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Abstract 
The paper presents a new compliance-function-shape-ori-
ented robust approach for the volume-constrained continuous 
topology optimization with uncertain loading directions. The 
pure set-based algorithm try to rearrange (take away) some 
amount of the material volume, originally used to minimize the 
nominal-compliance, to make a more balanced compliance-
function-shape on the set of feasible directions which is less 
sensitive to the directional fluctuation. The objective is the 
area of the compliance function shape defined on the set of 
feasible directions. The area-minimal shape searching pro-
cess is controlled by the maximum allowable increase of the 
nominal-compliance. The result will be a more robust compli-
ance function shape which can be characterized by a higher 
nominal-compliance but a smaller curvature about it in any 
direction. Using the terminology of the classical variational 
problems, the proposed approach can be classified as a curve-
length or surface-area minimizing inner-value problem where 
the inner condition, namely the maximum allowable increase 
of the nominal-compliance, expressed as a percentage of the 
original nominal compliance, the searching domain is defined 
implicitly as integration limits in the objective formulation and 
a usual equality relation is used to prescribe the allowable 
material volume expressed as a percentage of the total mate-
rial volume. Two examples are presented to demonstrate the 
viability and efficiency of the proposed robust approach. 
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1 Introduction 
Uncertainty is an important consideration in continuous 

topology optimization to produce robust and reliable solutions. 
The source of uncertainty may be the variability of applied 
loads, spatial positions of nodes, material properties, and so 
on. Various deterministic and stochastic approaches have 
been developed to account for different types of uncertainty in 
structural design and optimization methods to get robust and 
reliable solutions. The interested reader is directed to Bendsøe 
and Sigmund [1] and Deaton and Grandhi [2] which contain 
extensive bibliographies on this subject. In this paper, it is 
assumed that the only source of uncertainty is the variabil-
ity of the applied load directions and the compliance is used 
as performance measure in the in the volume-constrained 
topology optimization. The volume-constrained structural 
optimization models of continuum structures which are able 
to take into account the directional uncertainty of the applied 
loads can be divided into two groups (Ben-Tal et al. [3]): (1) 
deterministic and (2) stochastic. A critical examination and 
comparison of the volume-constrained deterministic and sto-
chastic topology optimization models with uncertain loading 
directions, from engineering point of view, was presented by 
Csébfalvi and Lógó [4]. 

The deterministic models which try to minimize the vol-
ume-constrained worst compliance on the set of feasible load-
ing directions can be formulated by several different ways. De 
Gournay et al. [5] presented an approach for shape and topol-
ogy optimization of the robust compliance via the level set 
method which minimizes the worst-case compliance using a 
semi-definite programming method to select the best descent 
direction in the iteration process. Thore et al. [6] presented a 
large-scale robust topology optimization method under load-
uncertainty where the loads vary in uncertainty sets. The 
problem can be formulated as a semi-infinite optimization 
problem, which can be replaced by a non-linear semi-definite 
problem. A worst-load-direction oriented unified common 
framework was presented by Csébfalvi [7] for robust optimi-
zation of both continuum and truss structures with uncertain 
load directions, which can be used for volume minimization of 
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continuum structures with compliance constraints and weight 
minimization of truss structures with displacement and stress 
constraints. 

The stochastic models apply parametric statistical tools to 
describe the directional uncertainty of the loads. The most 
popular model minimizes the volume-constrained expected 
compliance with loading directional uncertainty, where the 
directional uncertainties are assumed normally distributed 
and statistically independent. The expected compliance mini-
mization model can be transformed to a standard volume-
constrained multi-load compliance-minimization problem by 
several different ways where the load cases and weights are 
derived analytically or numerically. However, it is not straight-
forward how could be select the load cases to ensure that all 
critical cases are considered in the sampling schema which 
needed to obtain an accurate approximation of the original 
continuous problem. Dunning et al. [8] proposed a “pseudo-
sample-based” stochastic method for considering loading 
directional uncertainty in topology optimization in order to 
produce robust solutions. Carrasco et al. [9] presented a sam-
ple-based approach for the volume-constrained expected com-
pliance minimization in topology optimization with stochastic 
loading directions. In the work of Liu et al. [10] the directional 
uncertainty of the applied loads is described by directional 
interval variables which are divided into many small intervals, 
and then the uncertain small interval variables are approxi-
mated by their deterministic midpoints. 

