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Abstract 
Building collapse in earthquakes caused huge losses, both in 
human and economic terms. To assess the risk posed by using 
the composite members, this paper investigates seismic fail-
ure probability and vulnerability assessment of steel-concrete 
composite structures constituted by rectangular concrete 
filled steel tube (RCFT) columns and steel beams. To enable 
numerical simulation of RCFT-structure, the details of compo-
nents modeling are developed using OpenSEES finite element 
analysis package and the validation of proposed procedure is 
investigated through comparisons with available experimen-
tal results. The seismic fragility and vulnerability curves of 
RCFT-structures are created through nonlinear dynamic anal-
ysis using an appropriate suite of ground motions for seismic 
loss assessment. These curves developed for three-, six- and 
nine-story prototypes of RCFT-structure. Fragility curves are 
an appropriate tool for representing the seismic failure prob-
abilities and vulnerability curves demonstrate a probability of 
exceeding loss to a measure of ground motion intensity.

Keywords 
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1 Introduction 
Steel-concrete composite structural system is progressively 

becoming popular in construction of buildings because of their 
excellent performance [1, 2]. Concrete-filled steel tube (CFT) 
columns in combination with steel beams (Fig. 1) is one of the 
most successful lateral load resisting systems in the construc-
tion industry [3, 4]. A CFT column, when designed appropri-
ately, has superior strength and ductility in comparison with 
hollow steel tube. The CFT column is also more economical 
than conventional reinforced concrete column because of opti-
mal location of steel at the periphery of the cross section, rapid 
construction, and role of steel tube as stay-in-place formwork. 
In CFT columns, concrete delays local buckling of the steel 
tube and heightens global buckling resistance of the member. 
Furthermore, peripheral steel tube adds lateral confinement 
to the concrete, which induces an increase in compressive 
strength and ductility of concrete.

In recent decades, considerable investigations have been 
carried out to characterize the seismic behavior evaluation of 
concrete filled steel tube system. These studies were focused 
on components (column and connection) and CFT-frame 
structures. A wide range of prior researches was conducted on 
components of CFT-systems. So far, research on CFT-moment 
resisting frame (MRF) structures, which consist of CFT col-
umns and steel beams, has been limited [5–9]. In recent years, 
notable studies have been dedicated to the attempt to perceive 
the seismic performance of composite buildings [10–12]. 

Sakino et al. [13] investigated the centrally loaded behavior 
and proposed methods to determine the axial capacity of the 
CFT columns. Varma et al. [14] performed a series of experi-
mental tests on CFT beam-columns under cyclic loading. They 
compared their results with provisions of ACI (1999) and AIJ 
(1987) codes. Tort and Hajjar [15] proposed a finite element 
method to characterize the behavior of rectangular CFT mem-
bers subjected to various types of loads. 
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Fig. 1 Schematic illustration of the CFT-frame structure.

Perea et al. [16, 17] and Lai et al. [18] reported experimen-
tal and analytical data on the axial and interaction behavior of 
slender concrete-filled tubes. Skalomenos et al. [19] presented 
three hysteretic models to investigate the nonlinear response 
of square CFT column. Ahmadi et al. [20, 21] and Kheyrod-
din et al. [22] focused on the axial strength of CFT stub col-
umns. They suggested an empirical equation and artificial neu-
ral network method for determining the axial capacity of CFT 
member using a large number of experimental specimens. Lai 
and Varma [23] focused on effective stress-strain relationships 
of CFT columns. Xiang et al. [24] investigated the effect of 
the replacement ratio on the axial behavior of square recycled 
aggregate CFT column.  Ricles et al. [25] and Wang et al. [26] 
conducted experimental tests on exterior beam to column con-
nections to investigate the inelastic performance of connections 
in MRF systems. Ataei et al. [27] described the experimental 
results of full-scale connection of a beam to a composite col-
umn. They investigated the failure modes and rotation response 
of the suggested detail, and developed equations to determine 
the flexural capacity, initial stiffness, and rotational capacity. A 
joint element was developed by Kang et al. [28] based on the 
force-transfer and damage mechanisms.

