
480 Period. Polytech. Civil Eng.� A. Tadjadit, B. Tiliouine

Analytical Expressions of 
Hydro-Seismic Forces on Dams 

Abdelmadjid Tadjadit1, Boualem Tiliouine1*

Received 24 April 2017; Revised 21 November 2017; Accepted 19 December 2017 

1	Civil Engineering Department, Ecole Nationale Polytechnique,  
10 Avenue H. Badi, 16200, Algiers, Algeria

*	Corresponding author, email: boualem.tiliouine@g.enp.edu.dz

62(2), pp. 480–493, 2018
https://doi.org/10.3311/PPci.10935
Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Civil Engineering

Abstract
Analytical expressions for the determination of hydro-seismic 
forces acting on a rigid dam with irregular upstream face 
geometry in presence of a compressible viscous fluid are 
derived through a linear combination of the natural modes of 
water in the reservoir based on a boundary method making 
use of complete sets of complex T-functions. 
The formulas obtained for distributions of both shear forces 
and overturning moments are simple, computationally effec-
tive and useful for the preliminary design of dams. They show 
clearly the separate and combined effects of compressibility 
and viscosity of water. They also have the advantage of being 
able to cover a wide range of excitation frequencies even 
beyond the cut-off frequencies of the natural modes of the 
reservoir. Key results obtained using the proposed analytical 
expressions of the hydrodynamic forces are validated using 
numerical and experimental solutions published for some    
particular cases available in the specialized literature. 

Keywords
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1 Introduction
Dams were historically built to meet the vital needs such as 

drinking water supply, irrigation and electrical power genera-
tion. They are, therefore, very sensitive works requiring high 
protection against hydrodynamic forces which are important 
factors in seismic design considerations during earthquakes. 
Failure of dams can cause uncontrollable damage, not only to 
properties, but also to populations.

The analysis and design of this particular class of structures 
may prove to be a difficult task as it involves the combination of 
knowledge of several disciplines such as fluid mechanics, solid 
mechanics, hydrodynamics, wave propagation...etc. Analytical 
expressions of hydrodynamic forces on dams are rare and avail-
able only under simple geometry of the water dam interface. 
Several works: analytical, experimental and numerical, have 
been devoted in order to obtain an accurate determination of the 
hydrodynamic pressures exerted on dams during earthquakes. 
Westergaard [1] was the pioneer to have derived an analytical 
expression to evaluate the hydrodynamic pressures applied 
to a rigid dam with vertical upstream face under a horizontal 
harmonic ground motion. Using the electric analog method, 
Zangar [2] studied experimentally the hydrodynamic effect of 
horizontal earthquake action on a rigid dam having upstream 
face with either constant or compound slopes in the presence 
of an incompressible fluid. Chopra [3] published an analytical 
solution for vertical rigid dams under horizontal and vertical 
earthquake ground motions taking into account the effect of 
compressibility of the fluid in the reservoir. Chwang [4], based 
on “Two-Dimensional potential-flow theory” obtained the exact 
solution for earthquake forces on a rigid dam with an inclined 
upstream face of constant slope in presence of an incompress-
ible inviscid fluid. Liu [5], using the same theory obtained ana-
lytical solution for the hydrodynamic pressures acting on the 
inclined upstream dam face for different bottom slopes. Tsai [6] 
developed a semi analytical solution for hydrodynamic pressure 
distribution on rigid dams with arbitrary upstream face con-
sidering water compressibility. Moreover several authors have 
used the numerical methods essentially based on the F.E.M, to 
include the effects of compressibility of the fluid in the reservoir 
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[7, 8, 9], the flexibility of the dam [10, 11] and pressure wave 
absorption by sediments at the bottom of the reservoir [12, 
13, 14]. Additively to these numerical methods, there are also, 
semi-analytical ones. They remain valid and are an important 
input for the preliminary dam design [6, 15, 16].

In this paper, analytical expressions for the determination 
of hydro-seismic forces acting on a rigid dam with irregular 
upstream face geometry in presence of a compressible viscous 
fluid are derived through a linear combination of the natural 
modes of water in the reservoir based on a boundary method 
making use of complete sets of complex T-functions. Key 
results obtained using the proposed analytical expressions of 
the hydrodynamic forces are validated using numerical and 
experimental solutions published for some particular cases 
available in the specialized literature.

