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Abstract 
The main purpose of this paper is to predict the properties 
(mechanical and rheological) of the self-compacting concrete 
(SCC) containing fly ash as cement replacement by using 
two decision tree algorithms: M5′ and Multivariate adaptive 
regression splines (Mars). The M5′ algorithm as a rule based 
method is used to develop new practical equations while the 
MARS algorithm besides its high predictive ability is used to 
determine the most important parameters. To achieve this pur-
pose, a data set containing 114 data points related to effective 
parameters affect on SSC properties is used. A gamma test is 
employed to determine the most effective parameters in predic-
tion of the compressive strength at 28 days, the V-funnel time, 
the slump flow, and the L-box ratio of SCC. The results from 
this study suggests that tree based models perform remarkably 
well in predicting the properties of the self-compacting con-
crete containing fly ash as cement replacement. 
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1 Introduction 
Concrete as a vital material in civil engineering structures 

and infrastructures along with its growing usage (annually 
more than 30 billion tons as an estimation) has experienced a 
significant development in the recent decades. Such a tremen-
dous development is due to its superior physical and mechanical 
properties and long service life. One of the most revolutionary 
developments in concrete construction can be the Self-Com-
pacting Concrete (SCC) [1]. SCC was originally developed in 
Japan to overcome the unsatisfactory compaction because of 
the inefficient workforce, and complex design and reinforce-
ment details of modern structures [2]. SCC flows under its own 
weight, maintains homogeneity, fills any form works and passes 
around dense reinforcement in its plastic state [1, 3]. It equals or 
excels standard concrete with respect to strength and durability 
but with the potential of segregation, creep and shrinkage in the 
hardened state [3, 4]. Nowadays, SCC is used in both precast 
and in situ construction forms all over the world because of its 
several economically beneficial factors. In this regards charac-
terizing the properties of SCC are of great importance. 

The properties of SCC depend on several factors. From its 
mechanical properties, the compressive strength is indispen-
sable to model, analyze and design the structures or members. 
The rheological properties of SCC are also of great impor-
tance like its mechanical properties. A concrete mix can only 
be classified as Self-Compacting Concrete if it satisfies certain 
requirements in filling ability, passing ability, and segregation 
resistance [1]. Consequently, development of methods to deter-
mine the properties of SCC is critical. The properties of SCC 
are complex nonlinear regression problems and highly difficult 
to predict due to the nonlinearity. This aim can be achieved by 
many different test methods in its plastic and hardened states. 
On the other hand, data-driven techniques provide the opportu-
nity to tackle such highly nonlinear prediction problems. These 
techniques have been interested in many fields and as well 
applied to civil engineering problems in general engineering 
such as [5–23], and especially in the concrete engineering such 
as [13, 24–29]. Data-driven techniques were also interested for 
predicting the properties of SCC.
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Beside extensive empirical research on SCC [30], deficiency 
of theoretical relationship between mixture proportioning and 
measured engineering properties, push researchers to this sub-
ject. This deficiency is overcome mostly by statistical models 
[31–34], subjectively assuming certain empirical relationships 
using regression functions [35] and also artificial neural net-
works (ANN) method based on limited experimental data. Many 
of them are suitable for the studied experimental domain and 
consider mostly one or a limited number of properties of SCC for 
prediction. In 2001, Nehdi et al. [36] for the first time, developed 
four ANN-based models with the same network architecture to 
predict slump flow, filling capacity, segregation, and compres-
sive strength of SCC with 87, 75, 52 and 29 experimental data 
sets containing 10 input variables (cement, water, fly ash, slag, 
silica fume, limestone filler, sand, gravel, VEA, and high range 
water reducing admixture), respectively. Siddique et al. [37] used 
Support Vector Machine (SVM) and ANN for predicting com-
pressive strength and slump flow of SCC using 80 data sets with 
6 input variables. Guneyisi et al. [38] used ANN for predicting 
the initial and final setting times of SCC with mineral admix-
tures based on 65 SCC mixtures containing 10 input variables. 
Prediction of compressive strength of SCC containing different 
types of additions is studied by ANN [39-43], Fuzzy Logic [43], 
and Least Square Support Vector Machine (LSSVM) and Rel-
evance Vector Machine (RVM) [44]. Very recently Sonebi et al. 
used SVMs for predicting of six fresh properties of SCC, sepa-
rately. For this aim they tested 20 mixtures of SCC which results 
in 60 pairs of datasets with the dosages of cement, limestone 
powder, water, sand, coarse aggregate and the testing time as 
input parameters, and slump flow, T50, T60, V-funnel, Orimet, 
and L-box ratio as output predictions.

Superplasticizers are essential admixtures of SCC to pro-
vide the necessary workability. Fly ash, silica fume, and 
ground granulated blast furnace slag are common additions to 
improve and maintain the workability of SCC, as well as to 
regulate the cement content and so reduce the heat of hydration 
without increasing its cost. Fly ash is a fine inorganic material 
with pozzolanic properties [1]. Therefore, SCC with the fly ash 
as an addition is a common form of SCC used in the practice. 
Many studies have been carried out on the replacement of fly 
ash as a fine aggregate r in cement concretes. Use of municipal 
solid waste incineration fly ash in concrete has been studied 
and from mechanical and durable points of view, the ash incor-
porated in the concrete behaves like ordinary sand [45]. Investi-
gation on FA as sand (fine aggregate) replacement material and 
a formula to predict the compressive strength of concrete at 28 
days can be found in the work of [46].