Kawaguchi et al. [5] carried out an experimental study on 
one-bay portal frames under constant axial load and cyclic lat-
eral loading. The results show that all frames have appropriate 
hysteresis performance. Herrera et al. [6] carried out  pseudo-
dynamic test on a four-story composite MRF which consist of 
steel-concrete columns and steel beams. Results denoted that 
CFT-Fame has desirable structural performance under various 
seismic loading levels. Tort and Hajjar [7], and Denavit and 
Hajjar [8, 9], developed three-dimensional distributed plastic-
ity finite element formulations for modeling inelastic behavior 
of composite frame under seismic loading. The exactness of 
the proposed formulations was checked with a wide range of 
experimental tests. The seismic analysis and damage quanti-
fication of planar CFT-frame constitute by I steel beams, and 

CFT columns were investigated by Skalomenos et al. [10] and 
Kamaris et al. [11]. Denavit et al. [12] reported a comprehen-
sive parametric study to evaluate the stability of steel-concrete 
composite frame structure and proposed some changes to the 
AISC (2010) provisions.

2 Research significance
The main goals of this paper are to assess seismic failure 

probability and develop vulnerability curves of RCFT-frame 
structures for using in seismic loss assessment studies and 
performance-based earthquake engineering (PBEE). The past 
catastrophic earthquakes reveal that large earthquakes can 
cause extensive losses of life and economic damages. Fragil-
ity curves are an appropriate tool for representing the seismic 
failure probability of building and are used as a needed input 
for various type of loss assessment software [29]. Furthermore, 
vulnerability curve is one of the basic instruments to evaluate 
structural losses before causing economic and human losses 
[30]. A seismic vulnerability curve illustrates uncertain loss to 
a measure of ground motion intensity [31]. Nowadays, there 
are some gaps in the knowledge of behavior and the design 
provisions of steel-concrete composite structures [32, 33]. Due 
to insufficient studies on CFT-frames in this research area, and 
in order to avoid the extensive losses after earthquake events, 
fragility and vulnerability curves are developed for three pro-
totypes of RCFT-frame structures.

3 Modeling of the RCFT- structure
In this section, the details of modeling procedure of com-

ponents of the RCFT-frame structure in the Open System for 
Earthquake Engineering Simulation (OpenSEES) software 
[34] are explained. These components include: 1) RCFT col-
umn, 2) steel beam, and 3) panel zone and connection.

3.1 RCFT column
The fiber-based model of CFT columns proposed by Tort 

and Hajjar [7] and Denavit [8], was used as the basis for the 
CFT column model in this study. The concrete material of the 
model is based on the modified model proposed by Chang 
and Mander [35] and Tsai [36]. The monotonic compression 
response is defined by the Eqs. 1–3.
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Where, x, r, and n are the normalized strain, post-peak fac-
tor, and normalized modulus, respectively; and fcʹ, Fy, and Es 

are the compressive strength of the plain concrete, the yield 
stress of the steel tube, and elastic modulus of tube, respec-
tively. The stress-strain backbone curve of the tube is based on 
a set of hardening and flow rules that act upon the incremental 
strain proposed by Shen et al. [37]. To take the results of local 
buckling and biaxial stress into account in the tube, monotonic 
compressive response of steel tube is modified (Fig. 2).

Fig. 2 Modified stress-strain relationship of steel tube considering local 
buckling effect.

The parameters in modified stress-strain curve are calcu-
lated as follows:

Where, εlb, Fulb, and Kslb are the strain at local buckling, 
residual stress, and softening slope, respectively.

Fig. 3 Monotonic curve of Modified IK deterioration model.

3.2 Steel beam
Ibarra et al. [38] developed hysteretic models that combine 

the strength and stiffness deterioration. Cyclic deterioration 
allows tracing deterioration as a function of past loading his-
tory. These hysteretic models were modified by Lignos and 
Krawinkler [39] from a comprehensive database of experimen-
tal studies (more than 300 specimens) of wide flange beams 
(Fig. 3). The key parameters in modified curve are four defor-
mation parameters (yield rotation (θy), pre-capping plastic rota-
tion for monotonic loading (θp), post-capping plastic rotation 
(θpc, ultimate rotation capacity (θu)), and three strength param-
eters (effective yield moment (My), capping moment strength 
(Mc), residual moment (Mr)). Modified Ibarra-Medina-Krawin-
kler deterioration material model was applied to model the 
properties of steel beam.

