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Abstract 
Due to the complex behavior of asphalt pavement materials 
under various loading conditions, pavement structure, and 
environmental conditions, accurately predicting the perma-
nent deformation of asphalt pavement is difficult. This study 
discusses the application of artificial neural network (ANN) 
and the multiple linear regression (MLR) in predicting per-
manent deformation of asphalt concrete mixtures modified by 
waste materials (waste plastic bottles and waste high-density 
polyethylene). The use of waste materials in the pavement 
industry can prevent the accumulation of waste material and 
environmental pollution and can reduce primary produc-
tion costs. The results of a laboratory study evaluating the 
rutting properties of Hot-Mix Asphalt (HMA) mixtures using 
dynamic creep tests were investigated. The results indicate 
ANN techniques are more effective in predicting the rutting of 
the modified mixtures tested in this study than the traditional 
statistical-based prediction models. On the other hand, results 
show that an increase in percentage of waste materials is very 
effective in reducing the final strain of asphalt mixtures. How-
ever, an increase in percentage of additives over 7% does not 
help to reduce permanent deformation under dynamic loading 
in the asphalt mixtures.
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1 Introduction
In recent years, along with the increased volume of heavy 

traffic in roads, rutting effect has become one of the most 
important failures, especially in tropical regions. Rutting 
refers to the longitudinal depressions which are formed by 
passing vehicles beside their wheel tracks [1]. 

Rutting could happen in almost all stages of the pavements’ 
life span. Two main mechanisms exist that cause rutting. The 
first one is pavement densification, i.e. decrease in mass and 
increase in density. This form of rutting is caused by the com-
paction and gradual jamming of asphalt and its lower layers, 
which in turn is caused by the constant flow of vehicles passing 
on the road. In this case, the main cause of rutting formation 
would be the weakness of lower layers, including sub-grades. 
Such wide ruts (0.75 m to 1 m) are shallow and lack cracks [2]. 
The second stage is shear deformation: plastic flow with no 
change in the volume. Rutting is caused by the lateral move-
ment of asphalt mixtures under shear stress, which is in turn 
caused by the passage of vehicles. Rutting is mainly caused by 
weakness in the shear strength of asphalt in this case. In this 
form of rutting, the materials of asphalt mixture are laterally 
moved and cause depression in the loading area. In this case, 
bumps are formed beside wheel tracks [2].

Asphalt binder is one of main materials in asphalt which 
works as the binder for sticking aggregates together. Tendency 
towards rutting in asphalt mixtures is very much affected by 
stiffness and the amount of asphalt binder. Several studies have 
proved the role of asphalt binder in rutting. With an increase in 
the stiffness of asphalt binder, an increase can be observed in 
the stiffness of asphalt mixtures and, as a result, in the strength 
against rutting. However, with the increased traffic volumes 
and vehicle loads, there is a need to improve conventional 
asphalt binder properties, particularly the resistance to the per-
manent deformation of pavement in the form of rutting.

ANNs are widely accepted as an information processing 
methodology which is inspired by the working process of the 
human brain. ANNs are efficient in handling the nonlinear 
relationship in data [3]. The empirical models and correlations 
developed by conventional methods are complex in nature, 
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difficult to predict non-linear relationship, and less accurate 
and also require long computation time. The ANN has numer-
ous advantages, including the accurate approximations of 
complex problems, greater efficiency than phenomenological 
models, even for multiple response computations, and greater 
effectiveness even with incomplete and noisy input data [4].

1.1 Literature review 
To date, few studies have been conducted on rutting mod-

els of modified asphalt mixtures with waste materials. Several 
studies have shown that HMA mixtures containing polymer-
modified asphalt binders are more rut resistant than mixtures 
with neat asphalt binders [5–9]. Modified asphalt binders can 
be designed to satisfy pavement service conditions at both 
high and low temperature extremes.