Very recently Douma et al. [47] used ANN for prediction 
of properties of self-compacting concrete containing fly ash. 
To construct the model, they have collected a total number of 
114 different experimental data from the specialized literature. 
Each data set contains 6 input parameters (Binder content, fly 

ash percentage, water–binder ratio, fine aggregates, coarse 
aggregates and superplasticizer) and four output parameters 
(the compressive strength at 28 days, the V-funnel time, slump 
flow diameter, and the L-box ratio).

As it is clear in the recent decade remarkable studies were 
conducted to predict the properties of SCC as a complex nonlin-
ear regression problem using soft computing based techniques. 
In these studies, which are almost entirely reviewed in the pre-
vious paragraph, three issues can be raised: (i) the considered 
data set; (ii) considered input and output predictive parameters; 
and (iii) selecting suitable soft computing based technique. It is 
well known that efficiency of the predictive models significantly 
depends on how comprehensive the training data is. In addition 
to mechanical properties, the rheological properties are interested 
in the case of SCC for guarantee its workability. Some inevitable 
subjective selection of data driven based techniques is needed.

The main objective of this study is to investigate the potential 
of two decision tree algorithms: M5′ and Multivariate adaptive 
regression splines (MARS) for predicting the properties of SCC 
with fly ash as a common addition. The same database used in 
the study by Douma et al. [47] is considered here. It should be 
noted that gathering the database from the preexisting experi-
mental studies can be limited significantly because of exclusion 
of one or more of SCC properties in some studies and the ambi-
guity of mixture proportions and testing methods in others [36]. 
In this regard, 114 data sets can be considered comprehensive 
to train and test the selected data driven based techniques. Pre-
dicting the most important mechanical property (compressive 
strength at 28 days) and three rheological properties (the slump 
flow diameter, the L-box ratio, and the V-funnel time) which are 
required to characterize filling ability, passing ability and seg-
regation resistance and as a sequence to guaranty workability 
of SCC from dosages of its six main contents (binder content, 
fly ash percentage, water–binder ratio, fine aggregates, coarse 
aggregates and superplasticizer) as input parameters makes the 
models as much as possible to be successful and applicable in 
the field [47]. The M5′ as one of the model tree algorithms is 
used for developing predictive and simple formulas for estima-
tion of SCC properties. Unlike most of the data driven based 
algorithms such as ANN, SVM, and ANFIS, the M5′ algorithm 
can provide transparent formulas that are physically sound and 
interpretable. Furthermore, the MARS algorithm besides con-
sidering as an efficient algorithm to investigate the efficiency 
of the M5′ algorithm because of its high predictive ability is 
used to discover the most significant parameters dealing with 
the prediction of SCC properties. A gamma test is employed 
also to determine the most effective parameters in the predic-
tion of the slump flow, the L-box ratio, the V-funnel time and 
the compressive strength at 28 days of SCC. The results from 
this study suggest that tree based models perform remarkably 
well in predicting the properties of the self-compacting concrete 
containing fly ash as cement replacement.
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The remaining sections of this paper are organized as fol-
lows. In Section 2 the M5ʹ and MARS algorithms are outlined 
and also the performance measures for evaluating the algo-
rithms are presented. Section 3 describes the database used and 
presents the derived models by algorithms. In the penult sec-
tion after performance analyses of the algorithms, and the para-
metric study of the prediction problem, the sensitivity analysis 
is performed. At the end, the paper is concluded in Section 5.

2 Predictive data mining techniques used in this 
research

Two different data mining methods consisting of the Mul-
tivariate Adaptive Regression Splines (MARS) and M5′ algo-
rithms are used to develop robust models for predicting proper-
ties of SCC. The algorithms are outlined at the following [13].

2.1 MARS
MARS is a well-known nonlinear and nonparametric data 

mining approach that discovers the nonlinear responses between 
the inputs and outputs of a system using a series of piecewise 
linear or cubic segments, which are known as splines. The result-
ing piecewise equation is known as the basis functions (BFs). 
The slope of regression function is allowed to vary from one 
segment to the next. The end points of each segment are called 
knots that mark the end of one region of data and the beginning 
of another. In contrast to well-known parametric linear regres-
sion analysis, MARS provides greater flexibility to explore the 
nonlinear relation between a response variable and predictor vari-
ables. In addition, MARS also searches for possible interactions 
between variables by checking all degrees of interactions. MARS 
algorithm can track and discover the complex structures existing 
in high-dimensional datasets because it considers all functional 
forms and also interactions between input variables. The general 
MARS function can be expressed using the following equation:

wher ( )f x is the predicted response, β0 and βm are constants, 
which are estimated to yield the best data fit, M is the number of 
BFs included in the model, and x is the input variable. The basis 
function in MARS model can be either one single spline function 
or a product of two or more spline functions for different predic-
tor variables. The spline basis function, λm(x), can be specified as:

where km is the number of knots, skm takes either 1 or -1 and indi-
cates the right/left regions of the associated step function, v(k,m) 
is the label of the predictor variable and tk,m is the knot location.