3.3 Panel zone and connection
The model shown in Fig. 4 represents the contribution of the 

panel zone to nonlinear behavior of CFT-frame structure. The 
model is consist of two rigid links in order to simulate the  rigid 
extensions of the column and beam; and a rotational spring indi-
cating the relative rotation [40]. The spring should be placed 
between two nodes in a way that their horizontal and verti-
cal displacement degrees of freedom to be equal. A tri-linear 
moment-rotation constitutive model determined by the initial 
stiffness and peak shear strength of panel zone is used in this 
study. This relationship is resulted from the combination of a 
bilinear curve for steel, and a tri-linear curve for concrete. The 
ultimate shear strength and the initial stiffness are determined 
by superimposing effects of the concrete and steel ingredients.

Fig. 4 Tri-linear shear–shear deformation curve for panel zone [40] 

The contribution of the steel tube’s web to the connection 
shear strength is calculated as the horizontal shear force that 
can be resisted by the cross section of the tube’s web. For the 
shear strength of the rectangular tube (Vs) and concrete (Vc), the 
theoretical mechanism proposed by Krawinkler [41] and Sheet 
et al. [42] were utilized in this model, which is:
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Where, Asw and Acv define the cross section of the tube’s web 
and concrete core, respectively; and Fy and fcʹ are the yield 
stress of the tube and the compressive strength of plain con-
crete, respectively. The effective shear zone of the rectangular 
steel tube and concrete are calculated by 2(h–2tf)tf, and (h–2tf)
(b–2tf), respectively. Where, h is width of tube, b is depth of 
it, and tf is its thickness. It is assumed that the yield deforma-
tion point corresponds to the yielding of tube. Therefore, the 
strength and deformation of the web of the steel tube at the 
yield point are given by Eqs. 8 and 9.

Where κ = 1.2 for rectangular tube. Based on a research 
by Muhummud [40], the inelastic stiffness defines 20% of the 
elastic stiffness (κy,in = 0.2 κy,el). The efficiency and accuracy 
of Eqs. 7 and 9 in modeling CFT-structures were investigated 
by Skalomenos et al. [10]. The properties assigned to the rota-
tional connection elements are obtained from transforming 
the load-shear deformation (V – γ) into the moment-rotation  
(M – θ) for the two elements. The moment of spring is the panel 
zone shear multiplied by the panel zone depth, which define the 
beam’s depth (db), and rotation (θ) of spring is the panel zone 
deformation γ.

Furthermore, the connection is modeled using vertical 
and rotational springs. A vertical spring represents the shear 
deformation of the connection and a rotational spring is used 
to model the rotational flexibility of the connection. Both the 
vertical and rotational springs used in this study have elastic-
perfectly plastic behavior model, defined with an initial elastic 
modulus and a yield point (shown in Fig. 5).

Fig. 5 Connection model spring properties (bilinear model).

4 Verification studies
To verify the precision of the modeling procedure, the cyclic 

performance of a CFT column and time history response of 
a CFT-frame will be compared to the experimental results. 
Varma et al. [14] investigated the response of high strength 
CFT members subjected to constant axial load and lateral 
cyclic loading. From Varma’s experiments, specimen CBC-48-
80-10 is chosen for the verification study. This tested column 
is 0.75 scale model of a base column of a six-story perimeter 
MRF. Fig. 6 shows the comparison of the hysteretic response 
between experimental and numerical result. The results is suc-
cessfully demonstrated that the proposed modeling procedure 
can accurately model the hysteretic performance of steel-con-
crete composite column.

Fig. 6 Comparison of experimental and computational cyclic behavior.

Fig. 7 Test structure elevation [6].

Fig. 8 Comparison of analytical and experimental displacement results of 
roof floor subjected to the design basis earthquake.
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Furthermore, the experimental study conducted by Herrera 
et al. [6] is chosen to evaluate the accuracy of numerical mod-
eling in nonlinear response of CFT-frame subjected to seismic 
loading condition. 