This paper presents a novel compliance-function-shape-
oriented robustness measure and a robust algorithm using 
this measure for the volume-constrained continuous topology 
optimization with uncertain loading directions. The pure set-
based algorithm try to rearrange (take away) some amount of 
the material volume, originally used to minimize the nominal-
compliance, to make a more balanced compliance-function-
shape on the set of feasible directions which is less sensitive 
to the directional fluctuation. The essence of the proposed 
new approach is shown in Figure 1. The objective function is 
the surface area of the compliance function shape defined on 
the set of feasible loading directions. The area-minimal shape 
searching process is controlled by the maximum allowable 
increase of the nominal-compliance. The result will be a more 
robust compliance function shape which can be characterized 
by a higher nominal-compliance but a smaller curvature about 
it in any direction. 

In Figure 1, the directional uncertainty of the applied load 
is denoted by a symmetric set  α α α α α− ≤ ≤ +  about the 
nominal direction α . The nominal and the novel robust shape-
oriented directional compliance function denoted by nc(α) and 
sc(α), respectively.

Fig. 1 The visualization of the proposed new approach as a curve-length-
minimization problem with an inner-value-condition 

Using the terminology of the classical variational problems, 
the proposed approach can be classified as a curve-length or 
surface-area minimizing inner-value problem where the inner 
condition, namely the maximum allowable increase of the 
nominal-compliance, expressed as a percentage of the original 
(deterministic) nominal compliance, the searching domain is 
defined implicitly as integration limits in the objective func-
tion formulation and the usual equality relation is used to pre-
scribe the allowable material volume expressed as a percent-
age of the total material volume. 

The paper is organized as follows. Section 2 focuses on the 
mathematical formulation and the numerical algorithm of the 
considered problem. The examples used to illustrate the pro-
posed approach are presented in Section 3. Finally, some con-
cluding remarks are presented in Section 4. 

2 Model and algorithm 
In this paper, for sake of simplicity but without loss of 

generality the theoretical model of the compliance-function-
shape-oriented robust approach will be formulated only for 2D 
structures with two directionally uncertain point loads. The 
model, when there is only one directionally uncertain load, 
can be given by straightforward simplifications from this 
model. It will be shown at the end of this section that in the 
case of one directionally uncertain load there is special sym-
metric problem type where the objective and gradient func-
tions can be generated symbolically using symbolic manipula-
tion software. 

A directionally uncertain point load with magnitude  
fi, i {1,2} can be written in terms of two orthogonal loads. 
We construct a four dimensional load vector f(α) such that odd 
entries of the vector correspond to horizontal loads and even 
entries to vertical loads:

f(α) = [f1cos(α1), f1sin(α1), f1cos(α1), f1sin(α1)]

Exploiting the fact that load vector F has maximum four 
nonzero entries the surface-area of compliance function sc(x) 
can be described as follows (see, for example, Olver [11]):

(1)
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where
c(α) = f (α) Qf(α)t

is the directional compliance function and Q is a 4 × 4 sym-
metric matrix consisting of such entries of K–1 which are needed 
in the directional compliance computation. It worth to note, that 
the selected invers elements can be computed without inverting 
matrix K as a whole.

The volume-constrained surface-area-minimization model 
can be described in the following form:

sc(x) ® min

mv(x) = φV0

KU = F

nc(x) = τC0

0 ≤ x ≤ 1
where x is the vector of design variables (the element densi-

ties), sc(x) is the surface-are of the compliance function on the 
set of the feasible load directions, U and F are the displacement 
and load vectors, respectively, K is the global stiffness matrix, 
mv(x) and V0 are the material volume and design domain vol-
ume, respectively, φ is the prescribed volume fraction, nc(x) is 
the nominal compliance function, C0 is the compliance-min-
imal compliance, and τ > 1 is the allowed maximum nominal 
compliance increase factor.

In the case of 2D topology optimization problems, the design 
domain is assumed to be rectangular and discretized with  
n = ex × ey square elements discretized with four nodes per ele-
ment and two degrees of freedoms (DOFs) per node. Both nodes 
and elements are numbered column-wise from left to right. 

The algorithm of the new robust approach has been devel-
oped in Matlab language under Windows 7 operation system 
as a variant of a very efficient 88 line Matlab code developed by 
Andreassen et al. [12] for the traditional deterministic SIMP-
type volume-constrained compliance-minimization problem, 
starting from the famous 99 line code which was originally 
developed by Sigmund [13]. To solve the large and nonlinear 
optimization problem the fmincon solver from the Matlab 
environment was used with numerically generated objective 
and gradient function values. It is an open and very challeng-
ing question that what would be the most efficient numerical 
algorithm which could be solve the problem within a more rea-
sonable time.

In the case of one directionally uncertain load there is spe-
cial symmetric problem type where the objective and gradi-
ent functions can be generated symbolically using symbolic 
manipulation software. Namely, when the directionally uncer-
tain loads is acting symmetrically about the symmetry axis of 
the problem, then the 2×2 symmetric Q matrix will be diagonal 

with  Q1,1 , Q2,2  diagonal entries, therefore, an appropriate 
symbolic manipulation software can be able to cope with the 
symbolic integration and differentiation problems. The result 
will be an exactly defined objective sc(x) and gradient ∂sc(x) / 
∂xi, i {1,2 ..., n} which decrease significantly the computation 
time of the optimization process.