MARS produces BFs by searching in a stepwise manner. An 
adaptive regression algorithm is used for selecting the knot 
locations. An optimal MARS is selected through a two-stage 

forward and backward procedure. In the forward stage, MARS 
over fits data points by considering a great number of BFs. In 
the backward stage, redundant BFs are deleted from Eq. (2) to 
avoid overfitting problem. MARS adopts Generalized Cross-
Validation (GCV) as a criterion to delete the redundant basis 
functions. The expression of GCV is given as:

in which N is the number of data, yi is the response values, 
and C(B) is a complexity penalty that increases with the num-
ber of BFs in the model. It is defined as:

C(B) = (B + 1) + dB

where d is a penalty for each BF included in the model and 
B is the number of BFs [48].

2.2 M5′ algorithm 
One of the most efficient techniques in data mining 

approaches is the so-called M5 model tree. M5 model was orig-
inally developed by Quinlan [49] and improved later in 1997 in 
a system called M5′ by Wang and Witten [50]. M5 model trees 
are more accurate and understandable than regression trees and 
the ANNs. This model can handle a large number of attributes 
and high dimensions [51, 52].

The algorithm constitutes of three main steps: Building a 
tree, pruning the tree and smoothing. In the first step, the basic 
tree is formed based on a splitting criterion. It uses the standard 
deviation of the class values for each node as a measure of the 
error at that node and then calculates the expected error reduc-
tion as a result of testing each attribute at that node. Then, the 
attribute that maximizes the expected error reduction is selected 
to split the data at that node. The Standard Deviation Reduction 
(SDR) for M5 is calculated using the following formula:

here T is the set of examples that reached the node, Ti is 
the resulted set from splitting the node (leaf) according to 
the selected attribute and sd is the standard variation [50]. 
The splitting procedure is ceased when the class values of all 
instances that reach a node vary by less than 5% of the stand-
ard deviation of the original instance set, or when only a few 
instances remain.

The overfitting problem can occur in the model tree con-
struction process using training data. To alleviate this prob-
lem a method is termed “pruning” should be used [53]. The 
pruning procedure uses an estimate of the expected error that 
experienced at each node in the test data. First, the absolute 
difference between the predicted and the actual output values 
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is averaged for each one of the training examples that reach the 
node. Because the trees have been built expressly for this data-
set, this average amount will underestimate the expected error 
for new cases. In this regards the output value is multiplied by 
the factor (n + v)/(n – v). n is the number of training examples 
that reach the node and v is the number of attributes in the 
model that represents the output value at that node. Therefore, 
this multiplication is benefited to avoid error underestimating 
for new data, rather than the data against which the model was 
trained. If the estimated error is lower than that of the parent 
(previous splitting attribute), the leaf node would be dropped.

Another problem is the sharp discontinuousness at the leaves 
of the pruned tree. Smoothing procedure described by Quinlan 
[49] can reduce and solve this problem which uses the leaf model 
to compute the predicted value. In the smoothing process, esti-
mated value of each leaf is filtered along the path back to the root. 
The value at each node that is joining with the predicted value of 
the linear model for that node can be calculated as follows:

where P′ is prediction which exceeded to a higher node, p 
is prediction which passes to current node from the below, q is 
the predicted value by the model at the node, n is the number of 
training instances reach to the previous node, and k is the Wang 
& Witten constant.

2.3 Performance measures
The developed model’s ability in the prediction of SCC 

properties will be quantified using four frequently used per-
formance measurements: MAE, RMSE, R, and R2 presented 
mathematically at the following:

where Oi is the measured value, Pi stands for prediction 
values; N is the number of observation data, Om is the mean 
value for observation and Pm is the mean value of prediction. 
The correlation coefficient (R) is a measure of linear relation-
ships between measured and predicted values. The R value var-
ies between -1 and 1. If R is zero, it indicates that there is no 

linear relationship between variables. If there is a direct linear 
relationship between the variables, the R value is 1 and in the 
case of inverse linear relationship is -1. Note that even if the 
R-value is close to 1, it doesn´t mean that predicted and meas-
ured values match; they only tend to vary similarly. However, R 
does not necessarily indicate the goodness of the model perfor-
mance, particularly when data range is very wide and the data 
points distributed about their mean. Therefore, the coefficient 
of determination, R2, can be used as an unbiased estimate and 
can be a better measure for evaluating model performance. The 
MAE and RMSE measure the difference between predicted and 
measured values. The values near to zero indicate a close match.

3 Dataset and model development
The study is performed in two steps: (i) the MARS algorithm 

besides its high predictive ability, is used to discover the most 
significant parameters dealing with the prediction of SCC prop-
erties; (ii) The M5′ is used for developing predictive and simple 
formulas for estimation of SCC properties. At the following sub-
sections after the description of the dataset used, the developed 
models based on the MARS and M5′ algorithms are presented. To 
develop the models, all the data set (114) randomly is divided into 
two sets considering 80% (91) as training dataset and 20% (23) 
for testing dataset. The training data is used for the learning of the 
algorithms. The testing dataset is used to specify the generaliza-
tion capability of the models to new data they are not trained with.

3.1 Dataset used and considered influential 
parameters 

The built data set and the considered influential input param-
eters are two major issues in developing new models for the 
prediction problem at hand. It is well known that efficiency and 
reliability of the predictive models significantly depend on how 
comprehensive the training dataset is. In addition to mechani-
cal properties, the rheological properties are interested in the 
case of SCC for guaranteeing its workability.