The tested structure is a 0.6 scale model of two bays of one 
of the perimeter CFT MRFs of the prototype building (Fig. 
7). The frame tested under three earthquake levels: 1) the fre-
quently occurring earthquake, 2) the design basis earthquake, 
and 3) maximum considered earthquake. P-Δ effects due to the 
lateral displacement of the interior frames are considered by 
using a lean-on column. The leaning column is pinned at the 
base, and the lateral movement of it is restricted to each floor 
by a rigid strut. The lean-on column has cross-section proper-
ties corresponding to the sum of the properties of one-half of 
the gravity columns and one-half of the out of plane properties 
of the columns of the MRFs which are perpendicular to the 
direction of loading. The seismic mass is lumped at the node 
on the leaning column at each floor. Fig. 8 shows the analyti-
cal and experimental displacements of roof floor under design 
basis earthquake. The results denoted that the developed finite 
element model predicts the seismic response of CFT-MRF 
structure reasonably well.

5 Building models
To meet the research objectives, three prototype buildings 

are designed according to the requirements of modern codes 
[43–45]. They are considered to represent low-rise (three-
story), mid-rise (six-story), and high-rise (nine-story) buildings. 
The floor plan of the prototype buildings (Fig. 9), is 30mx30m 
area, with five bays of 6m long in each direction. Typical floor 
to floor height is 4.0m in all buildings. The primary lateral load 
resisting system consists of RCFT-frame placed on the perim-
eter of the building. To avoid biaxial bending on the corner 
columns, only four bays are considered as RCFT-MRFs. The 
buildings are supposed to be on site in Los Angeles. To inves-
tigate the nonlinear behavior of RCFT-structure, Frame-A is 
selected. The beam to column connections are assumed to be 
fully rigid in all prototype buildings. These models are imple-
mented in OpenSEES. 

Fig. 9 Prototype floor plan.

Table 1 Characteristics of three types of CFT-MRF structures.

Type Height (m) Story
Column

Beam fcʹ  
(MPa)

Fy-column 
(MPa)

Fy-beam  
(MPa)h (mm) b (mm) t (mm)

3-Story 12
1–2 500 350 15 W21X62 42 317 345

3 450 300 15 W18X50 42 317 345

6-Story 24
1–3 500 400 15 W27X114 42 317 345

4–6 450 350 15 W24X84 42 317 345

9-Story 36

1–3 600 400 20 W30X124 42 317 345

4–6 500 400 15 W27X114 42 317 345

7–9 450 300 15 W24X84 42 317 345
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Steel yield strengths are chosen as Fy = 345MPa for steel 
beam (ASTM A992) and Fy = 317MPa for rectangular HSS 
shapes (ASTM A500 Gr. B). Data of frames, including build-
ing height, column dimensions, and beam type are summarized 
in Table 1. Gravity loads on the beams of the frames are equal 
to 1.05 of the dead load plus 0.25 of the live loads of the roof 
and floors (according to FEMA 2009 [46]). This gravity load-
ing is constant in time history analysis.

6 Selected ground motion records
To carry out nonlinear time history analyses, a suite of 22 

ground motions are selected from comprehensive motion 
databases including the Pacific Earthquake Engineering Next 
Generation Attenuation [47] Database and the Center for Engi-
neering Strong Motion Data (CESMD) [48]. The site to source 
distances of selected records are greater than 10km so that they 
categorized as far-field seismic excitation [46], and the suffi-
cient data about soil conditions of each seismic excitation is 
available. The moment magnitudes of the records (Mm) range 
from 5.80 to 7.62. Table 2 shows relevant information about the 
selected records.

7 Incremental dynamic analysis
Seismic assessment of buildings can be assessed using Incre-

mental Dynamic Analysis (IDA). IDA is a structural analysis 
method that offers thorough seismic demand and limit-state 

capacity prediction capability using a series of nonlinear time 
history analyses (NTHA) under a suite of multiple scaled 
ground motion records [49]. The procedure of scaling and 
NTHA is continued to lead the building to inelastic behavior 
and global dynamic instability. In this study, seismic excitation 
intensity is measured using the spectral acceleration at the first 
mode period (Sa(T1)) of the building. Interstory drift ratio, , as a 
demand parameter, has been proved to be an effective indicator 
in representing engineering demand [50, 51]. Fig. 10 shows the 
IDA results for three-, six- and nine-story prototypes under 22 
ground motions. The IDA curve depicts the maximum interstory 
drift ratio (θmax) when the building is under the enhancing level 
of seismic excitation intensity. These figures contain necessary 
information to assess performance levels which are important 
components of PBEE. There are several classifications of build-
ing damage states defined in various assessment codes. The 
damage state levels could be obtained base on recommendation 
in HAZUS [52] ATC-13 [53], and ASCE-41 [45]. Considering 
the explanation of the limit states, damage states are considered 
as none, slight, moderate, extensive, or complete.

