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Abstract
In this paper, according to the design requirements of a 
steel structural project, based on the principle of structural 
mechanics of thin-walled bar, the non-right angle H-section, 
which is subjected to bending moment and shear force, is taken 
as the object of study, the formulas of bending normal stress 
and shear stress are deduced. On this basis, the distribution of 
bending stress and shear stress and the location of dangerous 
stress are analyzed, the calculation method of section strength 
is discussed, and the FEA software ABAQUS is used to verify 
the above. 
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1 Introduction
In the past two decades, the construction industry has devel-

oped by leaps and bounds, the building appearance become 
various. A building shown in Fig. 1 has an inclined facade. In 
the steel structure of the inclined facade, the steel beam uses 
a non-right angle H-section as shown in Fig. 2, ie, the angle 
between the web and the flange of the steel beam section is 80 
degree to meet the appearance requirements of the building.

Fig. 1 An inclined facade of a building

In Fig. 2, the height of the non-right angle H-section is h, 
the width is b, the flange thickness is tf, the web thickness is tw, 
the angle between the web and flange is α. The cross section is 
geometrically non-symmetric. The shear centre and centroid 
own the same position. The origin of the coordinate system 
is located at the centre of the section, the X axis of coordinate 
system is parallel to the flange, the parameters of the cross 
section can be given as follows [1]:
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According to the size of the non-right angle H-section used 
in the project, and taking into account the common dimen-
sions of the H-section [2] [3], the angle α is defined in the range 
of 70~90 degree, the range of height-to-width ratio m (= h / b) 
is 1.0~3.0, and the range of thickness ratio of flange and web  
k (= tf / tw) is 1.0~2.0.

Fig. 2 Non-right angle H-section

In this paper, assuming that the beam member is simply sup-
ported, and subjected to a uniformly distributed load through 
the shear centre and parallel to the Y axis of the cross section. 
Therefore the internal force produced on the cross section is 
the shear force Qy along the Y axis and the bending moment 
Mx around the X axis, see Fig. 2. The positive direction of the 
shear Qy is along the positive direction of the Y axis, the posi-
tive direction of the bending moment Mx is determined by the 
right-hand screw rule.

2 Bending normal stress σz produced by bending 
moment Mx and its distribution
2.1 Calculation formula of bending normal stress

According to the thesis on thin-walled bar, the bending nor-
mal stress can be given by the formula [4]:

where M x  and M y  are effective bending moment:
M M Ix x= , M M I I Iy x xy x= ( ) , I I I Ixy x y= −1

2
[ ( )] .

x is the cartesian coordinate, see Fig. 2.
Formula (3) can also be written in the form of curvilinear 

coordinates:

where, s is the curvilinear coordinate on the profile line, see 
Fig. 2. The positive direction of s is along the counterclock-
wise direction (around the cross-section centroid o), otherwise 

negative. The starting point of s is at the opening of the cross 
section. The curvilinear coordinates and cartesian coordinates 
of each segment of the cross section are shown in Table 1. In the 
table, only the coordinates of the upper half of the cross section 
centroid are given: the flange segment from node 1 to node 2 is 
simply referred to as the flange segment 1. The flange segment 
from node 2 to node 3 referred to as the flange segment 2, and 
the web segment from the node 2 to the centroid referred to 
as the web. The coordinates of the lower half can be deduced 
according to the geometric anti-symmetry of the section.

When the calculation result of the formulas (3) to (6) is pos-
itive, the direction of the bending normal stress σz is the posi-
tive direction along the Z axis.

2.2 The distribution of bending normal stress
As for top flange, the coordinate is xzero = hIy / (2Ixy) when 

the bending normal stress is zero (σz = 0). The coordinate of 
the node 1 (Fig. 2) is xn1 = (b + h cotα)/2. The ratio of xzero to  
xn1 is defined as:

where Iy and Ixy can be calculated using the formulas (1) and 
(2). Draw the ∆σ – α curve shown in Fig. 3. When drawing, take 
the ratio m as 1.0, 1.5, 2.0, 2.5 and 3 respectively, the ratio k as 
1.0, 1.25, 1.5, 1.75 and 2.0 respectively. As can be seen from 
the Fig. 3, when α, m and k are within the range of this paper, 
∆σ > 0.5.

