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Abstract 
In this paper, a simple method for defining the effects of 
cracks on elastic behavior of beam is presented. The cracked 
sections were modelled as rotational springs and the prob-
lem was solved using the finite element method. The global 
stiffness matrix of a beam with multiply cracked section was 
then assembled. For calculation of rotational spring stiffness 
equivalent to uncracked and cracked sections, finite element 
models and experimental test were used.
The natural frequencies and mode shape of beams with mul-
tiple single-edge cracks were obtained and a new simple 
formula was proposed. Published numerical examples for 
cracked beams were used for validation.
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1 Introduction 
The occurrence of cracks in reinforced concrete elements is 

expected under service loads, due to the low tensile strength 
of concrete, weathering, creep and aging effects. Cracking in 
reinforced concrete structures has an effect on structural per-
formance including stiffness, energy absorption, capacity and 
ductility. Reduction in the strength and stiffness properties of a 
structure can be dangerous and may lead to catastrophic struc-
tural failures. The effect of the location and depth of cracks on 
the static and dynamic behavior of concrete structural element 
has been the subject of several studies and investigations. 

One of the first studies on crack detection is that of Adams 
et al. [1]. Cawley and Adams combined sensitivity and finite 
element method to determine crack location and depth [1]. 
Gudnundson in their investigation, used perturbation as well 
as transfer matrix method to study the influence of small 
cracks on the Eigen frequencies and modes of slender struc-
tures [2] Chang and Petroski used transverse vibrations of a 
simply supported beam for the detection of location and depth 
of crack [3]. Qian et al. used a finite element model to deter-
mine the natural frequencies of a cantilevered beam, taking 
into account, the effect of crack closure. Also, a method based 
on the relationship between the crack and modal parameters 
was developed to determine the crack position from known 
natural frequencies [4]. Chondros et al. developed a continu-
ous cracked beam theory for free vibration analysis, their basic 
assumption was that the crack caused a continuous change in 
flexibility in its neighbourhood which they modelled by incor-
porating a consistent displacement field with singularity [5]. 
A different but related approach in which a crack in rotational 
shaft is replaced by a massless spring-link located at the crack 
position, became popular due to much effort by Dimarogonas 
and Papadopolous [6]. Ostachowicz and Krawczuk, in their 
studies, analysed the effect of two open cracks on the frequen-
cies of natural flexural vibrations in a cantilever beam [7] Doe-
bling et al. reviewed researches on crack and damage detec-
tion and location in structures using vibration data [8]. Salawu 
reviewed researches on crack detection based on the change 
in natural frequencies [8]. Kisa et al. in their investigation, 
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integrated the finite element method and component mode syn-
thesis and analyzed the vibrational characteristic of cracked 
Timoshenko beam [9]. Kheyroddin proposed new models for 
estimating the flexural rigidity and deflection of R.C. beams, 
to account for the influencing parameters [10]. Ismail et al. 
determined the location of damage due to single cracks and 
honeycombs in R.C. beams using mode shape derivatives from 
modal testing. Experimental modal analysis was performed 
on beams with cracks prior to and after each load cycle, on a 
control beam, and beams with honeycombs [11]. Caddemi and 
Calio used Heaviside and Dirac’s delta distribution functions 
to solve beam vibration problems with multiple open cracks 
[12]. Kaklauskas et al. proposed a technique for predicting 
curvatures and crack widths; theirs model was based on a 
non-iterative algorithm and used a rigid-plastic bond-slip law 
and elastic properties of materials [13]. Ibrahim et al. used the 
finite element method to study the effects of crack depth and 
location on the in-plane free vibration multi-bay and multi-
store cracked frame structures. Their studies showed that the 
reduction of natural frequency depends on the crack depth and 
location and higher drops in the in-plane natural frequency 
were observed when the crack was located near the roots or 
corners of the frames [14]. In studies of Labib et al., the rota-
tional spring model was used and natural frequencies of beams 
and frames with multiple single-edge cracks were obtained 
[15, 16]. Aktas and Sumer modelled pre-damaged RC beams 
in finite element program and indicated that inclusion of pre-
damage levels by means of cracks into the cross sections have 
significant effect on beams moment capacity [17]. Jena et al. 
investigated the influence of parameters such as crack depth 
and crack inclination angles, on the dynamic behaviour of 
deteriorated structures excited by time-varying mass. Analy-
sis of the structure was carried out at constant transit mass and 
speed [18]. Akbas and Doguscan studied the static bending 
of edge cracked micro beams analytically based on modified 
couple stress theory. The cracked beam was modelled using 
a proper modification of the classical cracked-beam theory 
consisting of two sub-beams connected through a massless 
elastic rotational spring. They determined the deflection curve 
expressions of the edge cracked microbeam segments sepa-
rated by rotational spring using the integration method [19].