Punith and Veeraragavan [5] used reclaimed polyethylene 
(PE) as an additive in asphalt concrete mixtures. They found 
that the performance of PE-modified asphalt mixtures are better 
when compared to conventional mixtures. The rutting potential 
and temperature susceptibility can be reduced by the inclusion 
of PE in the asphalt mixture. In another study, Moghadas Nejad 
et al. [6] investigated the potential use of high-density polyeth-
ylene (HDPE) on performance characteristics of asphalt mix-
tures such as fatigue cracking and rutting. The results show 
that fatigue life is higher in mixtures containing HDPE than 
those for control mix. Also, HDPE-modified mixtures provide 
better resistance to rutting due to their higher stiffness. In addi-
tion, by increasing the temperature and fatigue life, resistance 
to permanent deformation of all specimens decreased, where 
sensitivity to temperature is lower in mixes containing HDPE. 

Also, Willis et al. [7] compared results of the dynamic mod-
ulus test, asphalt pavement analyzer, flow number, bending 
beam fatigue, indirect tension creep compliance and strength 
test, energy ratio, and moisture susceptibility of control mix 
(without polymer) and modified mixtures (high polymer mix-
tures). The laboratory test results of this research suggest that 
high polymer mixtures can be placed to develop more efficient 
(i.e. thinner) pavement cross-sections due to their enhanced 
fatigue and rutting resistance.

Based on previous studies, waste plastic bottles (PB) 
has a great potential to be reused as modifier in asphalt mix-
ture. Results indicated that adding PB to asphalt improved the 
fatigue behavior of studied mixes [8]. During a laboratory study 
Abdelaziz and Mohemad [9] examined the effect of different PB 
contents on the rheological properties of modified asphalt binder. 
They found that addition of PB to asphalt binder will increase 
the viscosity and reduce the temperature susceptibility of modi-
fied asphalt binder. Furthermore, the PB modified asphalt binder 
showed preferable elastic properties than the original one (i.e. 
higher complex modulus and lower phase angle).

Although many researches have been worked in this field, 
however, in some cases, the physics and the mechanics of 

rutting problem are still not fully understood, hence, it is too 
complicate to explain it mathematically [10]. In recent years, 
many efforts have been made to use various methods to develop 
a model for predicting the rutting potential of asphalt mixtures 
considering different effective parameters. Increasingly, mod-
ern pattern recognition techniques such as neural network, 
genetic algorithms, and fuzzy logic are being investigated to 
develop models from the data to give the capability of learn-
ing and recognition of data patterns [11]. ANN method has 
had an increasing use in physical models of analyzing complex 
relationships involving multiple variables in civil engineer-
ing areas [12]. Due to the above-mentioned features, the ANN 
techniques have been adopted by some researchers to predict 
the performance of pavements [12–16]. 

1.2 Objectives 
The objective of this research was to investigate the rutting 

of HMA mixtures containing waste materials as an asphalt 
binder modifier. Dynamic creep test was used to assess the 
rutting of control (without waste materials) and modified 
asphalt samples. The behaviour of the mixtures was compared 
with each other and the effect of each mixture parameter was 
investigated.

The specific objectives of this study are to:
• Study the effect of waste materials on the asphalt binder 

properties.
• Evaluating the behaviour of HMA mixtures under dynamic 

creep test with and without waste materials.
• Offering the rutting model using MLR & ANN.

2 Materials 
2.1 Aggregate and asphalt binder 

Locally available limestone aggregates have been used in 
this study to prepare mixtures. The physical properties of the 
aggregate that was used in this study are listed in Table 1. The 
gradation of the aggregates used in the study (mean limits of 
ASTM specifications for dense aggregate gradation) is given 
in Table 2. The nominal size of this gradation was 12.50 mm. 
Conventional test methods such as the penetration test, soften-
ing point test and ductility were performed to characterize the 
properties of the base asphalt binder. The engineering proper-
ties of the asphalt binder are presented in Table 3.

2.2 Additives 
Waste polyethylene (PE) is the most popular plastic in the 

world. This material is a semi crystalline material with excel-
lent chemical resistance, good fatigue and wear resistance 
and a wide range of properties. It has a very simple structure. 
A molecule of PE is a long chain of carbon atoms, with two 
hydrogen atoms attached to each carbon atom. They are light 
in weight and provide good resistance to organic solvents with 
low moisture absorption rates [17]. One type of PE grade was 



310 Period. Polytech. Civil Eng. A. R. Azarhoosh, G. H. Hamedi, H. F. Abandansari

used in this research, the physical and chemical properties 
of which are shown in Tables 4 and 5, respectively. All the 
waste HDPE particles passed a No.10 (2 mm) sieve and were 
retained on a No.40 (0.42 mm) sieve in powder form. HDPE 
offers excellent impact resistance, light weight, low moisture 
absorption and high tensile strength [17].