In the totally symmetric case, assuming that the structure 
is rotated such a way that the nominal angle will be α = 0 , the 
objective function will be the following:

where

f (α) = [f cos (α), f sin (α)]
and

c (α) = f (α)Q f (α)t

After symbolic differentiation and integration the objective 
function sc(x) will be the following:

where  is the elliptic integral of the second kind, which is a 
callable function in each “state-of-the-art” scientific program 
developing environment. 

The symbolically generated gradient function entries are 
the following: 

∂sc ( x ) / ∂xi = (E – F) / (Q1,1 – Q2,2)(D1,1 – D2,2)

where

and
(D1,1 – D2,2) = (∂Q1,1/∂xi – ∂Q2,2 / ∂xi),

i  {1,2,...,n}.

EllipticF(*,*)is the elliptic integral of the first kind which 
is also a callable function in each standard scientific program 
developing environment. It is worth to note that ∂Q1,1/∂xi 
and ∂Q2,2 /∂xi ,i{1,2,...,n} can be generated by simple matrix 
manipulations (see Csébfalvi [14]).

3 Examples 
In this section two design problems will be presented to 

demonstrate the efficiency and viability of the new robust 
solution searching approach. Using the terminology of the 
classical variational problems, the first example is curve-
length-minimization problem with an inner-value-condition 
whereas the second one is surface-area-minimization problem 
with the same inner-value-condition. The presented examples 
with reproducible numerical results as a benchmark problems 
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may be used for testing the quality of exact and heuristic solu-
tion procedures to be developed in the future for robust topol-
ogy optimization.

3.1 Example 1 
The first design example is a simple symmetric “academic” 

problem with only one directionally uncertain point load for 
which, in the case of trusses as a function of side loads, the 
analytical solutions are known.

The example, shown in Figure 2, is beam with a ground 
structure of 30mm × 60mm × 1mm. An external point load f 
acts in the end-middle position of the beam and its value is  
f = –1 and its nominal direction is α = 0 . The directional 
uncertainty of the point load is described by a symmetric angle 
set about the nominal direction:  α α α α α− ≤ ≤ + , where  
α π= / 6 . According to the symmetricity of the angle set, 
it cannot destroy the structural symmetry therefore in the 
numerical solution of the curve-length-minimization process 
symbolically generated objective and gradient functions can 
be used. 

The symbolically generated objective function can be given 
by straightforward simplifications from the general case (10):

The ∂ ( ) ∂ ∈{ }sc x / , , ,...,x i ni 1 2 gradient can be given with 
similar simplification from the general case (11).

The Young’s modulus is E0 = 1, the Poisson’s ratio is ν = 0.3 
and the fixed volume fraction is φ = 3. The penalization power 
is p = 3 and we applied density filtering with filter radius rmin= 3.

Fig. 2 The design domain, boundary conditions, and the applied external 
point load with ±π/6 directional uncertainty of a cantilever beam

The nominal-compliance-minimal design with α = 0  is 
shown in Figure 3. 

Fig. 3 The nominal-compliance-minimal design with α = 0   

The optimal shapes for τ  {1.25,1.50,2.00} are presented 
in Figure 4–6. 

Fig. 4 Compliance-function-shape-optimized design with τ = 1.25 

Fig. 5 Compliance-function-shape-optimized design with τ = 1.50 

Fig. 6 Compliance-function-shape-optimized design with τ = 2.00 

The nominal compliance function shape and the curve-
length-minimized compliance function shapes for different 
inner-value-conditions with τ  {1.25, 1.51, 2.00} on the set of 
feasible loading directions are presented in Figure 7.

sc x EllipticE( ) = − −( )( )π / ,
, ,

3
11 2 2

2

Q Q (14)
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Fig. 7 The nominal compliance function shape and the curve-length-mini-
mized compliance function shapes for different inner-value-conditions with 

τ  {1.25, 1.51, 2.00} on the set of feasible loading directions

The performance measures of the nominal and the curve-
length-minimized compliance functions are presented in 
Table 1, in which each row describes an optimization process 
where the optimal objective function value is presented as a 
bold number in a light grey cell and the corresponding col-
umn label defines the currently used objective function. Table 
1 well illustrates the fact that higher the allowed nominal com-
pliance increase the smaller the compliance fluctuation about 
the current nominal compliance value using curve-length-
minimization model.