2 Background 
2.1 Assumptions

Consider a rigid dam with partially inclined upstream face 
impounded by a reservoir of infinite length and rigid bottom 
subjected to horizontal earthquake short durations. Coordinate 
origin is located at the base of the dam (Fig. 1). The motion of 
the dam-reservoir system is two-dimensional and the water in 
the reservoir is considered linearly compressible, viscous and 
irrotational. 

Let M (x, y) be a point in the Cartesian coordinate system (o, 
x, y), located at the upstream face of the dam at an elevation y 
from the reservoir bottom; the coordinates of the point M are:

where, H is the depth of the water in the reservoir; C is the 
fraction of height H and θ the angle formed by the inclined 
portion of the upstream face with the vertical.

Since the dam undergoes a displacement of rigid body, 
consequently the set of points belonging to the fluid-structure 
interface are assumed to have, at each time, the same acceler-
ation as the base of the dam.

Fig. 1 Rigid dam with partially inclined face and infinite length reservoir 
subjected to a horizontal ground motion

On Fig. 1, the reservoir is delimited by four contours defined 
as: 

S1ÈS2: Contour delimiting the upstream face of the dam; S3: 
Contour defining the free surface of water; S4: Contour defin-
ing the boundary of truncation of the reservoir and S5: Contour 
defining the reservoir bottom.

CH is defined as the height of the inclined portion of the 
upstream face and n  is the outward normal direction to the 
dam-water interface.

2.2 Formulation of governing equation
The hydrodynamic pressure in excess of the hydrostatic 

pressure in the reservoir is governed by the equation of the 
compression waves given as follows:

where:

corresponds to the two dimensional Laplace operator in 
Cartesian coordinates with:

In equation (4), c represent the speed of sound waves in 
water, λ the Lamé’s modulus and ρ the mass density of water. 

Since we are assuming small deformations and considering 
the combined effects of compressibility and viscosity of the 
fluid in the reservoir, the linear visco-elastic Kelvin-Voigt 
model [17] was adopted to represent the internal dissipation. 
Lamé’s modulus is then expressed by a complex valued func-
tion depending on the angular frequency of excitation w and it 
is given by Eq. (5). Well understood, this way of doing would 
make it possible to simulate the internal damping which causes 
a loss of energy for the compression waves traveling away 
from the dam. 

where η = wH/c is the dimensionless frequency; w is the 
angular frequency of the excitation and ξ the fraction of the 
critical damping of water.

It is assumed that the dam vibrates as a rigid body with the 
same horizontal ground acceleration given as follows:

since we have contemplated a simplified seismic evaluation 
approach, the peak ground acceleration is considered suffi-
cient to define the seismic parameters [18]. 

As previously advanced, the pressure in the reservoir can be 
given in the frequency domain as:
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Substituting Eq. (7) in Eq. (2) provides:

Equation (8) represents the Helmholtz differential equation 
of compression waves in the water and K = w/c, corresponds to 
the compression wave number.

2.3 Boundary conditions
The boundaries conditions for the dam-reservoir system 

shown in Fig. 1 are given by: 
1. On the upstream part of the dam enclosed by the contour 

S1ÈS2, it is assumed that the hydrodynamic pressures gradient 
in the direction normal to the upstream face of the dam and the 
inertial forces generated in the mass of the water are in a state 
of equilibrium, which allows us to write:

where Ün is the normal component of the horizontal ground 
acceleration given as:

2. At the free surface of water, we assume that 
P x H W S( , , )

3
0= .

3. At the limit of truncation S4, supposed far enough from 
the dam upstream face (when L ≥ 3H; L is the length of the 
reservoir), we assume that P(∞, y, w)|S � = 0 [10].

4. At the reservoir bottom, acceleration of particles of the 
water in the vertical direction is null and the gradient of asso-
ciated hydrodynamic pressures is also zero:

3 Analytical expression for distribution of the total 
shear forces

Under a horizontal seismic loading, the hydrodynamic 
pressure P(x, y, w) is given by the following relationship:

with

where, Ti(x, y, w) define the natural water modes of vibra-
tion in the reservoir propagating horizontally, CS = Ün/g , g is 
the acceleration of gravity, γ is the unit weight of water and Cp 

the pressure coefficient. Here, Cp is approximated by a series 
of complex functions of real variable y belonging on the com-
pact interval I= [0, H] as follows:

where, λi = (2i – 1)π/2H and µ Ki i= −λ 2 2 .