Waste PB is a type of polyester material, and is often used 
for packing in food and beverage industries. Waste PB was 
obtained from plastic bottles. For utilization of PB as additive 
in asphalt mixtures the bottles were cut to small parts, there-
after crushed by crushing machine. The crushed plastic bot-
tles particles were sieved, and the par particles passing sieve 
2.36 mm were used for this investigation. Tables 4 and 5 depict 
physical and chemical properties of PB material. 

3 Experimental setup and procedure 
3.1 Mix design 

In this study, five HDPE and PB concentrations (2, 4, 6, 8 and 
10%), with respect to the weight of base asphalt, were selected. 
A total of 165 mix design were conducted which includes 150 
mix designs for modified mixtures (2 different types of waste 

material additives × 5 different percentage of additives × 3 test 
temperatures × 5 stresses) and 15 mix design for conventional 
mixtures (3 test temperatures × 5 stresses).

Modified asphalts with different PB and HDPE concentra-
tions were produced through a mechanical shearing process. 
Firstly, the base asphalt was heated to 180 ˚C to make it fully 
melted, and then the PB and HDPE were added to the asphalt 
in sequence, with a shearing speed of 2000 r/min for 20 min. 
After this, the mixtures were stirred at a speed of 5000 r/min 
for 1.5 h at 180 ˚C and followed by a 20 min low speed (< 100 
r/min) stirring to exclude the air introduced by the high speed 
shearing process.

Finally, the asphalt mixtures were designed using the stand-
ard Marshal mix design. Two series of Marshall specimens were 
fabricated. The first series of the specimens contained several 
asphalt binder contents to determine the optimal asphalt binder 
content. The second series were at the optimal asphalt binder 
content to evaluate the HMA mechanistic properties. 

The optimum asphalt binder content for the mix design was 
determined by taking the average values of the following three 
asphalt binder contents:

Table 1 Physical properties of the aggregate

Test Standard Limestone Specification limit

Specific gravity (coarse agg.) ASTM C 127

Bulk 2.615 -----

SSD 2.644 -----

Apparent 2.661 -----

Specific gravity (fine agg.) ASTM C 128

Bulk 2.622 -----

SSD 2.636 -----

Apparent 2.654 -----

Specific gravity (filler) ASTM D854 2.642 -----

Los Angeles abrasion (%) ASTM C 131 27 Max 45

Flat and elongated particles (%) ASTM D 4791 8.5 Max 10

Sodium sulfate soundness (%) ASTM C 88 5.69 Max 10–20

Fine aggregate angularity ASTM C 1252 45.44 Min 40

Table 2 Gradation of the aggregates used in the study

Sieve (mm) 19 12.5 4.75 2.36 0.3 0.075

Lower–upper limits 100 90–100 44–74 28–58 5–21 2–10

Passing (%) 100 95 59 43 13 6

Table 3 Results of the experiments conducted on 60/70 penetration grade asphalt binder

Test Standard Result

Penetration (100 g, 5 s, 25 ºC), 0.1 mm ASTM D5 66.8

Penetration (200 g, 60 s, 4 ºC), 0.1 mm ASTM D5 25

Penetration ratio ASTM D5 0.36

Ductility (25 ºC, 5 cm/min), cm ASTM D113 112

Solubility in trichloroethylene, % ASTM D2042 98.9

Softening point, ºC ASTM D36 47.1

Flash point, ºC ASTM D92 273

Loss of heating, % ASTM D1754 0.72
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(1) Asphalt binder content corresponding to maximum sta-
bility.

(2) Asphalt binder content corresponding to maximum bulk 
specific gravity.

(3) Asphalt binder content corresponding to the median of 
designed limits of percent air voids in the total mix.

