 
training and testing quality mentioned above does not refer to 
the prediction of the particular indicators of availability of water 
mains, distribution pipes and house connections, but to the whole 
model. The approach (with 3 neurons at the output) adopted here 
differs radically from the ways of predicting the failure intensity 
(failure rate) indicator proposed in the earlier paper by the author 
[5] where separate ANN models would be created to predict the 
indicators for distribution pipes and house connections.

Figures 3–5 present the results of the prediction (by means 
of the adopted optimal ANN model), only for training step (the 
results of verification phase are shown in the figure 2) of the 
indicators of availability of water mains (fig. 3), distribution 
pipes (fig. 4) and house connections (fig. 5). Also the experi-
mental values of this indicator and the ones calculated from 
relation (3) are displayed in the figures 3–5.  

Figure 3 shows that the prediction of the availability indica-
tor was practically ideal at the ANN training stage. The largest 
relative error between the experimental results and the pre-
dicted ones amounted to 0.07% (the year 2005). The prediction 
of AI, based on the data from the next years (fig. 2) (i.e. some-
what different from the training vector), carried a maximum 
error of 0.42%, which shows that this model is highly suitable 
for determining the availability indicator of water mains.  



877Neural Network Approach for Availability Indicator Prediction 2017 61 4

a) 

b)

c)
Fig. 2 Model No. 14 – correlation between experimental and predicted 

values of availability indicator a) water mains, b) distribution pipes, c) house 
connections

  Fig. 3 Experimental and predicted availability indicator of water mains

Relatively large discrepancies between the experimental 
results and the AI values calculated from relation (3) proposed 
by other authors [20, 21] are noticeable. Also Tabesh et al. [21] 
compared the results of modelling by means of ANN with the 
ones calculated from the relation proposed by Khomsi et al. 
[20]. There is no agreement between the availability indicator 
values calculated from relation (3), the experimentally deter-
mined values of this indicator and the results of prediction by 
means of ANN. It is apparent (figs 3–5) that the availability 
indicator values calculated from formula (3) are lower than the 
experimental values. This means that this indicator is underes-
timated. Therefore in the particular case of the water distribu-
tion network in the medium-sized Polish town better results are 
obtained using the ANN model instead of relation (3). How-
ever, each water supply system is different and the distribu-
tion of failures over time (having a bearing on indicator AI) in 
another water supply network will differ from the one observed 
in the particular case. This means that the relations proposed 
by other authors cannot be outright rejected since they can be 
applicable to other municipal water systems. 

High agreement between the experimental results and the 
ones obtained from the ANN model (model MLP 6-11-3) at the 
training stage is also observed for the prediction of the availabil-
ity indicator of distribution pipes. The maximum error amounted 
to 0.21%. Also the model verification process was characterized 
by high correlation (R2 = 0.823, fig. 2) and the maximum error 
did not exceed 0.80%. Similarly as in the case of water mains, 
relation (3) would yield underrated values of indicator AI. The 
underestimation of the availability indicator means that also the 
operational reliability level would be incorrectly calculated.

Fig. 4 Experimental and predicted availability indicator of  
distribution pipes
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Moreover, one should bear in mind that failures of water 
mains and distribution pipes result in undesirable events which 
affect the functioning of the whole water supply system, the 
town and the population. Such events include: a pressure drop 
or no water in the water supply network, local secondary pollu-
tion of water in the pipeline, water outflows to the terrain surface 
and a necessary closure of the roadway section under which the 
damaged water conduit runs. In order to maximally eliminate 
the effects of failures one should strive not only to immediately 
repair any damage, but also to estimate the future level of reli-
ability of the pipeline. The ANN model (MLP 6-11-3) proposed 
in this paper represents an attempt to create a tool for predict-
ing reliability indicators (for a selected water supply system) 
in a relatively simple way. The verification of the model, based 
on data previously unknown to the ANN, yielded satisfactory 
results being in good agreement with the experimental ones 
(fig. 5). Such basic parameters as the number of failures and 
the length of conduits were the inputs to the ANN. Since each 
year the water company records such data the presented model 
(trained on data from the years 1999–2005 and verified using 
data from the years 2006–2012) can be used to determine the 
availability indicator (as one of the indicators showing the level 
of operational reliability) in the subsequent years. However, 
one should note that the proposed model (MLP 6-11-3) is not 
a universal model which can be used to predict indicator AI in 
every water supply network since it has been verified for only 
the particular municipal water system. Of course, not only this 
model’s architecture (the number and type of input signals and 
the size of the hidden vector), but also the activation function 
and the training algorithm can be changed for predicting the 
availability indicator in another water distribution network in 
another town. Moreover, it is always possible to additionally 
train the ANN in order to achieve even higher agreement with 
the experimental results.