Very recently Douma et al. [47] collected and used a total 
number of 114 different experimental data to develop an ANN 
model to predict rheological and mechanical properties of self-
compacting concrete with fly ash. It should be noted that gather-
ing the database from the preexisting experimental studies can 
be limited significantly because of exclusion of one or more of 
SCC properties in some studies and the ambiguity of mixture 
proportions and testing methods in others. In this regard, 114 
data sets can be considered comprehensive to train and test the 
selected data driven based techniques. Predicting the most impor-
tant mechanical property: compressive strength at 28 days (Fc28, 
Mpa) and three rheological properties: the slump flow diameter 
(D, mm), the L-box ratio (Lbox), and the V-funnel time (Vfunnel, s) 
which are required to characterize filling ability, passing ability, 
and segregation resistance and as a sequence to guaranty work-
ability of SCC is desirable. The following dosages of its six main 
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contents: binder content (B, Kg/m3), fly ash percentage (P, %), 
water–binder ratio (W/B), fine aggregates (F, Kg/m3), coarse 
aggregates (C, Kg/m3) and superplasticizer (SP, Kg/m3), are well-
known to be the most effective parameters and make the models 
as much as possible to be successful and applicable in the field 
[47]. The histograms of input parameters are shown in Figure 1. 
For example, the binder content (B) varies between 370 and 733. 
The output parameters Fc28 (Mpa), D (mm), LBOX, and the Vfunnel 
(s) varies between [10.2, 86.8], [1.92, 19.2], [0.6, 1], and [480, 
880] intervals, respectively. It should be noted that the reliability 
of developed models in predictions of properties of SCC with fly 
ash is more in the ranges with more concentrated data points. The 
prediction problem can be stated mathematically as follows:

(Fc28, D, LBOX , Vfunnel) = f(B, P, W / B, F, C, SP)

Fig. 1 The histograms of input parameters

3.2 Model development using MARS algorithm
As stated in the Subsection (2.1), the segments (splines) of 

MARS algorithm can be either piecewise linear or cubic seg-
ments. Using both segments and comparing the obtained results, 
leads us to benefit the piecewise linear segment for model devel-
opment, which has the better performance. After presenting 
training data set to the MARS algorithm, the following equations 
for compressive strength at 28 days (Fc28, Mpa) and three rheo-
logical properties: the slump flow diameter (D, mm), the L-box 
ratio (LBOX%), and the V-funnel time (Vfunnel , sec) are derived:
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Table 1 Basis functions of the developed MARS models for prediction the properties of SCC with fly ash.

Basis  
function

Equation
Fc28 (Mpa) Vfunnel (s) D (mm) LBOX (%)

BF1 max (0, 730 - C) × max (0, W/B - 0.35) max(0, 0.43 –W/B) max (0, 2.1 - SP) max (0, 1.4 - SP)

BF2 max (0, P - 10) × max (0, 670 - C) max (0, F - 710) × max (0, 860 - C) × 
max (0, W/B - 0.35)

BF1 × max (0, 400 - B) max (0, W/B - 0.36)× max (0, 4.5 - SP) × 
max (0, 450 - B)

BF3 max (0, B - 480) × max (0, SP -4.5) BF1 × max (0, P - 25) max (0, C - 610) × 
max (0, SP -1.4)

max (0, 54 - P)

BF4 max (0, 730 - C) × max (0, 37 - P) max (0, F - 710) × max (0, 0.43 – 
W/B) × max (0, 54 - P)

max (0, B -450)×  
max (0, 880 - C)

max (0, W/B - 0.36) × max (0, SP - 4.5) × 
max (0, B - 500) × max (0, 30 - P)

BF5 max (0, 0.42 – W/B) × max(0, F -790) 
× max (0, 7.5 - SP)

max (0, F - 710) × max (0, 0.43 – 
W/B) × max(0, P - 54)

max (0, F -830)× 
max (0, W/B - 0.33)

max (0, B - 430) × max (0, 8.4 - SP) × 
max (0, W/B - 0.42)

BF6 max (0, 0.42 – W/B) × max (0, 9.7 - SP) max (0, 0.43 –W/B) × max(0, P-15) 
×max(0, F-770) × max(0, B-480)

BF3 × max (0, 450 - B) max (0, B - 430) × max (0, 610 - C) × 
max (0, 25 - P)

BF7 max (0, P - 10) × max (0, 11- SP) max (0, 900 - C) × max (0, 40 - P) - max (0, B - 430) × max (0, 8.4 - SP) × 
max (0, W/B - 0.39)

BF8 max (0, P -10) × max (0, SP - 10) × 
max (0, 570 - B)

BF1 × max (0, F - 970) - BF6 × max (0, SP - 9.9)

BF9 max (0, 0.42 – W/B) × max (0, 920 - F) 
× max (0, 9.7 - SP)

BF2 × max (0, P - 20) - -

BF10 max (0, 0.42 – W/B) × max (0, F - 790) 
× max (0, 30 - P)

BF7 × max (0, 0.44 – W/B) - -

BF11 max (0, 0.42 – W/B) × max (0, 920 - F) 
× max (0, B – 500) × max (0, C- 900)

max (0, 900 - C) × max (0, F - 970) - -

BF12 - BF4 × max (0, C - 610) - -

(11)

(12)

(13)

(14)

(15)
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Table 1 lists the BFs and their corresponding equations. 
Derived models for Fc28, Vfunnel time, D, and LBOX ratio con-
tain 11, 12, 6 and 8 integrated BFs with interaction terms, 
respectively. It can be seen that the derived models are not 
simply additive and those interaction terms play a significantly 
important role. The final models of MARS (Eqs. (12) to (15)) 
are achieved via GCV based on forward selection and back-
ward deletion process. As observed, one of the advantages of 
MARS algorithm is that not only captures complex relation-
ships between independent and dependent variables but also 
does not require additional effort to verify a priori assumption 
for the relationship between them. The latter feature becomes 
more important as the dimension of the problem increases [13].