Ai, correspond to the unknown coefficients with i = 1, 2, …, 
∞. They are obtained after solving a system of linear equations 
given by the relation below (Eq. (14)) using a numerical calcu-
lation program developed for this purpose.

The elements of the Hermitian matrix [Fji] and the column 
vector {Gj} are calculated as defined in [15]. For a computa-
tional tolerance of 10–4, beyond 25 terms, the uniform conver-
gence of the series of functions Cp(y) is verified through the 
“Uniform Cauchy criterion”. The latter converges to a called 
“Limit function” defined as the set of points corresponding to 
the simple convergence sequences at any point y of the com-
pact interval [0, H].

Thus, under the above conditions, an approximate solution 
will be obtained for Eq. (13) for a finite number of terms.

The distribution of the horizontal component of the total 
shear forces along the contour S1ÈS2 is given as follow:

where, ds represent infinitely small segment of the S1ÈS2 
boundary.

Substituting Eq. (13) into Eq. (15), yields:

Since the pressure response is given as a series of continu-
ous functions converging uniformly on [0, H], an interchange 
between the operator ( ∫ ) and the operator ( ∑ ) is permitted.

Thus, Eq. (15 a) takes the following form:

After successive integrations, we finally obtain:
for y  [0, CH]

for y  [CH, H]

with: 

In Eq. (16 a) and Eq. (16 b), Fh(y)represents the horizontal 
component of the total shear force above any elevation y of the 
bottom of the reservoir.
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4 Analytical expression for distribution of the 
overturning moments

The distribution of the total overturning moments about 
the Z axis at any elevation y generated by the horizontal shear 
forces is defined as:

After successive integrations, Eq. (17) becomes:
for y  [0, CH]

for y  [CH, H]

with:

In Appendix A, simplified formulas are given for some spe-
cific geometric configurations of the dam-water interface. The 
maximum values of Fh(y) and Mz(y) are also computed at the 
bottom of the reservoir. For illustration purposes, graphical rep-
resentations of the mode shapes of the 1st, 2nd and the 3rd natural 
water modes of vibration in the reservoir are also presented. In 
Appendix B, we have presented for a specific case study, the 
values of the Hermitian matrix [Fji], the column vector {Gj} and 
the column vector of the unknown coefficients {Ai}.

5 Results and discussion
In order to implement the proposed analytical formulas, 

a computer program in Matlab language [16] was modified 
to incorporate, in the frequency-domain, the effects of com-
pressibility and viscosity of water in the reservoir. Initially, the 
program considered only the case of an incompressible invis- 
cid fluid. 

Results obtained for total shear forces and overturning 
moments are expressed, respectively, in terms of dimensionless 
coefficients CF = |Fh|/Fst and CM = |Mz|/Mst in which |Fh| and 
|Mz| are the modulus of the complex frequency responses of Fh 
and Mz. Fst = ρgH2/2 and Mst = ρgH3/6 are respectively, the total 
hydrostatic force and the corresponding overturning moment 
at the base of the dam. Pressures, shear forces and associated 
overturning moments are, respectively expressed, in Pascal, 
Newton and Newton-meter per unit of width of the dam.

Several results are obtained corresponding to different 
geometries of dam-water interfaces and different values of the 
damping ratio ξ over a wide range of excitation frequencies w.  

The first numerical application was for a rigid dam with ver-
tical upstream face (C = 0 or θ = 0), impounded by a reservoir 
with compressible undamped water. In order to compare the 
numerical results obtained with those given by Westergaard, 
we consider the case of a harmonic ground excitation with 
period T = 4/3 sec and a sound wave speed in water c = 1438 
m/s. As one can observe from Table 1, the numerical results 
obtained are in a very good agreement with those given by the 
exact method of Westergaard. 