Table 1 Performance measures of the nominal and the curve-length- 
minimized compliance functions

τ nc(x) sc(x)

3.70 9.80 8.50 3.70 4.80

1.25 4.60 4.10 6.60 4.60 1.90

1.50 5.50 2.90 6.90 5.50 1.30

2.00 7.40 1.80 8.10 7.40 0.66

3.2 Example 2 
In this section, we present a little bit larger example with two 

directionally uncertain point loads, to show the essence of the 
presented robust surface-area-minimal solution searching pro-
cess in a non-symmetric case. The example, presented in Fig-
ure 8, is a cantilever beam, with a ground structure of  30mm 
× 60mm × 1mm and two unit loads denoted by fi= –1, i  {1,2} 
acting in the bottom-middle and bottom-end positions, from 
left to right in the given order. For each point load the nominal 
load direction is α π= 3 2/  which can be perturbed by maxi-
mum α π= / 6  in any directions: 4 3 5 3 1 2π α π/ / , ,≤ ≤ ∈{ }i i . 
The Young’s modulus is E0 = 1, the Poisson’s ratio is ν = 3 and 
the fixed volume fraction is φ = 0.3. The penalization power is  
p = 3 and we applied density filtering with filter radius rmin = 3.

Fig. 8 The design domain, boundary conditions, and the applied external 
point loads with ±π/6 directional uncertainty of a cantilever beam 

In this example, we assume that in the surface-area-mini-
mization the coefficient of the inner-value-condition is τ = 1.2, 
to demonstrate that this relatively small nominal-compliance 
increasing possibility (20%) is able to change drastically the 
compliance-function-shape on the set of feasible loading direc-
tions. The nominal-compliance-minimal design and the corre-
sponding directional-compliance-function-shape are presented 
in Figure 9–10, respectively. The surface-area-minimal design 
and the corresponding directional-compliance-function-shape 
are presented in Figure 11–12. The common plot of the nominal-
compliance-minimal and surface-area-minimal directional-
compliance-function-shapes, shown in Figure 13, is a good 
indication of the strength of the proposed “easy-to-understand” 
robust approach. It is easy to see that the surface-area-minimal 
compliance model drastically outperform the nominal-compli-
ance model because its shape is nearly parallel to the ∝ −∝

1 2
 

axes with a very small curvature over the set of feasible loading 
directions.

Fig. 9 The nominal-compliance-minimal design 

Fig. 10 directional-compliance-function-shape in the nominal case

c x( ) c x( ) c x( )
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Fig. 11 The surface-area-minimal design

Fig. 12 directional-compliance-function-shape in the  
surface-area-minimal case

Fig. 13 Common plot of the nominal-compliance-minimal and surface-area-
minimal directional-compliance-function-shapes

The performance measures of the nominal and the sur-
face-area-minimized compliance functions are presented in 
Table 2, in which each row describes an optimization process 
where the optimal objective function value is presented as a 
bold number in a light grey cell and the corresponding col-
umn label defines the currently used objective function. Table 
2 is an extremely good demonstration of the efficiency of the 
shape-oriented approach because, according to its very small 
range value, the directional compliance function is practically 
invariant to the directional uncertainty. 

Table 2 Performance measures of the nominal and the surface-area-mini-

mized compliance functions

τ nc(x) sc(x)

55.93 155.70 214.30 55.68 158.60

1.2 67.14    4.07   71.23 65.04     6.19

4 Conclusions
In this paper, a novel compliance-function-shape-oriented 

robustness measure and a robust algorithm for the volume-
constrained continuous topology optimization with uncertain 
loading directions based on this measure have been presented. 
The nonparametric pure set-based algorithm try to rearrange 
(take away) some amount of the material volume, originally 
used to minimize the nominal-compliance, to make a more 
balanced compliance-function-shape on the set of uncertain 
loading directions which is less sensitive to the directional 
fluctuation. The objective is the area of the compliance func-
tion shape defined on the set of feasible directions. The area-
minimal shape searching process is controlled by the maxi-
mum allowable increase of the nominal-compliance. The result 
will be a more robust compliance function shape which can be 
characterized by a higher nominal-compliance but a smaller 
curvature about it in any direction. Using the terminology 
of the classical variational problems, the proposed approach 
can be classified as a curve-length or surface-area minimiz-
ing inner-value problem where the inner condition, namely the 
maximum allowable increase of the nominal-compliance is 
expressed as a percentage of the original nominal compliance 
and described by an inequality relation, the searching domain 
is defined implicitly as integration limits in the objective func-
tion formulation and the usual linear equality relation is used 
to prescribe the allowable material volume expressed as a per-
centage of the total material volume. The author hopes that the 
presented “easy to define but hard to solve” approach, which 
means a new direction in the robust topology optimization, 
will encourage further efforts to improve the numerical treat-
ment of the problem and to extend it to other uncertainty cases.
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