8 Seismic fragility and vulnerability analysis
8.1 Procedure of fragility and vulnerability function

Seismic fragility (SF) curve is an outcome of probabilistic 
analysis accomplished on the results obtained from the IDA 
curves. Fragility function represents the conditional probability 

Table 2 Selected record from PEER and CESMD

ID No. Earthquake Station name Data Mw Component Database

GM01 Imperial Valley Calexico Fire Station 1979 6.53 RSN162_IMPVALL.H_H-CXO315.AT2 PEER NGA

GM02 Imperial Valley El Centro Array #11 1979 6.53 RSN174_IMPVALL.H_H-E11140.AT2 PEER NGA

GM03 Imperial Valley El Centro Array #3 1979 6.53 RSN178_IMPVALL.H_H-E03230.AT2 PEER NGA

GM04 Imperial Valley El Centro Array #1 1979 6.53 RSN172_IMPVALL.H_H-E01230.AT2 PEER NGA

GM05 Livermore Del Valle Dam (Toe) 1980 5.8 RSN212_LIVERMOR_A-DVD246.AT2 PEER NGA

GM06 Livermore San Ramon - Eastman Kodak 1980 5.8 RSN214_LIVERMOR_A-KOD180.AT2 PEER NGA

GM07 Livermore San Ramon Fire Station 1980 5.8 RSN215_LIVERMOR_A-SRM070.AT2 PEER NGA

GM08 Irpinia Bovino 1980 6.9 RSN287_ITALY_A-BOV270.AT2 PEER NGA

GM09 Irpinia Bisaccia 1980 6.9 RSN286_ITALY_A-BIS000.AT2 PEER NGA

GM10 Irpinia Brienza 1980 6.9 RSN288_ITALY_A-BRZ000.AT2 PEER NGA

GM11 Coalinga Pleasant Valley P.P. - yard 1983 6.36 RSN368_COALINGA.H_H-PVY045.AT2 PEER NGA

GM12 Coalinga Pleasant Valley P.P. - yard 1983 6.36 RSN368_COALINGA.H_H-PVY135.AT2 PEER NGA

GM13 Chalfant Valley Chalfant - Zack Ranch 1986 6.2 ZACKBRTH.V2 CESMD

GM14 Chalfant Valley Bishop - South Street 1986 6.2 BISHOPLA.V2 CESMD

GM15 Whittier Narrows Downey - Co Maint Bldg 1987 5.99 RSN615_WHITTIER.A_A-DWN270.AT2 PEER NGA

GM16 Whittier Narrows LB - Orange Ave 1987 5.99 RSN645_WHITTIER.A_A-OR2280.AT2 PEER NGA

GM17 Petrolia Petrolia 1992 7.2 CE89156.V2 CESMD

GM18 Northridge Castaic - Old Ridge Route 1994 6.69 RSN963_NORTHR_ORR090.AT2 PEER NGA

GM19 Northridge LA - Temple & Hope 1994 6.69 RSN1005_NORTHR_TEM090.AT2 PEER NGA

GM20 Northridge Anaverde 1994 6.69 RSN945_NORTHR_ANA180.AT2 PEER NGA

GM21 Northridge Moorpark - Fire 1994 6.69 RSN1039_NORTHR_MRP090.AT2 PEER NGA

GM22 Chi-Chi CHY035 1999 7.62 RSN1202_CHICHI_CHY035-E.AT2 PEER NGA
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when the capacity of structures is less than the seismic demand. 
SF curve can be stated as a lognormal cumulative distribution 
function as follows:

Where, Φ[.] is the Gaussian distribution function of a stand-
ard normal variable; IM defines ground intensity measure; 
Ĉ and D̂ are the median value of structural capacity and the 
median value of structural demand, respectively; and βD|IM is 
the parameter representing the aleatoric uncertainty of struc-
tural demand. In this study, spectral acceleration at the funda-
mental period (Sa(T1)) and maximum interstory drift ratio (θmax) 
are selected as IM and D, respectively.