The stability value, flow value, and voids filled with asphalt 
binder (VFA) are checked with the Marshall mix design speci-
fication. The optimum asphalt binder contents were found to 
be 5.1%.

3.2 Conventional tests
Penetration test at 25 ˚C and softening point test were con-

ducted to characterize the conventional physical properties of 
asphalts, according to ASTM D5, ASTM D36, respectively. 
The effects of PB and HDPE content on the asphalts’ penetra-
tion and softening point were shown in Figure 1.

Fig. 1 Conventional tests results of modified asphalt binder

As presented in this figure, while the softening point 
increases with increasing HDPE and PET in separate samples, 
the penetration has a decreasing trend. Polymer modification 
increases the viscosity of the asphalt binder, and this increase 
in viscosity causes a corresponding increase in tensile and 
compressive strengths of the HMA.

 Table 4 Physical properties of HDPE and PB 

Test Standard HDPE PB

Density(g/cm3) D792 0.97 1.24

Water Absorption, 24 hours (%) D570 0 0

Tensile Strength (MPa) D638 23.6 55.7

Tensile Elongation at Yield (%) D638 820-850 980-1100

Table 5 Chemical composition of HDPE and PB

Properties HDPE PB

pH 8.1 7.4

Silicon dioxide, SiO2 (%) 65.1 69

R2O3 (Al2O3+Fe2O3) (%) 17.9 19

Aluminum oxide, Al2O3 (%) 13.2 12.1

Ferric oxide, Fe2O3 (%) 4.7 6.9

Magnesium oxide, MgO (%) 1.8 1.9

Calcium oxide, CaO (%) 3.4 2.6

3.3 Dynamic creep test 
The dynamic creep experiment has been used for a long 

time to determine the rutting potential of asphalt, which is due 
to its simplicity and logical relation with permanent deforma-
tion of the asphalt mixture. The main purpose of this experi-
ment is constricted to the classification of materials and their 
comparison in the area of rutting potential. In other words, rut-
ting depth determination using this experiment is not possible. 
The most important outcome of the dynamic creep experiment 
is the accumulative strain curve facing the number of loading 
cycles which depends on the compound rutting strength. Fig-
ure 1 depicts a form of this curve [18].

As shown in Figure 2, the curve is made of 3 major parts: 
primary zone, in which permanent deformations are quickly 
accumulated, the secondary zone, in which accumulative 
strains are increased with a smooth and constant slope, and 
the tertiary zone, in which the tone of increase in accumulative 
strain is again increased. The first zone could be identified as 
a first rutting mechanism (densification; decrease of mass and 
increase of density). The second zone could be identified as a 
connector of the two zones. The third zone could be identified 
as the second rutting mechanism (shear deformation; plastic 
flow with no change in the volume) [19].

The dynamic creep test applies a repeated pulsed uniaxial 
stress on an asphalt specimen and measures the resulting defor-
mations in the same direction using linear variable differential 
transducers (LVDTs) [20]. The tests were performed accord-
ing to the following procedure. The specimens were placed in 
the loading machine under a conditioning stress of 10 KPa for 
600 seconds. Then, the conditioning stress was removed and 
a stresses of 100–500 KPa were applied for 10000 cycles with 
0.1 second loading and 0.9 second rest periods, after which the 
axial deformation was measured during the creep test using 
LVDTs. The temperatures of the test were considered equal to 
40, 50 and 60°C.
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4 Artificial neural networks (ANN) 
Artificial neural networks constitute a branch of artificial 

intelligence which has recently undergone rapid evolution and 
progress [21]. ANNs act as a black box model, which are com-
posed of interconnected processing units called artificial neu-
rons or nodes [3]. The ANN approach has the ability to learn 
highly non-linear relationships and process information by its 
dynamic system response to external inputs [4]. But ANN is 
not an equation fitting model.