3.3 Model development using M5′ algorithm
The M5′ algorithm only presents a linear multivariate equa-

tion in each class. To compensate this limitation, the data points 
were transformed into the logarithm space. Then, the final 
developed model can be rewritten as:

where a1, a2, …, and a7 are constants. The provided models 
by the M5′ algorithm are in the form of rules. These rules are 
simple and interpretable that can be easily used in calculating 
the mechanical and rheological properties of SCC with fly ash. 
The developed rules are presented at the following:

Compressive strength at 28 days (Fc28, Mpa):

The V-funnel time (Vfunnel , s):

The slump flow diameter (D, mm):

The L-box ratio (Lbox%):

4 Analytical results and discussion
At the following, the developed models are evaluated 

through performance analysis, and at the end sensitivity anal-
ysis is performed using the Gamma Test after presenting the 
parametric study for the problem.

4.1 Performance analysis
Performances of the developed MARS and M5′ models are 

shown in Figure 2. Comparison between measured and pre-
dicted values for mechanical and rheological properties of SCC 
for whole test data in this figure demonstrates that there are 
little scatters around the line of equality between measured and 
predicted values. As shown, the proposed model for compres-
sive strength of SCC has the highest accuracy and the least 
scatter in comparison with other proposed models.

Fig. 2 Comparison between measured and predicted values for properties of 
SCC with fly ash based on the developed models for whole dataset

To further evaluation of proposed models, the analytical per-
formance measures are presented in Table 2 with respect to train-
ing, testing and total datasets. It should be noted that even if R 
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will be close to 1, the predicted and observed values may not 
match each other; they only tend to vary similarly. To compen-
sate this limitation, the coefficient of determination R2 can be 
used. To have precise results, R2 values should be close to 1 also. 
It should be noted also that the RMSE and MAE values should 
be close to zero to have a precise performance. MARS algorithm 
performs almost better than M5′ algorithm but the differences 
are negligible. However, models based on the MARS algorithm 
are recommended theoretically to use for the first two outputs: 
Fc28 and Vfunnel. It should be noted that the models developed 
based on the MARS algorithm are more complicated.

Table 2 Performance measurements calculated for developed models accord-
ing to training, testing and total data sets.

Model MAE RMSE R R2 Model

Fc28
(MPa)

M5′
Train

4.11 5.23 0.95 0.91

MARS 3.45 4.45 0.96 0.93

M5′
Test

5.50 6.84 0.94 0.83

MARS 4.51 5.56 0.94 0.89

M5′
Total

4.39 5.59 0.94 0.89

MARS 3.66 4.69 0.96 0.92

Vfunnel
(s)

M5′
Train

1.64 2.38 0.77 0.57

MARS 1.64 1.97 0.84 0.71

M5′
Test

1.53 2.38 0.83 0.66

MARS 1.11 1.46 0.95 0.87

M5′
Total

1.62 2.38 0.79 0.61

MARS 1.53 1.88 0.87 0.75

D 
[mm]

M5′
Train

27.96 37.12 0.76 0.56

MARS 28.06 36.29 0.76 0.57

M5′
Test

27.66 37.04 0.82 0.56

MARS 35.88 42.15 0.65 0.41

M5′
Total

28.15 37.27 0.77 0.55

MARS 29.64 37.55 0.74 0.54

LBOX
(%)

M5′
Train

0.05 0.07 0.57 0.32

MARS 0.05 0.06 0.70 0.49

M5′
Test

0.07 0.09 0.38 0.13

MARS 0.059 0.069 0.76 0.56

M5′
Total

0.06 0.07 0.52 0.27

MARS 0.05 0.06 0.71 0.51

The ratios between predicted and experimental values 
of Fc28, D, Vfunnel , and LBOX with respect to three main influ-
ential parameters: percentage of fly ash (P %), water–binder 
ratio (W/B), and percentage of superplasticizer (SP, Kg/m3) are 
shown in figures 3(a) to (c), respectively for the derived M5′ 
based models. As the scattering increases in these figures, the 
model accuracy will consequently decrease. It can be observed 
from these figures that the predictions obtained by the proposed 
models have a very good accuracy with no significant trend with 
respect to the main parameters. The errors of a good prediction 
model should be independent of physical parameters involved in 
that problem. Otherwise, it can be concluded that those physi-
cal parameters should be added to that prediction model or they 

didn’t consider correctly in that model. It should be mentioned 
that the errors of developed models for Vfunnel slightly decreases 
with increasing of superplasticizer.

Figure 4 depicts the histogram diagrams of Discrepancy 
Ratio (DR) of Predicted/Measured values based on the M5′ 
algorithm for the four output variables and their fitted normal 
distribution functions. For having a precise and accurate predic-
tive model, the error distribution of Measured/Predicted values 
should be symmetrical around their mean value and close to 1. 
Wider distribution generally leads to more uncertainty. As it is 
clear error distribution of the developed models based on the 
M5ʹ algorithm conform the normal distribution. This observa-
tion indicates that the uncertainty of the developed models has a 
deterministic behavior and can be easily modeled.