Eroglu and Tufekci introduced a finite element formulation 
for straight beams with an edge crack, including the effects 
of shear deformation and rotatory inertia. The main purpose 
of these studies is to present a more accurate formulation to 
improve the beam models used in crack detection problems 
[20]. In a study by Sabuncu et al., the effects of number of 
storey, static and dynamic load parameters, crack depth and 
location on the in-plane static and dynamic stability of cracked 
multi-storey frame structures subjected to periodic load-
ing were investigated numerically using the Finite Element 
Method [21].

In this study, the rotational spring model was used and 
cracks were assumed to be always open, thus, the problem can 
be described as a linear one.

To confirm the validity and accuracy of the proposed 
method, a cantilever cracked beam, for which some compara-
tive results were shown by Kisa et al. [9] and Labib et al. [15], 
was analyzed and the results agrees very well with those of 
other investigators. 

2 Models of cracks
A rotational spring model has been used in many studies 

to identify cracks in beams [15, 22] In this study, the cracked 
beams were modelled by elements and components connected 
by hinge and massless rotational spring to determine the 
effects of cracking on bending behavior of beams. As shown in 
Fig. 1, the Bernoulli-Euler beam is divided into two halves at 
the crack location. The beam sections are then pinned together 
and a rotational spring is used to model the increased flexibil-
ity due to the crack. It is assumed that the axial stiffness of the 
beam at the crack location remained intact.

Fig. 1 Bernoulli-Euler cracked beam modelling by rotational spring

It is clear that crack development in every section of the 
beam results in the whole beam stiffness decrease; the main 
reason for section stiffness decrease is its effective section 
height decrease and its moment of inertia. The crack depth 
increase results in effective section height decrease and sec-
tion bending rigidity and strain energy of beam decrease. The 
strain energy is the internal work done by the stress resultants 
in moving through the corresponding deformations. For the 
linearly elastic structure the strain energy is equal to comple-
mentary strain energy 

Here it is assumed that the energy is conserved i.e. the work 
done by the external force is equal to energy stored in the 
cracked beam. 

In Eq.1, strain energy stored in cracked beam was calcu-
lated.
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Where, Ub is strain energy in beam element ,Us is strain energy 
in rotational spring element, M(x) is bending moment loaded on 
different parts of the beam, Ms is bending moment in the location 
of rotational spring and ks is rotational stiffness of spring.

In the intact beam, the strain energy of beam is

In this beam there is no strain energy in spring; therefore, 
the stiffness of rotational spring is ∞ theoretically. A crack 
on a beam introduces considerable local flexibility due to the 
strain energy concentration in the vicinity of the crack tip 
under load. In this study, experimental and numerical studies 
were carried out to determine stiffness of the rotational spring 
equivalent to cracked section, as discussed below.

3 Stiffness of rotational spring equivalent to cracked 
beam section 

To study the effect of cracking on a concrete beam stiffness, 
experimental samples with rectangular section were built and 
cracks with different depths were made in them. These sam-
ples were loaded in 3 points as shown in Fig. 2, and their load-
displacement diagrams were plotted. Changes in crack depths 
result in inclination change of this diagram. Plates with 0.1 
mm thickness were used in two layers to develop cracks in the 
samples. Therefore, the width of the crack was 0.2 mm. The 
applied concrete properties are shown in Table 1.

Table 1 Concrete properties of the test beams

fcʹ(Mpa) Ec(Mpa) υ

0.21 2320 33200 48

The height and wide of the samples are d = 200 mm and  
b = 150 mm, respectively, and their length is L = 1000 mm. As 
shown in Fig. 2, these samples were tested after processing on 
the 28th day.

After loading, displacement of middle section of the beam 
was measured and the equivalent stiffness of the beam (keb) 
was calculated. In Eq. 3, strain energy for test sample was cal-
culated.