Whereas there are several types of ANNs such as recurrent, 
radial basis, function networks, and self-organizing maps, the 
most commonly implemented type of ANNs are multilayer 
feed forward neural networks (FFNN), which was used in this 
study. The multilayer feed forward neural network consists of 
an input layer, one or more hidden layers, and an output layer 
[3, 22]. In this set of networks, information is only transmit-
ted in the forward direction from the input layer to the hidden 
layer(s) and to the output layer [22]. The number of input and 
output physical quantities specifies the number of the neurons 
in the input and output layers [3, 22]. In this study, the input 
layer was composed of 4 nodes, which were additive type, 
additive content, temperature, and stress. The output layer had 
one node, which was the final strain of asphalt mixtures. There 
is no general rule for determining the optimum number of 
nodes in the hidden layer and it is usually determined through 
trial and error [3, 22–24].  

The nodes between each layer were connected with adapt-
able weights. The general working principle of the artificial 
neuron or node can be demonstrated as [3]: 

where xj is the input from the previous node j, wij is the weight 
that connects node i and node j, n is the total number of previous 
nodes connecting to node i, bi is the bias of node i, and f  is activa-
tion (transfer) function. The hyperbolic tangent sigmoid (tansig) 
function and the linear (purelin) function are commonly used 
activation functions. The tansig function is used for non-linear 
relationship approximation and the purelin function is used for 
linear relationship approximation [3]. Feed forward neural net-
works with one hidden layer can virtually approximate any lin-
ear or non-linear function to an acceptable accuracy, if sufficient 
hidden layer nodes are provided with the sigmoid function as 
the hidden layer activation function and the linear function as 
the output layer activation function [3]. In this study, the tansig 
and purelin functions were used as the activation functions in 
the hidden layer and the output layer, respectively. Therefore, a 
feed forward neural network with one hidden layer was applied 
to predict the experimental data in this work.

Before using any method for training, an ANN has to nor-
malize input and output. So, input and output data were nor-
malized between -1 and 1 by the following equation:

Training is a method for calculating weight and bias. During 
training, the network works in an iterative method until produc-
ing a new output. There are different kinds of training methods, 
among which back-propagation is a common method [21]. 

Fig. 2 Typical flow number test result

The multilayer feed forward neural networks with back-
propagation structure were implemented using different 
learning rules in the neural network approach such as Bayes-
ian regulation (BR), Levenberg-Marquardt (LM), Scaled con-
jugated gradient (SCG) and RPROP back propagation (RP). 
In the Bayesian regulation rule, the input data were divided 
into two parts; 70% and 30% of the data were used for train-
ing and test, respectively, but in other learning rules the input 
data were divided into three parts; 70%, 15% and 15% of the 
data were used for training, validation and test, respectively. 
The number of data used in the network is 165. The results of 
the network models for different neuron numbers in the hidden 
layer using different training algorithms are presented in Table 
7. The correlation performance of the network is assessed by 
using root mean square error (RMSE) and correlation coef-
ficient (R2) values. 

In this study, the input layer is composed of 4 nodes, which 
are the stress, temperature, additive type and content. The 
output layer has one node, which is final strain. There is no 
general rule for the determination of the optimum number of 
nodes in the hidden layer and usually it is determined through 
trial and error. It can be seen that the Levenberg-Marquardt 
back propagation algorithm with 10 neurons in the hidden 
layer is the best training procedure that achieved the highest 
R2 and lowest RMSE. Thus, the optimum number of neurons 
is used to create the network topologies which were 4–10–1. 
Here, the numbers in the expressions of the network topologies 
represent the neuron numbers in the input layer, the hidden 
layer and the output layer, respectively. The schematic dia-
gram of ANN model selected for the current study is shown 
in Figure 3.
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Fig. 3 Artificial neural network structure used in this study

5 Results and discussion 
5.1 MLR model results 

In this section, the traditional rutting models for two addi-
tive types, obtained through liner regression analysis, were pre-
sented. These models used additive content, temperature, and 
stress as input variables which are shown in Equations 3 and 4.

where εPB, εHDPE, C, T and S are final strain (mm/mm), additive 
content (%), temperature (°C) and stress (kPa), respectively. Use 
the final strain values of 2% additive content for more quantities.

Figure 4 shows comparison plots between the model output 
and its corresponding experimental data. The results indicate 
a poor fit between experimental and predicted data with low 
coefficient of determination. Thus, the final strain prediction 
of using these traditional models may not be reliable.