Fig. 3 The ratios between predicted and experimental values of output vari-
ables with respect to: (a) P, (b) W/B, and (c) SP

(a)

(b)

(c)



288 Period. Polytech. Civil Eng. A. Kaveh, T. Bakhshpoori, S. M. Hamze-Ziabari

Fig. 4 Histograms of Discrepancy Ratio (DR) of Predicted/Measured values 
by M5′ algorithm for four output parameters and their fitted normal  

distribution functions

4.2 Parametric study
To evaluate the robustness of the developed models, a para-

metric study should be done to ensure that the results of devel-
oped models are in line with physical concepts and also previ-
ous experimental results. To achieve this, the variations of the 
predicted compressive strength at 28 days (Fc28, MPa) as the 
main mechanical property of SCC and the predicted slump flow 
diameter (D, mm) as one of the main rheological properties of 
SCC by the derived M5ʹand MARS based models are inves-
tigated with respect to change of each input parameter. For 
monitoring parametric behavior of each influential parameter, 

other ones are fixed to their mean values while the considered 
parameter increased incrementally from its lower bound to the 
upper bound based on the experimental database at hand.

Figure 5 shows the results of the parametric study for the 
Fc28 as one of the main mechanical properties for prediction 
considered in this study. Based on this figure the following 
observations can be made. Increasing the dosages of binder 
content (B) and coarse aggregate (C) has an increasing influ-
ence on the Fc28. On the other hand, the dosage of fly ash (P) 
and water–binder ratio (W/B) influence in the contrary. It should 
be noted that the variation of Fc28 with respect to 100-P is pre-
sented here for more clarity. Other influential parameters (F and 
SP) are almost affectless on the Fc28. The parametric behavior 
of B and W/B are completely sound with the concrete engineer-
ing scenes. Experimental studies on the effect of fly ash on com-
pressive strength of self-compacting concrete under different 
curing conditions resulted that high dosages of P decrease the 
Fc28 [54]. Coarse aggregates can have an influence on the com-
pressive strength due to their shape, nominal maximum size, 
surface texture, and origin [55]. Experimental studies show that 
dosage of higher strength course aggregates like basalt can has 
an increasing effect on the Fc28 of SCC [56]. Based on this fig-
ure and the experimental database used in this study both Mars 
and M5ʹ based models can capture the same trends.

In Figure 6 the variations of D predicted by M5ʹ and MARS 
models to change of B, P, W/B, F, C, and SP are illustrated. 
The main observations from this figure are outlined at the 

Fig. 5 Parametric study of the compressive strength at 28 days (Fc28, Mpa)

Fig. 6 Parametric study of the slump flow diameter (D, mm)
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following. (i) Both M5′ and MARS models show a similar 
trend in variation of B. The slump flow diameter decreases as 
binder content increases. This trend is also observed in previ-
ous experimental studies. The main reason for this trend can 
be attributed to this fact that the plasticity and cohesiveness of 
the paste can be improved by decreasing the binder content. 
(ii) The D parameter is slightly increased by increasing the 
fly ash replacement level. It should be noted that in the related 
subfigure the horizontal axis is captured as 100-P for more 
clarity. It was reported that the increase of fly ash can help to 
improve the plasticity and cohesiveness of the paste. (iii) The 
D parameter is not sensitive to change of the ratio between 
water and binder (W/B). It can be seen from this figure that this 
behavior is in agreement with the results of other published 
works. The similar trends were also observed for parameters 
of fine aggregate and coarse aggregate contents as shown. (iv) 
According to predictions of developed models, D increases as 
superplasticizer dosage increases up to a specific dosage (1% 
to 2%) and after that, it is not sensitive to change of SP dos-
ages. It was reported in the literature that the SP can help to 
improve the flowability of SCC by liquefying and dispersing 
actions. Furthermore, the captured behavior of SP by M5′ and 
MARS models are inconsistent with experimental results of 
previously published works as shown.

4.3 Sensitivity analysis
To evaluate the most effective influential parameters the 

Gamma Test (GT) can be used. The GT can examine the rela-
tionship between the input and output variables without the 
construction of a new prediction model. It estimates the mini-
mum Mean Square Error (MSE) that should be obtained by 
any smooth nonlinear function [14]. Suppose a set of input and 
output parameters that are given as:

{(xi, yi), 1 ≤ i ≤ M} = (X, Y)

where vector X denote the input variables that are confined 
to some closed bounded set c ϵ Rm and y is a response variable. 
The relationship between X and y can be stated as:

y = f(X) + r

where f is smooth function and r is a noise variable with 
random nature. The GT calculate the variance of the random 
variable (Var(r)) without knowing the function of f. To achieve 
this, the GT estimates the following equations:

where δM(k) is the mean square distance to the kth nearest 
neighbor, ƳM(k) is the corresponding gamma function of the 

output variable, xN(i,k) is the index of kth nearest neighbor to 
xi, yN(i,k) is the corresponding output of xN(i,k) and |…| denotes 
Euclidean distance.