Fig. 5 Experimental and predicted availability indicator of 
house connections

As regards house connections, the maximum error of pre-
dicting indicator AI amounted to 0.08% and 0.41% for respec-
tively ANN training (fig. 5) and model verification (fig. 2). Also 
the correlation between the experimental values  and the ones 
obtained from the MLP 6-11-3 model was high (R2 = 0.992). 
Therefore the ANN model can be used to predict the indicator 
of availability of house connections. Similarly as for the other 

types of pipelines, AI values calculated from relation (3) were 
found to considerably depart from the values yielded by the 
ANN. In the case of house connections, operational reliability 
and the possible consequences of a failure have a more local 
dimension (water supply will be reduced for a few hours only 
to the inhabitants connected to a given service pipe) than in the 
case of distribution pipes or water mains. The consequences of 
damage and unreliable operation have no significant effect on 
the operational reliability of the whole water distribution net-
work. Of course, this does not relieve the operators of the duty 
of caring for each type of underground infrastructure, including 
house connections. The results of modelling related to water 
mains, distribution pipes and house connections in verification 
process (fig. 2) are characterized by a little bit lower conver-
gence (in comparison with learning step) between experimen-
tal and predicted values of availability indicator. This is quite 
normal situation because in verification step the data for mod-
elling were unknown to ANN model previously. The model 
was trained using different data set and that is the reason why 
the correlation is not ideal when we put to the model informa-
tion from the next 7 years of operation. 

It is also worth indicating that Spearman rank correlation 
(SR) in verification step (optimal model MLP 6-11-3) is rela-
tively high and equals to 0.8829, 0.9643 and 0.9286 for water 
mains, distribution pipes and house connections, respectively. 
Spearman rank correlation was conducted to check whether 
the results of ANN model follow the monotonic increase or 
decrease of real values of AI. According to the results men-
tioned above one can concluded that the experimental and pre-
dicted values of availability indicator are strongly correlated 
and are characterized by increasing function because the val-
ues of coefficients 0.8829, 0.9643 and 0.9286 are near value of 
+1. The Spearman rank correlation is also proposed by other 
authors to check the importance of model parameters [33, 34]. 

The ANN models proposed in the paper contain relatively 
basic input variables as length of pipelines and the number on 
registered damages. Moreover, it was checked whether creat-
ing new additional models including different input parameters 
as material, diameter and length of the pipes could be also suit-
able approach for availability indicator prediction. The models 
for AI prediction of distribution pipes and house connections 
were created separately. It means that approach was a little bit 
different than proposed above. In the output layer only one 
neuron characterized by one indicator AI existed. The proce-
dure of choosing the optimal model was the same as described 
in the section “material and methods”. The optimal model for 
distribution pipes has 7 input neurons (material – was treated 
as quality parameter and one neuron correspond to one type of 
material: cast iron, steel, PE, PVC, asbestos cement, diameter 
and length) and 13 hidden neurons activated by exponential and 
hyperbolic tangent functions, respectively. The optimal model 
for house connections has 6 input neurons (material: cast iron, 
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steel, PE, galvanized steel, diameter and length) and 12 hidden 
neurons activated by hyperbolic tangent and logistic functions, 
respectively. The results of prediction using additional models 
related to verification step are displayed in the table 3. 

 
Table 3 Results of additional ANN modelling

Year
Distribution pipes, R2=0.5486; 

SR=0.7143
House connections, R2=0.5522; 

SR=0.6071

Experimental ANN Experimental ANN

2006 0.960822 0.965463 0.971744 0.978499

2007 0.974636 0.966296 0.972462 0.979762

2008 0.965975 0.965964 0.980216 0.980328

2009 0.967349 0.966631 0.986535 0.981351

2010 0.967869 0.966828 0.986613 0.981356

2011 0.975581 0.966403 0.985613 0.981572

2012 0.957719 0.965081 0.974373 0.981390

New mentioned above models are a little bit more com-
plicated (more input and hidden neurons) and the correlation 
between experimental and predicted values of indicator AI is 
even lower (see table 3) than for model MLP 6-11-3 which was 
earlier described in this paper. The results mean that there is 
no relationship between more complicated data (e.g. material, 
diameter) included to the input layer and good convergence 
related to experimental and modelled values of AI.  