5.2 ANN model results 
The multilayer feed forward neural network with back-

propagation structure using Levenberg-Marquardt’s learning 
rule with 10 neurons in the hidden layer was selected as the 
optimum network. Figure 5 explains comparison plot between 
the optimum network output and its corresponding experimen-
tal data of the strain of conventional and modified asphalt mix-
tures for training (Fig. 5-a), validation (Fig. 5-b), testing (Fig. 
5-c) and overall (Fig. 5-d) data. This figure shows that this 
ANN model had a perfect fit and the predicted values comes in 
a good agreement with the experimental values inferring that 
the model was successfully developed to capture the correla-
tion between effective factors of rutting and final strain. 

Figure 6 shows the performance graph. It is observed that 
the best validation performance is at epoch 14 and the valida-
tion error is increased after this epoch. So, the training opera-
tion stops after 6 epochs which is defined in the program. Also, 
the errors of data attained by the optimum ANN model were 
plotted out versus the frequency of data in figure 7. A nigh nor-
mal distribution of variation brings about a specific bell-shaped 
curve (Gaussian curve), with the highest point about in the mid-
dle and smoothly curving symmetrical slopes on both sides of 
center. This figure illustrates an approximately normal distri-
bution of errors produced by the model. The Gaussian curve 
reveals that our results are symmetrical approximately [22].

The predicting performance of the trained neural network 
as shown in Figure 5 is considered satisfactory and signifi-
cance improvement (in terms of R2) over those obtained by 
regression analyses as presented in Figure 4 is achieved. The 
overall correlation coefficient for ANN method was equal to 
0.9973; but, traditional statistical-based prediction models had 
less correlation coefficient (about 0.76). On the other hand, 
ANN models, which act like a black box model, can easily be 
implemented in a spreadsheet, thus, making it easy to apply.

Table 6 Conventional tests results of modified asphalt binder

Learning rule No. of neurons R2 RMSE

Train Validation Test Mean Train Validation Test Mean

LM 5 0.993 0.9887 0.994 0.9924 0.0315 0.0374 0.0265 0.0312

10 0.999 0.9971 0.991 0.9973 0.0127 0.0231 0.0332 0.0188

15 0.998 0.9895 0.992 0.9963 0.0147 0.0374 0.0255 0.0216

BR 5 0.997 - 0.992 0.9954 0.0206 - 0.0307 0.0241

10 1.000 - 0.985 0.9959 0.0047 - 0.0424 0.0234

15 1.000 - 0.988 0.9953 0.0020 - 0.0447

SCG 5 0.981 0.9643 0.976 0.9766 0.0529 0.0608 0.0583 0.0548

10 0.985 0.9774 0.931 0.9791 0.0436 0.0714 0.0624 0.0520

15 0.986 0.9942 0.979 0.9869 0.0424 0.0301 0.0400 0.0412

RP 5 0.929 0.9574 0.918 0.9268 0.1015 0.0700 0.0989 0.0969

10 0.986 0.9817 0.953 0.9819 0.0447 0.0332 0.0707 0.0480

15 0.990 0.9687 0.955 0.9803 0.0332 0.0800 0.0707 0.0500

 

εPB C T S= − × + × + ×− − −8 2609 10 2 3163 10 2 9359 104 4 5. . .

εHDPE C T S= − × + × + ×− − −8 6712 10 2 3480 10 2 8095 104 4 5. . .

0 ≤ C ≤ 2%, 40 ≤ T ≤ 60°C and 100 ≤ S ≤ 500kPa

(3)

(4)
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Fig. 4 Comparison between experimental & MLR model values (a) PB mixtures (b) HDPE mixtures

 

Fig. 5 Comparison between experimental and ANN values in (a) training, (b) validating, (c) testing and (d) overall data sets
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Fig. 6 Performance graph 