The analysis of the formula (3) shows when 0.5 ≤ ∆σ ≤ 1.0, 
the bending normal stress is zero at the top flange xzero = hIy / 
(2Ixy), as shown in Fig. 4(a). When ∆σ > 1.0, the bending normal 
stress is always greater than zero, as shown in Fig. 4(b). As a 
special case, the bending normal stress is uniformly distrib-
uted on the top flange when the angle α is 90 degree, as shown 
in Fig. 4(c). The bending normal stress at the node1, node 2 and 
node 3 of the top flange can be calculated by formula (7) to (9).

The analysis of the formula (3) also shows that the bending 
normal stress at the centroid of the web is zero, and the bending 
normal stress on the web is anti-symmetric linearly distributed 
with respect to the centroid, as shown in Fig. 4. The maximum 
and minimum stresses occur at node 2 and node 5 respectively, 
and the absolute value can be calculated by formula (8).

According to the geometric anti-symmetric feature of the 
cross section, the distribution of the bending normal stress on 
the flange and the web on the other half of the cross section can 
be drawn as shown in Fig. 4. The positive and negative signs in 
the figure indicate the positive and negative directions of the 
bending normal stress respectively.
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Fig. 3 The curve of ∆σ – α

(a)                           (b)                            (c)
Fig. 4 The distribution of bending stress on the cross section

3 The shear flow q produced by shear force Qy and 
its distribution
3.1 Calculation formula of shear flow

In thin-walled bars, the shear flow q produced by the shear 
force Qy on the cross section can be expressed by the following 
equation [4]:

where Q Qx y,  are effective shear force, and , Q Q Iy y= . Sx, 
Sy are the static moment of the cross section, and S ydsx

s
= ∫ δ0

, 
S xdsy

s
= ∫ δ0

. s is the curvilinear coordinate on the profile line. 
The symbol δ represents the wall thickness.

Solving equation (10), we can get the shear flow of each 
segment of the cross section.

where q(s2)n2w is the shear flow at node 2 on the web, which 
can be calculated using formula (12), but at this point, the defi-
nition domain of the curve coordinates should be [–b, 0]. Sub-
stituting s2 = –b into formula (12), we obtain the following 
formula:

When the value of the shear flow calculated according to 
formula (11) to (14) is positive, the direction of the shear flow 
is in the counterclockwise direction and vice versa.

3.2 The distribution of the shear flow
According to the above formulas, the shear flow on the 

flange and the web is in a parabola distribution.
For the shear flow on the flange segment 1, the coordinates 

of the parabolic symmetry axis is
s1sym = [b + h(cotα – Iy/Ixy)]/2.

The coordinates of the midnode of the flange segment 1 is 
s1cen = b/4. The ratio of s1sym to s1cen is defined as

∆q = s1sym/s1cen = 2[1 + h(cotα – Iy/Ixy)]/b.
Draw the  curve shown in Fig. 5. When drawing, the values 

of the ratio m and the ratio k are the same as in Fig. 3. As can 
be seen from this figure, when m, k and α are within the ranges 
of this paper, ∆q < 2.0.

As shown in Fig. 6(a), when ∆q < 2.0, since the symmetry 
axis is on the right side of the node 1, the shear flow at the node 
1 is zero and the shear flow at node 2 is the minimum in the 
flange segment 1.

Fig. 5 The curve of ∆q – α

Table 1 Curvilinear coordinate and Cartesian coordinate of the cross section component

Segment Curvilinear coordinate Starting node Definition domain of s Cartesian coordinate

Flange 1 s1 Node1 [0, b/2] x = s1 + (b + h cotα)/2, y = h/2

Flange 2 s2 Node 3 [–b/2, 0] x = s1 – (b + h cotα)/2, y = h/2

Web s3 Node 2 [–h/(2sinα),0] x = [h/(2sinα) + s3]cos α, y = [h/(2sinα) + s3]sin α
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As shown in Fig. 6(b), when 0 ≤ ∆q < 1, since the symmetry 
axis is between the node 1 and the midnode of flange segment 
1, the shear flow is zero at node 1 and at the curvilinear coor-
dinate s1 = [b + h(cotα – Iy/Ixy)]. The shear flow at the symmetry 
axis is the maximum of the flange segment 1.

The shear flow at node 2 is the minimum shear flow of the 
flange segment 1, which can still be calculated using formula 
(15).

As shown in Fig. 6(c), when 0 ≤ ∆q < 2, since the symmetry 
axis is between the node 1 and the node 2, the shear flow is 
zero at node 1 and the maximum and the second largest value 
of the flange segment 1 can be obtained at the symmetry axis 
and the node 2, respectively. These two values can still be cal-
culated by formulas (16) and (15), respectively.