Fig. 2 Experimental test. a: Test setup b: Test sample

Kb is stiffness of intact beam and that for test sample is:

Stiffness of rotational spring equivalent to cracked section 
in the middle of beams obtained using Eqs.3 and 4 are pre-
sented in Table 2.

In order to complete the required information and control 
the obtained results, the tested beam was modelled in Abaqus 
software, and its behavior under 3 point-loading was inves-
tigated. The Abaqus software analysis also shows that. The 
fracture of the cracked and uncracked beam is illustrated in 
Fig. 3. Stiffness of rotational spring equivalent to cracked sec-
tion in the middle section of FE models obtained using Eqs.3 
and 4 are presented in Table 3. 
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Table 2 Stiffness of rotational spring equivalent to cracked section in the experimental samples

No Beam h(mm) dcr(mm) Force of 
failure (N)

Displacement  
of failure (mm) N/mm Ks

N mm rad–1

2 CB10 200 20 0.1 16412 0.11 149200 0.94 1.46E+11

3 CB20 200 40 0.2 15548 0.115 135200 0.85 5.57E+10

4 CB30 200 60 0.3 12965 0.120 108041 0.67 2.096E+10

5 CB50 200 100 0.5 9045 0.096 94200 0.59 1.44E+10
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The quality of variation of rotational spring stiffness equiva-
lent to section, according to the crack depth is demonstrated in 
Fig. 4. The variation of equivalent rotational spring stiffness 
changes nonlinearly versus the crack depth. It is shown that 
with the occurrence of a crack in the beam section, the stiffness 
of the rotational spring decreases dramatically and its effect on 
stiffness decreases with crack depth increase. According to this 
diagram, the decrease in spring stiffness versus the crack depth 
is not linear; on the other hand, the relation is valid in border 
conditions. If the crack depth is zero, the spring stiffness will 
tend to infinity and if the crack depth equals the beam height, 
then its value will be zero. Accordingly, the rotational spring 
stiffness equivalent to cracked section is suggested as Eq. 5.

(a)

(b)
Fig. 3 The fracture of beam, a: uncracked beam, b: beam with a 20mm depth 

crack

Where h is height of beam section, dcr is depth of crack and 
EI is bending rigidity of beam section.

Change in the concrete properties during the construction 
of the samples, due to human error, caused differences in the 
graphs as shown in Fig. 4.

4 Stiffness matrix of models
There are three degrees of freedom δ = {θL, dy, θR} in 

cracked section of the beam as shown in Fig. 1. θL and θR are 
rotations at near end of beam elements at the left and right 
side of rotational spring, respectively, and dy is displacement 
of node. The stiffness matrix of the cracked beam can be writ-
ten as Eq. 6. In this matrix, the array corresponding to the 
displacement of the common point of the beams equals the 
sum of the stiffness of two beam elements, and the array cor-
responding to the rotation of the beam elements end adjacent 
to the middle node equals the sum of the rotational stiffness of 
the beam and the rotational spring.

Where, ksj is stiffness of rotational spring equivalent to 
cracked section j, EI is bending rigidity, Li is length of element 
i and [K] is proposed global stiffness matrix.

Global stiffness matrix [K] can be used to obtain the natural 
frequency and mode shape of undamped beam in free vibra-
tion analysis. It is generally known that the Eigen value equa-
tion of an undamped structure is as follows:

Table 3 Stiffness of rotational spring equivalent to cracked section in FE models

No Beam h(mm) b(mm) L(mm) dcr(mm) Keb
N/mm

Ks
N mm rad–1

1 NCB1.0 200 150 1000 0 0 159537 1.00 ∞

2 NCB1.10 200 150 1000 20 0.1 150900 0.947 1.77E+11

3 NCB1.20 200 150 1000 40 0.2 145350 0.91 1.03E11

4 NCB1.25 200 150 1000 50 0.25 135740 0.85 5.72E10

5 NCB1.30 200 150 1000 60 0.3 129630 0.81 4.34E+10

6 NCB1.50 200 150 1000 100 0.5 111100 0.69 2.28E+10

7 NCB2.00 300 200 1000 0 0 714020 1 ∞

8 NCB2.10 300 200 1000 30 0.1 656827 0.916 4.88E+11

9 NCB2.20 300 200 1000 60 0.2 614252 0.857 2.68E+11

10 NCB2.30 300 200 1000 90 0.3 536740 0.748 1.33E+11

11 NCB2.40 300 200 1000 120 0.4 452582 0.631 7.67E+10

12 NCB2.50 300 200 1000 150 0.5 347883 0.485 4.22E+10

d
h
cr K

K
eb

b

K h
d

EI
hs

cr

=








 −













0 70 1

1 2

. * *

.