The relationship between the IM and demand can be stated 
in the power form using Eq. 13.

Where, a and b are regression coefficients that can be calcu-
lated by a linear regression analysis of ln(D) versus ln(IM) got 
from the results. For three-, six- and nine-story structures, the 
relationship between the logarithmic form of structural demand 
and seismic intensity measure are shown in Fig. 11. In order to 
convert fragility curves to vulnerability function, cumulative 
probabilities are differentiated to obtain discrete probabilities 
of each level of damage [30]. In particular, the HAZUS discrete 
probabilities are given as, 

P[ds = Complete] = P[ds ≥ Complete]

P[ds = Extensive]

= P[ds ≥ Extensive]

– P[ds ≥ Complete]

P[ds = Moderate]

= P[ds ≥ Moderate]

– P[ds ≥ Extensive]

P[ds = Slight] = P[ds ≥ Slight]

– P[ds ≥ Moderate]

Vulnerability (%) =∑{P[ds = DS]*MDFds}

Where, MDFds is the mean damage factor, which is the cen-
tral value of the damage factor range, and ds is the damage state 
in a given seismic intensity. The various values of MDF, which 
indicate specified physical building damage, are presented in 
Table 3.

Table 3 Damage states and damage factor ranges (HAZUS)  

Damage states None Slight Moderate Extensive Complete

Damage factor 
range (%) 0 0–4 4–16 16–84 100

Mean damage 
factor (%) 0 2 10 50 100

ds=1

n

SF P D C IM x
D IM
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( )




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Fig. 10 IDA curves of three prototype buildings: (a) three-story, (b) six-story, and (c) nine-story.
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Fig. 11 Variation of logarithmic form of the θmax versus Sa (T1) [g].

Fig. 12 Fragility curves of three, six, and nine-story in terms of the spectral acceleration.
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8.2 Fragility and vulnerability curves
In this study, fragility curves are produced for three prototypes 

of CFT-MRF based on damage state levels specified in ASCE-41 
[45] and HAZUS [52]. Furthermore, because of a lack of dam-
age state levels for CFT-MRF structures in HAZUS and ASCE-
41, the threshold of damage levels in steel MRF are selected. 
According to ASCE-41, the structural performance could be 
defined as three performance states: immediate occupancy (IO), 
where the building sustains very limited structural and nonstruc-
tural damages, and retains its pre-excitation capacity; life safety 
(LS), is defined as the performance level that building may suffer 
significant damage in structural and nonstructural components, 
but building preserves some margin against partial or complete 
collapse; and collapse prevention (CP), where major compo-
nents of building experience significant damage and building 
has no safety against collapse. Above three performance states 
are defined by 0.7%, 2.5%, and 5% transient drifts, respectively. 
These three levels of damage could be assumed as correspond-
ing to minor, moderate and severe damages.  Four damage state 
of (1) slight, (2) moderate, (3) extensive, and (4) complete, are 
defined in HAZUS [52]. The damage levels proposed by HAZUS 
are presented in Table 4. Fig. 12 depicts the failure probability 
curves for three-, six- and nine-story RCFT-structures. 

Table 4 Structural fragility curve parameters (HAZUS) [52]

Label Type
Building 

code
Interstory drift at threshold of damage state

Slight Moderate Extensive Complete

CFT-L Low-rise High 0.006 0.012 0.030 0.0800

CFT-M Mid-rise High 0.004 0.008 0.020 0.0533

CFT-H High-rise High 0.003 0.006 0.015 0.0400

The results denote that for a certain level of spectral accel-
eration the conditional probability tends to heighten as the 
height of building increases. The median (50% exceedance)  of 
three-, six- and nine-story buildings based on damage state lev-
els specified in ASCE-41 [45] are 0.167g, 0.164g, and 0.086g 
for the IO state (θ = 0.007); 0.835g, 0.676g, and 0.329g for the 
LS state (θ = 0.025); and 2.005g, 1.462g, and 0.685g for the CP 
state (θ = 0.05), respectively.

