
277On the Clark Unit Hydrograph Model of HEC-HMS 2018 62 1

On the Clark Unit Hydrograph Model 
of HEC-HMS

József Szilágyi1*

Received 21 April 2017; Revised 02 June 2017; Accepted 23 June 2017

1 Department of Hydraulic and Water Resources Engineering 
Faculty of Civil Engineering, 
Budapest University of Technology and Economics 
H-1111 Budapest, Hungary

* Corresponding author email: jszilagyi1@vit.bme.hu

62(1), pp. 277–279, 2018 
https://doi.org/10.3311/PPci.11141 

Creative Commons Attribution b

Brief note

PPPeriodica Polytechnica
Civil Engineering

Abstract
A mathematically correct form of the linear storage element’s 
routing equation is specified requiring only a slight modifica-
tion of the existing HEC-HMS routine. The new formulation, 
unlike the current version in use, is unconditionally stable as 
long as the time step and the storage coefficient values are 
trivially specified as positive numbers.
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1 Introduction
Application of the HEC-HMS software [1] for watershed 

modeling is gaining worldwide momentum ([2]–[6]). It is 
believed that by demonstrating how one of its routines, the 
Clark Unit Hydrograph Model, can be made more efficient 
in a simple manner is a worthwhile effort to engage in as it 
is expected that once these slight changes are incorporated 
into the model by the United States Army Corps of Engineers 
(USACE), it will serve the hydrologic modeling and practic-
ing engineering community well, especially as HEC-HMS can 
be easily coupled to atmospheric [3] or evapotranspiration [7] 
models, which thus motivated the present work.

Clark [8] derived the unit hydrograph of linear watershed 
response to excess precipitation via the Muskingum channel 
routing [9] analogy by considering the inhomogeneous ordi-
nary differential equation (ODE) of the lumped continuity

where dS/dt is the time-rate of change in stored water vol-
ume (S) within the catchment (or within the channel reach), I 
is excess precipitation for the watershed (or inflow rate to the 
channel), Q is stream discharge at the outlet (or outflow from 
the channel) and t is time-reference. The Muskingum method 
relates storage to a weighted average of the in- and outflow 
rates of the channel section

where K is a constant storage coefficient and 0 ≤ x ≤ 1. By 
replacing the time rate of change with finite differences for Δt 
time increments and taking arithmetic averages for I(t) and 
Q(t) from consecutive values separated by Δt in time, the well-
known Muskingum routing equation results [8] as

with
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By consideration that precipitation is typically represented 
as a constant (in the form of pulses) over each Δt, i.e., It = It–Δt 

for the given time period and taking x = 0 which thus represents 
a linear storage element where outflow is proportional to stor-
age, Eq. (3) can be written [1] as

Note that here It is the constant pulse value valid for the 
(t–Δt, t) interval. As the coefficient cA depends on Δt and K as 
well, cA ≤ 1 is required in order to avoid possible negative out-
flows which thus yields Δt/K ≤ 2 as a general requirement for 
numerical stability [9].

Stability issue only emerges because of the unnecessary 
introduction of finite differences for obtaining the routing 
scheme of Eq. (8). As it is shown below, a very similar rout-
ing scheme can be derived (only the calculation of cA changes) 
without resorting to finite differences thus avoiding any stabil-
ity problems in future applications.

2 A mathematically correct formulation of the 
routing scheme of Equation (8) for the linear storage 
element

Solution of Eq. (1) for the linear storage element, i.e., S(t) = 
KQ(t), can be obtained from [11] where a generalized solution 
for a homogeneous cascade (i.e. K is the same for each lin-
ear storage element of the cascade) of serially connected linear 
storage elements is given by explicitly taking into account how 
input (inflow or precipitation) and output (flowrate) are repre-
sented by measurements in a discrete-time framework. For a 
detailed description of the mathematics involved please also 
refer to [12]. The solution for the single linear storage element 
forced by pulsed precipitation excess values thus becomes

with k = K–1. Note again that It is the constant pulse value 
valid for the (t–Δt, t) interval. From Eq. (9) the outflow rates 
become 

which is similar to Eq. (8) except [1 – Δt (K + 0.5Δt)–1] is 
replaced by e–kΔt and Δt (K + 0.5Δt)–1 by (1 – e–kΔt). Note that 
Eq. (10) can never yield negative values as e–kΔt is always less 
than unity and larger than zero for any positive k and Δt values. 
This is the mathematically correct formulation of the linear 
storage element’s routing scheme specifically formulated for 
pulsed inputs in a discrete-time framework.

Fig. 1 illustrates the unconditionally stable nature of Eq. (10) 
in stark contrast to Eq. (8), the latter becoming increasingly 
unstable (outflow rates not only exceed concurrent excess pre-
cipitation values but also become negative) as Δt/K increases. 

Fig. 1 The results of routing schemes Eqs. (8) and (10) to pulsed precipitation 
excess values (see [15] for a detailed description of the input time series). 

With each panel the values of both Δt and K–1 are doubled, starting from 0.1 
h and 2 h–1, respectively.

3 Conclusions
Eq. (9) is the general solution for storage [and (10) for out-

flows] of the inhomogeneous bulk mass-conservation ODE 
represented by (1) and applied for a linear reservoir. As it is 
unconditionally stable, it is always recommended over the 
HEC-HMS routing scheme of Eq. (8).

   The first term (which contains the instantaneous impulse 
response function of the linear storage element evaluated at t 
= Δt) specifies S at t from an initial value at t–Δt (unforced 
system response) while the second term (containing the unit-
step response function evaluated at t = Δt) yields the storage 
response at t to external forces (forced response) represented as 
excess precipitation pulses. In the classical hydrological litera-
ture typically only this forced response of an originally relaxed 
system [i.e. S(0) = 0] is discussed in the form of convolution 
integrals. Note that by taking into account the pulsed nature of 
the excess precipitation function the convolution integral can 
be brought into the explicit form found in Eq. (9). All this is 
deemed worthwhile to mention as the work of [11], pioneer-
ing a generalized state-space description of the classical and 
still widely used Nash cascade [13] of serially connected linear 
storage elements, is largely overlooked in the hydrologic and 
civil engineering literature leading to repeated claims of gen-
eralization (e.g., [14]) by inclusion of the unforced response.
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