¸ d ¸ ¸ d ¸ ¸ d ¸

K =

k 0 -k 0 0 0 0 0 0

0 12EI

L

6EI

L

6EI

L

1 y1 2 3 y2 4 5 y2 6

s1 s1

1

3 2

11

[ ]

22

1

3

s1

1

2

1

s1

1 1

2

1

2

-
12EI

L

0 0 0 0

-k 6EI

L

4EI

L
+ k

2EI

L
-
6EI

L

0 0 0 0

0 6EI

L

2EII

L

4EI

L
+ k -

6EI

L

-k 0 0 0

0
-
12EI

L
-
6EI

L
-
6EI

L

12EI

L
+

1 1

s2

1

2

s2

1

3

1

2

1

2

1

3

112EI

L

6EI

L

6EI

L
-
12EI

L

0

0 0 0 -k 6EI

L

4EI

L
+ k

2EI

L
-
6

2

3

2

2

2

2

2

3

s2

2

2

2

s2

2

EEI

L

0

0 0 0 0 6EI

L

2EI

L

4EI

L
+ k -

6EI

L

-k

0 0 0 0
-
12EI

L
-
6EI

2

2

2

2

2 2

s3

2

2

s3

2

3 LL
-
6EI

L

12EI

L

0

0 0 0 0 0 0 -k 0 k

2

2

2

2

2

3

s3 s3































































¸

d

¸

¸

d

¸

¸

d

¸

1

y1

2

3

y2

4

5

y2

6

(5)

(6)



341Static and Dynamic Analysis of Cracked Concrete Beams Using Experimental Study� 2018 62 2

Where M is mass matrix; K is global stiffness matrix, ω is 
natural frequency and ϕ is mode shape of beam. Matlab code 
was used to obtain natural frequency and mode shape of beam.

Fig. 4 stiffness of rotational spring stiffness in experimental and FE models

In order to test the accuracy and convergence of the present 
method, the effects of edge-cracks on the natural frequencies of 
a cantilever beam that has been studied extensively by Wendt-
land [23] experimentally and by Gudmundson [2] Kisa et al. [9] 
and Labib et al. [15] numerically, were examined. The cantile-
ver beam was modeled by rotational spring in cracked section 
as shown in Fig. 5.

In cracked section, the stiffness of equivalent rotational 
spring was calculated by Eq. 5, and in uncracked section, it 
was ∞ theoretically. For numerical analysis, it is assumed that 
d
h
cr = 0.01. Therefore, the stiffness of rotational spring equiva-

lent to intact section can be obtained using Eq. 8.

(a)

(b)
Fig. 5 Cantilever beam with an edge-crack, a: Geometry b: proposed model

The first three natural frequencies of a cantilever beam (Fig. 
5) with length of 0.20 m, depth h = 0.0078 m, mass per unit 
length ρ = 1.5308 kg m–1 and bending rigidity EI = 231.548 
N.m2 [15], having a single open crack, are shown in Tables 4 to 
6. Different variations of the crack to depth ratio dcr/h and crack 
locations were employed. Eqs. 5 and 6 were used to obtain the 
equivalent spring stiffness, and global stiffness matrix and 
natural frequency of beam, respectively. The predicted Eigen 
frequency changes calculated from the proposed equation were 
compared with the numerical data obtained by Kisa et al. [9] 
and Labib et al. [15] for the first three Eigen frequencies.

K M− [ ]=ω φ2 0

K EI
h

EI
hs = ( ) −( ) =0 70 100 1 175

1 2
. * * .