For the shear flow on the flange segment 2, the axis of sym-
metry of the parabola is:

s2sym = –[b – h(cotα – Iy/Ixy)]/2
= –(1– ∆q/4)b

Since ∆q < 2.0, so s2sym< –0.5 b, that is, the axis of symmetry 
is always on the right side of node 2 (Fig. 6(c)). At this point,  
q(s2) is zero at node 3 and its maximum value on the flange 
segment 2 can be obtained at node 2.

For the shear flow on the web, the axis of symmetry is s3sym= 
–h/(2sinα), namely at the centroid. The shear flow q(s3) obtains 
its the maximum and minimum values at the symmetry axis 
and node 2, respectively. The minimum value at node 2 can be 
calculated by formula (14). The maximum value at the sym-
metry axis is:

As a special case, when α = 90°, the shear flow on the flange 
segment 1 and 2 is linearly distributed, and the shear flow on 
the web is still parabolic, as shown in Fig. 6(d).

According to the geometric anti-symmetric feature of the 
cross section, the shear flow distribution on the other half sec-
tion is shown in Fig. 6. The direction of the arrow is the direc-
tion of shear flow.

4 Stress and Strength Analysis
4.1 Flange

Since ∆q = 2[1 + h(cotα – Iy/Ixy)/b] < 2, so Iy/Ixy–cotα > 0. From 
the formula (7) and (9) we can see, σ σn n x xy x yM bI I I I

3 1
0− = >( ) , 

σ σ αn n x xy y xy x yM hI I I I I I
3 1

0+ = − >[( cot )] ( ) , therefore |σn3| > 
|σn1|. Because the bending normal stress on the flange is lin-
early distributed, the absolute value of the bending normal 
stress on flange segment 2 is greater than that of the normal 
stress on the flange segment 1.

Since ∆q = 2[1 + h(cotα – Iy/Ixy)/b] < 2, so Iy/Ixy–cotα > 0. 
Take the curve coordinates s1 = s, s2 = –s, where 0 ≤ s ≤ b/2. 
From formulas (11) and (12) we can see,

q s q s Q ht s I I I I
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Therefore |q(s2)| ≥ |q(s1)|. Since s1 and s2, in above equation, 
can take the arbitrary curve coordinate values on the flange 
segment 1 and the flange segment 2, the absolute value of shear 
stress on flange segment 2 is greater than or equal to the abso-
lute value of shear stress on flange segment 1.

Let A I Ix=1 2( ) , B = Ixy/Iy, C = h + Ixy(b – hcotα)/Iy, then the 
bending normal stress and shear stress on the flange segment 2 
can be simplified as σ τz x yM A Bs C Q A Bs Cs= + = − +( ), ( )2

2 2

2

2
, 

respectively. According to von Mises criterion, or Maxi-
mum-Distortion-Energy Criterion, the von Mises stress on the 
flange segment 2 is σ σ τm z= +2 2

3  [5], and its derivative is
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Fig. 6 The distribution of shear flow on the cross section
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From the analysis given below, it can be seen that on the 
flange segment 2, since dσm/ds2 has a tendency to increase 
monotonically, the von Mises stress σm is only possible to 
obtain the maximum value at the node 2 or the node 3. The 
detailed analysis is as follows:

(1) since
− = − + − 

< −

C B b h I I

s b
y xy

sym

( ) ( cot )

.

2 2

0 5
2

α

                =  ,

and –b/2 ≤ s2 ≤ 0, the part of formula (19). 2Bs2 + C = 2B[s2 + 
C/(2B)] > 0. s Cs B M Qx y2

2

2

2 2
2 3+ + ( ) is another part of formula 

(19), which is quadratic. The parabolic shape corresponding to 
this part is concave, and the coordinates of the parabolic axis 
of symmetry is –C/(2B) = s2sym< –0.5b. Thus, on the flange seg-
ment 2, dσm/ds2 has a tendency to increase monotonically.

(2) If the formula (19) has a zero point s2zero in the flange 
segment 2, then s Cs B M Qx y2

2

2

2 2
2 3 0+ + <( )  in the interval 

(–0.5b, s2zero), and s Cs B M Qx y2

2

2

2 2
2 3 0+ + >( )  in the interval 

(s2zero, 0). This means that on the flange segment 2, the maxi-
mum value of the von Mises stress σm (ie, the dangerous stress 
of the flange) must occur at node 2 or 3 [6].