In general, the GT calculates mean-squared kth nearest neigh-
bor distances δ(k), (1 ≤ k ≤ kMax) and corresponding Ƴ(p)2. To 
estimate Var(r), the GT computes the best the intercept of the 
linear regression line of ƳM(k) versus δM(k), which is often 
shown by Г. This parameter is also an indicator for the com-
plexity of function f. The results of GT can also be standardized 
by considering the Vratio term which returns scale-invariant noise 
between zero and one. It is defined as:

where Var(y) is the variance of y.
To determine the most important parameters in prediction of 

the SCC mechanical and rheological properties, seven scenarios 
are considered. The GT analyses were employed to evaluate the 
effectiveness of each parameter in construction of a function 
for estimation of SCC properties. In the first scenario, all input 
parameters were considered in GT analysis. In the remaining sce-
narios the input variables are excluded one by one from the data-
set and then a new GT analysis is done. The results of GT analy-
sis for each output parameter are presented in Table 3. The most 
important GT parameter, Vratio is used to analysis the performance 
of each scenario. Excluding each parameter from analysis leads 
to change of GT parameters, which can be used to evaluate the 
importance of that excluded parameter. More changes in GT val-
ues indicate that the corresponding excluded parameter has more 
contribution in the prediction of the related output parameter. As 
stated, the Vratio can be varied between zero and 1. The value of 
Vratio close to zero indicates that there is a high degree of accu-
racy. The first two scenarios with more difference with respect to 
the total scenario are highlighted in Gray. According to this table 
excluding (P, F), (W/B, F), (P, SP), and (P, F) causes a significant 
increase of GT parameters in predicting Fc28, Vfunnel, LBOX , and D, 
respectively. Therefore, it can be concluded that these parameters 
are the most important parameters in the prediction of mechanical 
and rheological parameters of SCC.

Table 3 Results of Gamma test analysis for M5ʹ in predicting the mechanical 
and rheological properties of SCC.

Scenario Input variables
V-ratio

Fc28 Vfunnel LBOX D

1 Total 0.0337 0.1196 0.3703 0.7397

2 Lack of B 0.0029 0.1486 0.3633 0.7616

3 Lack of P 0.1060 0.1020 0.5173 0.5150

4 Lack of W/B 0.0564 0.1646 0.3847 0.5888

5 Lack of F 0.0838 0.2363 0.4982 0.6506

6 Lack of C 0.0500 0.1310 0.4686 0.7639

7 Lack of SP 0.0153 0.1089 0.6694 0.6373
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The amount of data used for developing a new model using 
machine learning approaches plays a crucial role in modeling 
procedure. To have a reliable model it is suggested that the min-
imum ratio of samples over the number of involved variables 
should be 3 [57]. A safer value of 5 can be more reasonable. 
In the present study, this ratio is much higher and is equal to 
114/6 = 19. To more verification of this statement, the gamma 
test can also be employed. To achieve this purpose, the varia-
tions of gamma parameter besides the standard error values for 
all data sets for developed gamma models of Vfunnel , Fc28, D, and 
LBOX are shown in figures 7 (a) to (d). According to the Figure 7 
(a), the curves of the standard error and gamma are almost flat 
after point 95. From this observation, it can be concluded that 
the number of data points required for modeling compressive 
strength at 28 days of SCC is sufficient i.e. it just needs 95 data 
points to develop a predictive model. Similarly, the curves of 
the standard error and gamma are flat after points 105, 106, and 
81 for modeling the D, LBOX , and Vfunnel parameters, respectively.

One of the main issues in mix design of the SCCs is to 
measure the capacity of concrete to tolerate changes in materi-
als and procedures, which is also known as robustness of the 
SCC. These variations are usually inevitable during produc-
tion time on any significant scale in practice. The robustness 
of the SCC depends on the mix design, the mixing procedure, 
and the application of the mixture. In this regard, the weighing 
tolerances due to inaccuracies in measuring process are also 
inevitable.  Hence, the standards ACI 117-90 [58] and EN 206-1 

[59] provide restrictions as demonstrated in Table 4 to allow 
variations in mixture proportions. Therefore, in this study, 
four different SCCs are considered to evaluate the sensitivity 
of developed models to small tolerances in materials based on 
Table 4. Details related to properties of considered concretes 
are provided in Table 5.

Table 4 Tolerances on material proportions according to ACI and EN.

Components Limits ACI 117-90 [58] Limits EN 206-1 [59]

Cementitious 
materials ±1% ±3%

Sand ±2% ±3%

Gravel ±2% ±3%

Water ±3% ±3%

Admixture ±3% ±5%

Table 5 Details on properties of different considered SCCs.

Dosage SCC1 SCC2 SCC3 SCC4

B 480 530 607 500

P 10 20 25 40

W/B 0.4 0.45 0.27 0.35

F 890 768 774 923

C 810 668 772 663

SP 9.9 4.55 15.12 7.5

D 665 680 640 680

LBOX 0.85 0.95 0.83 0.88

VFunnel 9 9.8 10.8 6.2

Fc28 46 37.9 74.5 55

Fig. 7 Variation of gamma parameter besides the standard error values for all data sets for developed gamma models: (a) Fc28, (b) Vfunnel, (c) D, and (d) LBOX

(a) (b)

(c) (d)
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The errors in weighing the constituent are altered to analyze 
how the compressive strength, LBOX , D, and Vfunnel parameters 
are changed. Errors in weighing water, binder, fine aggregate, 
coarse aggregate, fly ash, superplasticizer are the factors con-
sidered. The levels of variation for each constituent are pre-
sented in Table 6. These variations for each constituent are cho-
sen to cover the usual tolerances occurrence during weighing 
process in continuous production. According to the study by 
Rigueira et al. [60], 18 different mixtures based on orthogonal 
arrays and derived factorial plans for each SCC presented in 
Table 5 are considered. All these mixtures are shown in Table 
7. The properties of these mixtures are presented to developed 
predictive models and the fresh and hardened properties of 
them are calculated based on these models.