Finally, vulnerability curves are developed for using in the 
seismic risk assessment of CFT-MRFs. Vulnerability curves 
are constructed based on the approach presented in HAZUS, 
using Eq.14. Fig.13 shows the vulnerability curve using slight, 
moderate, extensive and complete levels of damage for three-, 
six- and nine-story prototypes. These curves establish a direct 
relationship between ground motion intensities and the prob-
ability of exceeding losses. Results denote that the three-story 
building has the lowest probability of damage for a given level 
of ground motion intensity. The Sa correspond to damage ratio 
of three-, six- and nine-story buildings based on vulnerabil-
ity curves specified in HAZUS [52] are 1.19g, 0.62g, and 0.2g 
for the 25% damage ratio; 2.33g, 1.05g, and 0.34g for the 50% 
damage ratio; and 3.54g, 1.55g, and 0.55g for the 75% dam-
age ratio, respectively. Also, the outcomes of such assessments 
are crucial in the mitigation of huge losses subjected to future 
excitations. 

9 Reliability analysis
To assess seismic risk to a structure, the annual probability 

of building that the drift demand exceeds certain value of dam-
age can be represented by the form,

Fig. 13 Vulnerability curves of three prototype buildings: (a) three-story, (b) six-story, and (c) nine-story.
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Where, P(D ≥ C|Sa = x) is seismic fragility function, and H(x) 
defines mean annual frequency (MAF) that can be obtained 
from a seismic hazard analysis. The Eq. 16 was proposed by 
Cornell et al. [54] utilizes to calculate H(x).

Where, k0 and k are coefficients that can be calculated from 
log-log plot of standard hazard curve.

Using Eqs. 12 and 16, Eq. 15 can be modified as,

Using spectral accelerations (5% damping) correspond to 2, 
5, 10% probability of exceedance in 50 years were provided by 
USGS, the Sa(T1) at 2, 5, 10% are 0.78g, 0.54g, and 0.39g for 
the three-story building; 0.58g, 0.41g, and 0.29g for the six-
story building; and 0.40g, 0.28g, and 0.2g for the nine-story 
building, respectively. Furthermore, for the three-story build-
ing, the constant parameters are k=2.3513 and k0=2.36E-4; 
for the six-story building, k=2.2546 and k0=1.42E-4; and for 
the nine-story building, k=2.2623 and k0=6.52E-5. The annual 
probability of exceeding damage states (Eq. 15) is depicted in 
Fig. 14 for the three studied buildings. 

Fig. 14 Annual probability of exceedance for three prototype buildings.

10 Conclusions
This study performed the seismic failure probability and 

vulnerability assessment for three prototypes of steel-concrete 
composite structures using incremental dynamic analysis. 
Fragility curves are an appropriate tool for representing the 
seismic failure probabilities, and vulnerability curves relate 
uncertain loss to a measure of seismic excitation. The details 
of components modeling of RCFT-frame (RCFT column, steel 
beam, panel zone, and connection) in OpenSEES are explained, 
and the validation of proposed procedure is studied through 
comparisons with available experimental results. In order to 
carry out NTHA, a suite of 22 recorded ground motions were 

obtained from ground motion databases. Fragility curves were 
generated for three-, six- and nine-story CFT-MRFs based on 
damage state levels specified in ASCE-41 and HAZUS. The 
ground motion intensity and demand parameters were meas-
ured using the spectral acceleration at the first mode period of 
the building and maximum interstory drift ratio, respectively. 
The median  of three-, six- and nine-story buildings based on 
damage levels specified in ASCE-41 are 0.167g, 0.164g, and 
0.086g for the IO state; 0.835g, 0.676g, and 0.329g for the LS 
state; and 2.005g, 1.462g, and 0.685g for the CP state, respec-
tively. The results demonstrate that, for a given spectral accel-
eration, the conditional probability tends to heighten as the 
height of building enhances. In order to convert fragility curves 
to vulnerability function, cumulative probabilities were differ-
entiated to acquire discrete probability of each damage state. 
The vulnerability curves are developed and reliability analysis 
is performed for using in the seismic risk assessment of CFT-
MRF structures. The  correspond to damage ratio of three-, six- 
and nine-story prototype buildings are 1.19g, 0.62g, and 0.2g 
for the 25% damage ratio; 2.33g, 1.05g, and 0.34g for the 50% 
damage ratio; and 3.54g, 1.55g, and 0.55g for the 75% damage 
ratio, respectively. The reliability analysis shown that the nine-
story building is highly sensitive to seismic excitation intensity.
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