Table 1 Percent errors of p, Fh and Mz between analytical expressions and the 
exact method of Westergaard 

Reservoir depth H(m)
60.96 182.88 243.84

p(%) 0,024 0,032 0,014

Fh(%) –0,044 0,037 –0,056

Mz(%) –0,027 –0,005 –0,040

However, the same comparison was made with the assumption 
of an incompressible fluid [16], the relative errors recorded were 
more important, especially for reservoirs of large heights, where 
the effect of compressibility is more pronounced. In fact, as the 
height of the water level increases, the fundamental frequency 
of the reservoir given by w1 = πc/2Hdecreases and approaches 
more and more the excitation frequency (w = 2π/T). On the other 
hand, for reservoirs of low height, it would be necessary to have 
a high excitation frequency level in order to be able to highlight 
the effect of the compressibility of the fluid in the reservoir.

To further illustrate this situation, two other comparisons were 
made; the first with respect to the experimental method of Zangar 
[2] and the second with respect to that of the exact method of 
Chwang [4]. For these two authors, the fluid is considered incom-
pressible; the results obtained are summarized in Tables 2 and 3, 
which clearly show that the percent errors increase progressively 
with the increase of the water height level in the reservoir.

Table 2 Percent errors of p, Fh and Mz between analytical expressions and 
experimental method of Zangar 

Reservoir depth H(m)

60.96 182.88 243.84

p(%) 1.903 9.968 18.711

Fh(%) 2.502 9,700 17.343

Mz(%) –0.174 6.237 13.031

Table 3 Percent errors of p, Fh between analytical expressions and the exact 
method of Chwang

Reservoir depth H(m)

60.96 182.88 243.84

p(%) 0.874 8.857 17.512

Fh(%) 0.729 7.803 15.314

Mz(%) - - -
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In the following applications, the results obtained were 
presented for a wide range of values of the dimensionless 
frequency η and different damping ratios ξ of the water. The 
Characteristic parameters of the dam-reservoir system are:  
ρ = 1000 kg/m3 and Cs = 0.1 (Signal of unit amplitude equal to 
1 m⁄s2 with variable frequency covering the range of values of 
the seismic frequencies).

In figures 2 and 3, both real and imaginary parts of CF are 
presented for the dimensionless frequencies η = 0, 1.5, 3 and 6. 
We can easily see the effect of the excitation frequency on the 
response of the system. When η exceeds π/2, the response is 
complex valued with the imaginary part representing the loss 
of energy in waves moving away from the dam.

Fig. 2 Real parts of total shear forces on a rigid dam with sloping angle θ = 
37.6 ̊ and C = 0.75 (undamped fluid case, ξ = 0%) 

Fig. 3 Imaginary parts of total shear forces on a rigid dam with sloping angle  
θ = 37.6 ̊ and C = 0.75 (undamped fluid case, ξ = 0%) 

The same reasoning can be adopted for the distribution of 
the total overturning moments (Fig. 4 and 5).

  It can be noted that, contrarily to hydrodynamic pressures, 
whatever the configuration of the upstream face, the maxi-
mum values of the hydrodynamic forces always occur at the 
base of the dam.

Fig. 4 Real parts of total overturning moments on a rigid dam with sloping 
angle θ = 37.6 ̊ and C = 0.75 (undamped fluid case, ξ = 0%) 

Fig. 5 Imaginary parts of total overturning moments on a rigid dam with 
sloping angle θ = 37.6 ̊ and C = 0.75 (undamped fluid case, ξ = 0%) 

Now, to evaluate the combined effects of compressibility 
and viscosity of water, another example is given for the case of 
a vertical rigid dam. 

Fig. 6 Total shear forces on a rigid dam with a vertical upstream face for 
damping ratios ξ = 1% and ξ = 5%

Figure 6 shows the variation of the dimensionless coefficient 
CF with the frequency ratio w/w1 for damping ratios ξ = 1% 
and ξ = 5%. It is seen that the effect of water viscosity can be 
considered negligible insofar as the excitation frequency is not 
very close to that of the fundamental modes of the reservoir. 
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In the following, the study is extended to the case of an 
inclined dam formed by two plane upstream faces with a 
sloping angle θ = 37.6 ̊ and height ratio C = 0.75, taking into 
account the effects of both compressibility and viscosity of 
water. In figure 7, we can note the consistency of the trends 
between the results obtained and those given by Avilés [15]. 