It can be seen from the analysis of Section 2 and 3 of this 
paper that under the action of the bending moment Mx and the 
shear force Qy, at the node 2 of the flange, there are both the 
bending normal stress σn2 (see formula (8)) and the shear stress 
τn2 = q(s2)n2/tf(where q(s2)n2 see formula (17)), then the von Mises 
stress at the nodes 2 can be expressed by σ σ τmn n n2 2

2

2

2
3= +  on 

the basis of the von Mises criterion. There is only the bending 
normal stress σn3 (see formula (9)) at the node 3 of the flange, 
so the von Mises stress at this node is σmn3 = σn3.

For a right-angle H-section, since the bending normal stress 
on the flange is uniformly distributed, the critical stress on the 
flange only occurs at the node 2, and σmn2 can be calculated by 
the above formula σ σ τmn n n2 2

2

2

2
3= + .

4.2 Web
Similarly, under the action of the bending moment Mx and 

the shear force Qy, there are both bending normal stress σn2w 
= σn2 (see formula (8)) and shear stress τn2w = q(s2)n2w/tw (where  
q(s2)n2w see formula (14)) at node 2 of the web, so the von Mises 
stress at this node is σ σ τmn w n w n w2 2

2

2

2
3= + . At the midpoint of 

the web, there is only shear stress τno = q(s3)sym/tw (see formula 
(18)), so the von Mises stress at this node is σ τmno no= 3 .

4.3 Von Mises stress calculation formula
In summary, under the action of the bending moment Mx 

and the shear force Qy, the von Mises stress calculation formu-
las on non-right angle H-section can be summarized as shown 
in Table 2.

5 Numerical calculation
The FEA software ABAQUS is used to validate the for-

mulas deduced. Three non-right angle H-section beams are 
selected as the specimen, whose ends are simply supported 
and span L = 3.0 m. The uniform load is applied to the shear 
centre, q = 10.0 kN/m. The structure calculation diagram and 
FEA mesh is shown in Fig. 7.

5.1 Cross section size and stress distribution
The cross-sectional dimensions of the three specimens are: 

Sp1: 340 × 250 × 9 × 14–80, Sp2: 300 × 200 × 8 × 12–75, Sp3: 
300 × 150 × 6.5 × 9–70. Here the dimension format is h × b × 
tw × tf – α. The values of ∆α and ∆q of the cross section of the 
specimens are shown in Table 3.

As can be seen from Table 3 and in Section 2.2 and 3.2 of 
this paper, for the specimen Sp1, since ∆σ > 0.1 and ∆q < 0, 
the distribution of the bending normal stress is expected to 
be similar to that of Fig. 4(b), and the shear stress distribution 
similar to that of Fig. 6(a). For Sp2, since 0.5 ≤ ∆σ ≤1.0 and 0 
≤ ∆σ < 1, the distribution of the bending normal stress similar 
to that of Fig. 4(a), and the shear stress distribution similar to 
that of Fig. 6(b). For Sp3, since 0.5 ≤ ∆σ ≤1.0 and 1 ≤ ∆σ ≤ 2, 
the distribution of the bending normal stress similar to that 
of Fig. 4(a), and the shear stress distribution similar to that of 
Fig. 6(c).

5.2 Numerical results
In the FE calculation, the 4-node reduced integration shell 

element S4R in the ABAQUS is used [7], and the mesh size is 
5mm. In order to apply the simple boundary condition at the 
beam ends, the reference point RP is set at the shear centre of 
cross section at both ends of the beam (see Fig. 7 ), and then 
all the DOF of all nodes in the cross section are coupled with 
RP using distributed coupling mode [8], finally apply simple 
boundary condition at RP [9][10].