Today, an analysis of failure frequency on the basis of operat-
ing data and modelling results is one of the basic measures which 
must be adopted when determining the level of operational reli-
ability and planning rehabilitations of water conduits. The exper-
imental availability indicator results (and also the results of AI 
modelling by means of the ANN) show that the level of reliabil-
ity of the water mains, the distribution pipes and the house con-
nections in the analyzed water distribution system is quite high. 
However, the operational reliability of a given water supply 
network should be assessed on the basis of more than one reli-
ability indicator. Therefore the conclusions emerging from the 
above analysis should be considered jointly with failure inten-
sity indicator modelling results. The ANN model (MLP 6-11-
3) for predicting the availability factor should be used together 
with the model for forecasting the failure rate indicator. Owing 
to this comprehensive approach one will be able to determine 
the failure frequency and operational reliability levels of a given 
water supply system. Moreover, it is necessary to remember that 
assessing the failure frequency of water pipes should be carried 
out together with e.g. impact of water leakages on the soil (suf-
fusion processes) [35] because it is also very important problem 
related to the environmental engineering.

Artificial neural network approach is like “black box” mod-
elling. To achieve reliable solutions it sometimes is required 
to apply “trial and error method” during creation of the net-
work model. Such approach does not allow to penetrate deeply 
inside the way of forming the network structure, especially in 

the hidden layer (e.g. weight adaptation, changes related to 
activation functions). It is needed to create the artificial net-
work for each problem separately. The solved problem extorts 
the number of neurons, the kind of activation function and the 
training methods. ANN approach could be used for predic-
tion of some reliability indicators in other water systems, but 
models should be created separately for each system due to 
e.g.  different operational conditions, different diameters and 
materials of water pipes and different number of registered 
damages. We should distinguish several limitations of using 
ANN. It is necessary to collect huge data base. This require-
ment is sometimes difficult to realize by water utilities. Some 
important, from forecasting point of view, variables are not 
registered. The situation is still improving because more and 
more water utilities attach importance to connect informa-
tion about damages with GIS. It is also necessary to analyse 
deeply the data which are used as the training parameters in 
the process of neural network modelling. In some cases it is 
necessary to eliminate the outliers. If there is too much elimi-
nated outlier data we should answer the question whether the 
modelling is rational. Unfortunately, real operational data are 
burden sometimes by huge mistakes due to e.g. improper or 
incomplete registration or lack of collecting all information 
in GIS database. In such cases it is necessary to eliminate or 
remain outliers reasonably.  

4 Conclusions
The results of predicting the availability indicator of water 

mains, distribution pipes and house connections by means 
of an ANN model have been presented. The results of this 
research complete the author’s earlier studies on the applica-
bility of ANNs to the prediction of reliability indicators. The 
following final conclusions can be drawn from the analysis of 
the modelling results:
• artificial neural networks constitute a promising tool for pre-

dicting the availability indicator (AIm, AIr, AIp) in a relatively 
simple and quick way;

• the adopted optimal model MLP 6-11-3 would accurately 
predict the indicator of availability of water mains, distri-
bution pipes and house connections. The model has only 6 
input signals (the number of failures and the length of water 
mains, distribution pipes and house connections), which 
undoubtedly is an advantage since such data, recorded by 
every water company, are easily available;

• the exponential function and the linear function in the MLP 
6-11-3 model were used to activate respectively the hidden 
and the output neurons. The ANN was trained using the 
quasi-Newton algorithm and 185 training epochs;

• the ANN was trained on the operating data from the years 
1999–2005 while the model was verified using the data for 
the next 7 years of operation of the water supply network in 
the medium-sized Polish town;
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• the correlation between the experimental availability indica-
tor values and the ones yielded by the MLP 6-11-3 model 
was high during both ANN training and verification (fore-
casting). In the case of training, this correlation for respec-
tively water mains, distribution pipes and house connec-
tions amounted to: R2 = 0.993, R2 = 0.991 and R2 = 0.946. 
In the case of verification, the coefficient R2 and Spearman 
rank correlation amounted to respectively: 0.740, 0.882, 
0.823, 0.964 and 0.992, 0.821 for water mains, distribution 
pipes and house connections. The maximum relative error 
between the experimental results and the ones obtained from 
the ANN was below 1.0%, which shows that the ANN was 
properly trained and that the availability indicator value was 
correctly predicted;

• the ANN can always be additionally trained on another set 
of input data. Also the number of training epochs and hidden 
neurons as well as the activation functions and the training 
methods can be changed. Thus ANNs are relatively easy to 
implement and use when functions of many variables are to 
be approximated, owing to the fact the ANN’s architecture 
can be relatively quickly adapted.

The work was realized within the allocation No. 0401/0006/17 
awarded for Faculty of Environmental Engineering Wroclaw 
University of Science and Technology by Ministry of Science 
and Higher Education in years 2017–2018.
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