Fig. 7 Total shear forces on a partially inclined dam with sloping angle θ = 
37.6 ̊ and C = 0.75, for damping ratios ξ = 1% and ξ = 5%

Fig. 8 Distribution of total shear force on a partially inclined dam with slop-
ing angle θ = 37.6 ̊ and C = 0.75, for damping ratios ξ = 1% (Triangle marker) 

and ξ = 5% (Circle marker)

Fig. 9 Distribution of total overturning moments on a partially inclined dam 
with sloping angle θ = 37.6 ̊ and C = 0.75, for damping ratios ξ = 1% (Triangle 

marker) and ξ = 5% (Circle marker)

In figures 8 and 9, the distributions of normalized hydro-seis-
mic forces and overturning moments are presented for dimen-
sionless frequencies w/w1 = 1,3 and 5. As one can observe, 
largest effects of viscosity of water occur for the fundamental 
mode of vibration of the reservoir. We also can observe that 
the lower the excitation frequency, the greater the influence of 
the effect of water viscosity.

6 Conclusions
  Analytical expressions for the determination of hydro-seis-

mic forces acting on a rigid dam with irregular upstream face 
geometry in presence of a compressible viscous fluid are 
derived through a linear combination of the natural modes of 
water in the reservoir based on a boundary method making use 
of complete sets of complex T-functions. They show clearly 
the separate and combined effects of compressibility and vis-
cosity of water.

The numerical results obtained are very consistent with 
those given by Westergaard when the dam upstream face is 
vertical. The effect of water compressibility is shown by com-
paring the results with those obtained by Zangar and Chwang 
respectively. The study was then extended to the case of a rigid 
dam with irregular geometry in presence of compressibility 
and viscosity of the water. The results obtained were presented 
for a wide range of values of the dimensionless frequency η  
and different damping ratios ξ of the water. 

In the case of high rigid dams and high values of excitation 
frequencies, the importance of effect of compressibility on 
the total hydrodynamic pressures, shear forces and associated 
overturning moments is not identical. When compressibility 
effect is neglected, the percent errors, in the present study, are 
found to be in the order of 15–18 % for hydrodynamic pres-
sures, 14–17 % for shear forces and less than 13 % for over-
turning moments.

 In general, the effect of viscosity of the water may be 
neglected insofar as the frequency of the seismic excitation is 
not very close to that of the natural modes of vibration of the 
reservoir. However, at the resonance frequency, the general-
ized seismic forces are controlled essentially by the damping 
ratio of the water in the reservoir. 

The formulas obtained for distributions of both shear forces 
and overturning moments are simple, computationally effec-
tive and useful for the preliminary design of dams. They also 
have the advantage of being able to cover a wide range of exci-
tation frequencies even beyond the cut-off frequencies of the 
natural water modes of the reservoir. 
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1. Special cases for the distributions of Fh(y) and Mz(y)
1.1 Rigid dam with sloping upstream face 
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1.2 Rigid dam with vertical upstream face
In this case we have:

2. Maximum values of the total shear forces and overturning moments 
The maximum values of the total shear forces and the associated overturning moments are given at the base of the dam (y = 

0) as follows:

with

3. Graphical representation of the 1st water mode shape of vibration for undamped and damped fluid cases
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Fig. 1(b) Mode shape of the 1st natural water mode of vibration in the reservoir, w w c
= = =1
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2 2 1= − =λ and . Here c, K and T1 (x, y, w1) are complex valued.

4. Graphical representation of the 2nd water mode shape of vibration for undamped and damped fluid cases

Fig. 2(a) Mode shape of the 2nd natural water mode of vibration in the reservoir, w w radc
= = =2
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Fig. 2(b) Mode shape of the 2nd natural water mode of vibration in the reservoir, w w radc
= = =2
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2 2 2= − =λ and
. Here c, K and T2 (x, y, w2) are complex valued.

5. Graphical representation of the 3rd water mode shape of vibration for undamped and damped fluid cases

Fig. 3(a) Mode shape of the 3rd natural water mode of vibration in the reservoir, w w radc
= = =3
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Fig. 3(b) Mode shape of the 3rd natural water mode of vibration in the reservoir, w w radc
= = =3
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. / sec , ξ = 1%, T3(x, y, w3) = e–μ3x cosλ3y with 
µ K K w

c3 3

2 2 3= − =λ and . Here c, K and T3 (x, y, w3) are complex valued.