Table 2 Von Mises stress calculation formulas

Stress
Flange Web

Node 2 Node 3 Node 2 Node O

von Mises stress σm

Normal stress σz Formula (8) Formula (9) Formula (8) Zero

Shear stress τ Formula (17) Formula (14) Formula (14) Formula (18)

Table 3 The values of  and  of the specimens

parameter Sp1 Sp2 Sp3

∆α 1.19 0.80 0.64

∆q -0.46 0.56 1.26

According to the distribution of the bending moment Mx 
and the shear force Qy, see Fig. 7, in order to avoid the bend-
ing normal stress σz, or the shear stress τ is zero, the stress 

σ σ τm z= + ⋅( )2 2
0 5

3
.

d ds Q B Bs C

s Cs B M Q
m y

x y

σ
2

2

2

2

2

2

2 2

3 2

2 3

= +

× + +

( )

[ ( )]                

(19)
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calculated by FEA software are extracted from the cross sec-
tion at a distance of L/4 (= 0.750 m) from the support point. 
Correspondingly, when calculated in accordance with the for-
mulas, the shear force on the cross section is Q = qL/4 and the 
bending moment M = 3qL2/32 [11]. The elastic modulus of the 
steel is E = 2.1 × 105 N/mm2 and the Poisson’s ratio μ = 0.3.

Fig. 8 to Fig. 10 show the distribution of the bending normal 
stress σz and the shear stress τ of the flange and web, which are 
based on the results of the formula (labeled with Formula in 
the figures) and the those of FEA software (labeled with FEA). 
The abscissa in the figures use the Curvilinear coordinates. 
Fig. 11 and Fig. 12 show the distributions of the Mises stress 
for the flange and web of the three specimens. Table 4 gives the 
stress at the dangerous points (see Section 4 and Table 2) on 
the cross section of the specimens, which are calculated using 
the formulas in Table 2 and the FEA software.

As can be seen, the stress obtained by the formula is close 
to that obtained by FEA software, but not equal. The average 
values of the stress differences at the nodes on each segment 
of the cross section obtained by the above two methods are 
shown in Table 5. The average value of the stress difference

Avg
n

Formula FEA
n

. ,= ⋅ −
=
∑1

1i

where Formula is the stress obtained by the formulas, FEA is 
by FEA software, and n is the number of nodes in the segment.

On the one hand, in deriving the formula of this paper, the 
following assumptions used in the structural mechanics of 
the thin-walled bar result in a slight deviation in the calcu-
lated results: (1) The plane assumes, that is after the defor-
mation, the cross section is still flat and perpendicular to the 
axis of the member. (2) Since the wall thickness is very small, 
it is assumed that the bending shear stress is evenly distrib-
uted along the wall thickness and acts along the tangential of 
the contour line [4]. On the other hand, in the above figures 
and tables, the stress obtained by FEA software is extracted 
from the mesh nodes. The stress on a node is derived from 
the extrapolation and averaging of the integral points of the 
elements connected to it [12], so the node stress is not exactly 

the exact value in the strict sense. The above two aspects may 
be the main reason why the stresses obtained by the above two 
methods are very close to each other, but not equal.

Fig. 7 The structure calculation diagram and FEA mesh

6 Summary
Due to the anti-symmetric geometrical characteristics of 

the non-right angle H-section, under the action of the bending 
moment and the shear force，the distribution of the bending 
normal stress and the shear stress on the flange of the non-right 
angle H-section is different from that of the right angle H-sec-
tion, see Fig. 4 and Fig. 6. Although the distribution of bending 
stress and shear stress on the web is the same as that of the 
right angle H-section, the magnitude of the stress is different, 
see Table 2. Therefore, when calculating the stress and check-
ing the strength of non-right angle H-section beams, special 
attention should be paied to above characteristics.

Table 4 The stress at the dangerous points, MPa

Specimen Calculation method
Flange Web

Node 2 Node 3 Node 2 Node o

Sp1
Formula 6.498 11.373 7.281 4.519

FEA 6.394 11.085 7.171 4.536

Sp2
Formula 10.507 24.297 11.166 5.811

FEA 10.239 23.625 10.906 5.825

Sp3
Formula 17.494 62.382 17.698 7.341

FEA 16.916 60.205 17.189 7.356

(a) Flange                                                                                             (b) Web
Fig. 8 Stress distribution of Sp1
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Table 5 The average value of the stress difference

Specimen Stress
Section segment

Flange 1 Flange 2 Web

Sp1
Normal stress σz 0.086 0.136 0.096

Shear stress τ 0.031 0.035 0.007

Sp2
Normal stress σz 0.146 0.267 0.150

Shear stress τ 0.048 0.058 0.010

Sp3
Normal stress σz 0.251 0.606 0.255

Shear stress τ 0.074 0.101 0.013

(a) Flange (b) Web
Fig. 9 Stress distribution of Sp2

(a) Flange (b) Web
Fig. 10 Stress distribution of Sp3

     Fig. 11 Von Mises stress on the flange                                                      Fig. 12 Von Mises stress on the web
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