Table 6 Level of variation for each factor (errors in percentage).

Constituent Level of variation

Binder -3; 0; +3

Fly ash -6; 0; +6

Water -3; 0; +3

Fine aggregate -3; 0; +3

Coarse aggregate -3; 0; +3

Superplasticizer -5; 0; 5

The effect of weighing errors on the properties of each four 
SCC base mixtures are evaluated based on analysis of variance 
(ANOVA). ANOVA determines the most influential factors 
that effect on response variables considered [60]. The results 
of ANOVA for fresh and hardened properties of four SCCs 

Table 7 Variations applied to each SCC base dosage, in percentage.

Mixture Binder Fly ash Water Fine aggregate Coarse aggregate Superplasticizer

1 0 0 0 0 0 0

2 3 0 3 3 3 5

3 -3 0 -3 -3 -3 -5

4 0 6 3 0 3 -5

5 3 6 -3 3 -3 0

6 -3 6 0 -3 0 5

7 0 -6 -3 3 0 5

8 3 -6 0 -3 3 -5

9 -3 -6 3 0 -3 0

10 0 0 3 -3 -3 5

11 3 0 -3 0 0 -5

12 -3 0 0 3 3 0

13 0 6 0 3 -3 -5

14 3 6 3 -3 0 0

15 -3 6 -3 0 3 5

16 0 -6 -3 -3 3 0

17 3 -6 0 0 -3 5

18 -3 -6 3 3 0 -5

Table 8 ANOVA results calculated based on weighing errors data.
Parameter Fc28 Vfunnel D LBOX

Mean 0.003 0.005 0.002 -0.0001

Min -0.094 -0.075 -0.016 -0.036

Max 0.106 0.193 0.035 0.033

Range 0.201 0.268 0.051 0.069

Variance 0.003 0.002 0.0001 0.0001

Standard deviation 0.058 0.048 0.011 0.017

Standard error of mean 0.007 0.006 0.001 0.002

Constituent Pearson  
correlation

Strength Pearson  
correlation

strength Pearson  
correlation

strength Pearson  
correlation

strength

Binder -0.618 Strong -0.558 Strong 0.311 Strong 0.596 Strong

Fly ash 0.371 Strong 0.076 Weak -0.610 Strong -0.466 Strong

Water 0.447 Strong 0.298 Strong 0.191 Weak 0. 441 Strong

Fine aggregate -0.384 Strong -0.478 Strong -0.107 Weak 0.396 Strong

Coarse aggregate -0.287 Strong 0.064 Weak -0.166 Weak 0.247 Strong

Superplasticizer -0.084 Weak 0.051 Weak -0.113 Weak -0.042 Weak
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considered in this study are presented in Table 8. According to 
this table, the compressive strengths of the considered SCCs 
are mostly affected by changing in water and binder contents. 
It should be noted that tolerances in fine aggregate, fly ash and 
coarse aggregate, respectively, can also have significant influ-
ence on compressive strength. For Vfunnel parameter, the toler-
ances in cement, water, and fine aggregate have the most influ-
ences in predictive ability of developed models. In total, the 
fresh properties of the considered SCCs are mostly affected by 
the corresponding variations in the cement, water, and fly ash 
contents. These observations are also in line with experimen-
tal results of Rigueira et al. [60].

5 Conclusions
Self-Compacting Concrete (SCC) with the fly ash as an 

addition is a common form of SCC used in the practice. The 
objective of this study is to investigate the capability of deci-
sion tree based algorithms for predicting the properties of SCC 
with fly ash as an addition. Selected algorithms are the M5′ 
and Multivariate Adaptive Regression Splines (MARS). The 
M5′ algorithm as a rule based method is used to develop new 
practical equations while the MARS algorithm besides its 
high predictive ability is used to determine the most important 
parameters.

To construct the models, very recently collected and avail-
able dataset with a total number of 114 different experimental 
data is used. Each data set contains 6 input influential param-
eters (Binder content, fly ash percentage, water–binder ratio, 
fine aggregates, coarse aggregates and superplasticizer) and 
four output parameters (the compressive strength at 28 days, 
the V-funnel time, slump flow diameter, and the L-box ratio). 
The compressive strength is indispensable to model, ana-
lyze and design the structures or members as one of the main 
mechanical properties of SCC. The rheological properties of 
SCC are also of great importance like its mechanical proper-
ties. A concrete mix can only be classified as Self-Compacting 
Concrete if it satisfies certain requirements in filling ability, 
passing ability, and segregation resistance. Therefore, such 
developed models are applicable and desired in the field.

Performance analysis is done based on the frequently used 
performance measurement to evaluate the effectiveness of the 
developed model’s ability in the prediction of SCC properties. 
Also to evaluate the robustness of the developed models, a par-
ametric study has been done to ensure that the results of devel-
oped models are in line with the physical concepts and also 
with the previous experimental results. Furthermore, sensitiv-
ity analysis based on the gamma test is employed to determine 
the most effective influential parameters. Results show that tree 
based models which yield to closed form prediction equations, 
perform remarkably well in predicting the properties of the 
self-compacting concrete containing fly ash as cement replace-
ment. Although the models based on the MARS algorithm are 

somehow more precise, but the models developed based on the 
M5ʹ algorithm which are also precise are recommended to use 
because of the simplicity.
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