.

dcr/h
Ks(N m rad–1) ω1(rad s–1) ω2(rad s–1) ω3(rad s–1)

Present [15] Present [9] [15] Present [9] [15] Present [9] [15]

0 4.8E6 - 1038.29 1037.01 1038.2 6510.28 6458.34 6506.3 18459.94 17960.56 18218

0.2 113045 130000 1028.342 1020.13 - 6509.69 6457.39 - 18403.70 17872 -

0.4 38380 28800 1009.40 966.9 - 6508.60 6454.48 - 18297.65 17596.57 -

0.6 16200 8400 973.1 842.2 - 6506.55 6448.175 - 18098.13 16944 -

Table 4 Natural frequencies of a cantilever beam with a single crack located at a distance ξ = 0.2 L

Table 5 Natural frequencies of a cantilever beam with a single crack located at a distance ξ = 0.4 L

dcr/h
Ks(N m rad–1) ω1(rad s–1) ω2(rad s–1) ω3(rad s–1)

Present [15] Present [9] [15] Present [9] [15] Present [9] [15]

0 4.8E6 - 1038.29 1037.01 1038.2 6510.28 6458.34 6506.3 18459.94 17960.56 18218

0.2 113045 130000 1034.14 1030 1034.6 6468.20 6389 6469.6 18381.53 17844 18152

0.4 38380 28800 1026.30 1006.85 1022.2 6391.01 6174.54 6348.9 18241.21 17499.83 17942

0.6 16200 8400 1010.35 942.73 985.98 6243.21 5689.73 6036.0 17984.96 16792.25 17447

Table 6 Natural frequencies of a cantilever beam with a single crack located at a distance ξ = 0.6 L

dcr/h
Ks(N m rad–1) ω1(rad s–1) ω2(rad s–1) ω3(rad s–1)

Present [15] Present [9] [15] Present [9] [15] Present [9] [15]

0 4.8E6 - 1038.29 1037.01 1038.2 6510.28 6458.34 6506.3 18459.94 17960.56 18218

0.2 113045 130000 1037.28 1035.28 1037.3 6454.74 6365.91 6419.0 18362.49 17807.94 18,137

0.4 38380 28800 1035.27 1029.262 1034.2 6348.50 6071.655 6292.3 18183.08 17359.27 17,879

0.6 16200 8400 1031.12 1010.86 1024.4 6144.14 5371.80 5852.0 17862.20 16478.82 17,276

(7)

(8)
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The obtained results illustrated in Tables 4 to 6 and Figs. 6 to 
8 show that the effect of cracking on the frequency of different 
modes of the structure is different, and the development of a 
crack at ζ = 0.2 L had the greatest effect on the first mode fre-
quency and the development of a crack at ζ = 0.4 L and ζ = 0.6 L  
had the greatest effect on the second mode natural frequency.

Fig. 6 First three natural frequency Timoshenko beam with different crack 
depth at ζ = 0.2 L

Effect of cracking in different points of the beam on the nat-
ural frequency of the first mode is shown in Fig. 9. These dia-
grams show that the cracks near the support of the beam have 
influence on the natural frequency of the first mode of beam.

Fig. 7 First three natural frequency Timoshenko beam with different crack 
depth at ζ = 0.4 L

Fig. 8 First three natural frequency Timoshenko beam with different crack 
depth at ζ = 0.6 L

Fig. 9 Natural frequency of first mode in Timoshenko beam with different 
crack locations

Stiffness of rotational spring equivalent to cracked section 
obtained using proposed method in the present study were 
compared with Labib et al. [15] method (Fig. 10).

Fig. 10 Stiffness of rotational spring equivalent to cracked section

5 Natural frequency of a simple support cracked 
concrete beam 

A finite element model was developed to represent a cracked 
beam element of length L and the crack was located at a distance 
L1 from the left end of the element as shown in Fig. 1. The ele-
ment was then split into two segments by the crack. The left and 
right segments were represented by non-cracked sub elements.

In order to study the effect of cracking on reinforced con-
crete beams, cracks with different depths in different sections 
of a concrete beam were created and the natural frequency and 
mode shapes of the low frequency modes of the vibration were 
determined. The results of this study are shown in Tables 7 to 8.

Due to the middle section cracking of the beam, the natural 
frequency of the first-third mode of the beam decreased. Most 
of the decreases occurred in the first mode of the beam vibra-
tion, while the middle section cracking of the beam had no 
noticeable influence on the second mode frequency of vibra-
tion because the middle section of the beam in the second mode 
is the turning point of transformation and it acts like a joint. 
The extent of the natural frequency decrease of the beam, is 
shown in Fig. 10 and the vibration modes of uncracked and 
cracked beams, is shown in Fig. 12, respectively.
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As shown in Fig.11, there is no change in natural frequency 
of mode two when the crack location was ζ = 0.5 L because this 
location is nodal point of mode two.