Appendix B

We give hereafter the component values of the Hermician matrix [Fji], the column vector {Gj} and the column vector of the 
unknown coefficients {Ai} computed using the system of linear equations given by Eq. (14) for calculation of the maximum 
values of the total shear forces and overturning moments at the base of the dam Fh (0) and Mz (0) (Equations A5 and A6). Twenty 
five terms have been used to calculate these forces considering an accuracy of 10–4 and the following parameters: H = 100m, L 
= 3H, c = 1438m/s, θ = 37.6 ̊, C = 0.75, Cs = 0.1 and w = w1 = πc/200. For reasons of space we consider only the cases of ξ = 0% 
(undamped fluid) and the case of ξ = 1% (damped fluid).

a) [Fji], {Gj} and  {Ai} for damping ratio ξ = 0% (Inviscid fluid)
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{Gj}
T = 1.0e+03*{0.5886 - 0.0000i  -0.9675 + 0.0000i   0.8356 - 0.0000i  -0.7224 + 0.0000i   0.7364 - 0.0000i  -0.8821 + 0.0000i   

1.0805 + 0.0000i    -1.2188 - 0.0000i   1.2172 - 0.0000i  -1.0769 + 0.0000i   0.8799 - 0.0000i  -0.7415 + 0.0000i   0.7425 - 0.0000i  
-0.8825 + 0.0000i   1.0796 + 0.0000i  -1.2187 - 0.0000i   1.2182 - 0.0000i        -1.0787 + 0.0000i   0.8817 - 0.0000i  -0.7427 + 
0.0000i   0.7431 - 0.0000i  -0.8825 + 0.0000i   1.0795 + 0.0000i  -1.2186 - 0.0000i   0.0000 + 0.0000i}.

{Ai}
T = 1.0e+09*{0.0002 - 0.0000i   0.0001 - 0.0000i   0.0001 - 0.0000i   0.0002 - 0.0000i   0.0006 - 0.0000i   0.0017 - 0.0000i   

0.0048 - 0.0000i  0.0127 - 0.0000i      0.0319 - 0.0000i   0.0747 - 0.0000i   0.1617 - 0.0000i   0.3196 - 0.0000i   0.5715 - 0.0000i   
0.9164 - 0.0000i   1.3059 - 0.0000i   1.6382 - 0.0000i   1.7899 - 0.0000i   1.6827 - 0.0000i   1.3406 - 0.0000i   0.8877 - 0.0000i   
0.4758 - 0.0000i   0.1986 - 0.0000i   0.0607 - 0.0000i   0.0121 - 0.0000i   0.0012 - 0.0000i}.

b) [Fji], {Gj} and  {Ai} for damping ratio ξ = 1% 
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{Gj}
T = 1.0e+03*{0.5886 - 0.0000i  -0.9675 + 0.0000i   0.8356 - 0.0000i  -0.7224 + 0.0000i   0.7364 - 0.0000i  -0.8821 + 0.0000i   

1.0805 + 0.0000i  -1.2188 - 0.0000i   1.2172 - 0.0000i  -1.0769 + 0.0000i   0.8799 - 0.0000i  -0.7415 + 0.0000i   0.7425 - 0.0000i  
-0.8825 + 0.0000i   1.0796 + 0.0000i  -1.2187 - 0.0000i   1.2182 - 0.0000i        -1.0787 + 0.0000i   0.8817 - 0.0000i  -0.7427 + 
0.0000i   0.7431 - 0.0000i  -0.8825 + 0.0000i   1.0795 + 0.0000i  -1.2186 - 0.0000i   0.0000 + 0.0000i}.

{Ai}
T = 1.0e+09*{0.0002 - 0.0000i   0.0000 - 0.0000i   0.0001 - 0.0000i   0.0002 - 0.0000i   0.0004 - 0.0001i   0.0012 - 0.0003i   

0.0032 - 0.0008i   0.0086 - 0.0022i     0.0217 - 0.0055i   0.0512 - 0.0127i   0.1118 - 0.0271i   0.2231 - 0.0527i   0.4027 - 0.0925i   
0.6519 - 0.1455i   0.9379 - 0.2032i   1.1879 - 0.2495i   1.3104 - 0.2667i   1.2436 - 0.2450i   1.0001 - 0.1906i   0.6685 - 0.1231i   0.3617 
- 0.0642i   0.1524 - 0.0261i   0.0470 - 0.0077i   0.0095 - 0.0015i   0.0009 - 0.0001i}.
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