Fig. 7 Error histogram 

5.3 Influenced of additive content on permanent 
deformation 

Although there are four input parameters in the model, it is 
more meaningful to investigate the influence of input parameters 
on the strain [13]. For this purpose, the developed ANN model 
is used to simulate the effect of some factors such as additive 
content and temperature on strain of asphalt mixture. To this, 
end one input parameter was changed slightly (approximately 
1%) when the remaining parameters were kept constant. Then 
the predicted final strain was determined. Thus for each additive 
type, the stress was kept at 300 kPa. Figures 8 and 9 illustrate 
the variations in strain with increasing additive content in differ-
ent temperatures for PB and HDPE, respectively. As shown in 
these figures, the temperature rise leads to an increase in rutting 
potential in control and modified asphalt samples; asphalt bind-
er’s high sensitivity to changes of temperature being the cause. 
With an increase in temperature, the viscosity and stiffness of 
asphalt binder descends and makes it softer. These factors are in 
agreement with Strategic Highway Research Program (SHRP) 
qualification for the rutting property [25]. On one hand, addi-
tives decrease the temperature sensitivity of the asphalt binder 
by decreasing its penetration and increasing its softening point. 

On the other hand, the procedure of changes in permanent defor-
mation at any temperature follows the last model, but the level 
of influence of additives in decreasing deformation is more sig-
nificant in higher temperatures than in lower ones.

Additionally the value of final strain at a specific temperature 
and stress for modified samples was less than conventional sam-
ples for both additive types. Therefore, the modified specimens 
had less permanent deformation than the conventional samples. 
This means that the additive particles make the binders stiffer at 
the maximum pavement service temperature and are beneficial 
in improving the resistance of permanent deformation. In addi-
tion, it can be concluded that the influence of HDPE on decre-
ment of strain is greater than that of PB, and this subject leads to 
more resistant against plastic deformation (rutting) in samples 
containing HDPE, compared with samples modified by PB.

It can be seen that as the additives content increases to 1%, 
the strain value tend to decrease drastically. As the additive 
increases, the penetration and softening point of the modified 
asphalt binder are significantly reduced and increased com-
pared to the base asphalt binder, respectively. However, further 
increase in additives content has little effect on enhancing the 
value of strain at a specific stress in comparison with increasing 
in additive content. It was also found that the optimum addi-
tive content for both additives are determined to be in ranges 
from 5% to 7%. However, increase in percentages over 7% has 
no effect on reducing permanent deformation in the asphalt 
mixtures. Therefore the influence of additives content on final 
strain is quite well understood based on neural network.

6 Conclusions 
Final strain is affected by several factors (additive type, 

additive content, temperature, stress, etc), so final strain pre-
diction is quite complex. Due to the complexity of the relation-
ship between input variables and output (final strain), it is dif-
ficult to be modeled using traditional mathematical modeling.

In this study, the effects of variables were modeled using 
MLR and ANN. The multilayer feed forward neural network 
with back-propagation structure was implemented using dif-
ferent learning rules in the neural network approach. The ANN 
with a 4-10-1 architecture and Levenberg-Marquardt’s learn-
ing rule has the best fit and was selected as the optimum ANN 
model for prediction. The input layer was composed of 4 nodes 
of additive type, additive content, temperature and stress. Also, 
the output layer had one node, which was the final strain of 
asphalt mixtures. The tansig and purelin functions were used as 
the activation functions in the hidden and output layers, respec-
tively. In the optimum model, the input data were divided into 
three parts; 70%, 15% and 15% of the data were used for train-
ing, validation and test, respectively.

The results indicate that there is a very good agreement 
between experimental and predicted results by ANN. Also, 
the MLR was used to predict final strain for PB & HDPE 
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asphalt mixtures. Also, the results show a poor fit for these 
objective functions with low coefficient of determination. This 
confirms the ANN technique is more effective than the tradi-
tional statistical-based (MLR) prediction models.

Furthermore, the proposed network is applied to observe 
the effect of changing in percentage of additive for determin-
ing the strain of asphalt samples. The results show that the 
final strain of asphalt mixtures can be significantly improved 
through incorporating the maximum of 7% HDPE and PB into 
mixtures. That means both the waste-additives would help 
in reducing rutting potential in asphalt samples. However, 
increase in additives percentage over 7% does not help the 
reduction of permanent deformation in asphalt mixtures. As 
a result, the optimum additive content for both additive types 
was determined to be in ranges from 5% to 7%.

Fig. 8 Effect of PB on final strain at various temperatures at 300 kPa 

Fig. 9 Effect of HDPE on final strain at various temperatures at 300 kPa 
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