 The development of a crack in a section of ζ = 0.25 L causes 
a drastic decrease in the natural frequency of the second mode, 
while it has negligible influence on the frequency of the third 
mode as shown in Fig. 12. The vibration mode shapes of the 
beam for a crack depth of dcr = 0.5 h is shown in Fig. 14.

In another example, a two bay beam with multiple single-
edge cracks was examined. As shown in Fig. 15, this beam is 
divided into 14 components by 15 nodes and spring. Therefore, 

the nonlinear system with a local stiffness discontinuity was 
divided into several linear subsystems. If uniform damages 
occur in the beam, the stiffness of all spring will be reduced 
and natural frequency of beam will change equally for all the 
modes, as presented in Table 9, but the mode shape of beam 
will not change as shown in Fig 16.

The first three natural frequencies of a two bay beam  
(Fig. 15) having a single open crack in each bay, are shown in 
Table 10. The result shows that if the crack is created at the 
nodal point location of mode shape, the natural frequency of 
this mode is not changed.

Table 7 Rotational spring stiffness equivalent to section and natural frequency of the first-third modes of a simple support concrete beam
L = 1000mm, ξ = 0.5 L, EI = 3.32E12N.mm/rad, b = 150mm, d = 200mm

dcr/h ks(N mm rad–1)
Mode1 Mode2 Mode3

ω1 ω1/ ω10 ω2 ω2/ω20 ω3 ω3/ω30

0 2.91E+12 66.885 1 268.52 1 612.72 1

0.1 1.73E+11 65.708 0.98 268.52 1 601.63 0.98

0.2 6.85E+10 63.964 0.96 268.52 1 586.41 0.96

0.3 3.77E+10 61.738 0.92 268.52 1 568.88 0.93

0.4 2.33E+10 59.078 0.88 268.52 1 550.36 0.9

0.5 1.51E+10 55.663 0.83 268.52 1 529.85 0.86

0.6 9.83E+09 51.791 0.77 268.52 1 510.24 0.83

0.7 6.21E+09 46.326 0.69 268.52 1 487.78 0.8

0.8 3.57E+09 39.254 0.59 268.52 1 465.59 0.76

Table 8 Rotational spring stiffness equivalent to section and the natural frequency of modes of a simple concrete beam
L = 1000mm, ξ = 0.25 L, EI = 3.32E12N.mm/rad, b = 150mm, d = 200mm

dcr/h ks(N mm rad–1)
Mode1 Mode2 Mode3

ω1 ω1/ ω10 ω2 ω2/ω20 ω3 ω3/ω30

0.01 2.91E+12 66.885 1 268.52 1 612.72 1

0.1 1.73E+11 66.288 0.99 263.82 0.98 607.25 0.99

0.2 6.85E+10 65.355 0.98 257.02 0.96 599.86 0.98

0.3 3.77E+10 64.132 0.96 248.96 0.93 591.86 0.97

0.4 2.33E+10 62.56 0.94 239.86 0.89 583.67 0.95

0.5 1.51E+10 60.383 0.9 229.13 0.85 575.02 0.94

0.6 9.83E+09 57.638 0.86 218.05 0.81 567.05 0.93

0.7 6.21E+09 53.578 0.8 205.24 0.76 558.88 0.91

Fig. 11 Natural frequency of the first-third modes of a simple concrete beam 
with different crack depth in ζ = 0.5 L

Fig. 12 Natural frequency of the first-third modes of a simple concrete beam 
at ζ = 0.25 L
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Fig. 13 Mode shapes of an uncracked simple concrete beam and a cracked beam with dcr = 0.5 h, ζ = 0.5 L

Fig. 14 Mode shapes of an uncracked simple concrete beam and a beam with crack depth of dcr = 0.5 h, ζ = 0.25 L

Fig. 15 Two bays beam separated into component and rotational spring

Fig. 16 first three mode of beams with uniform damage

Stiffness matrix of beams can be obtained by a model updat-
ing program, if the natural frequency and shape of the beam 
are determined. The stiffness matrix of the cracked beam, K, 
is then obtained through the assemblage of the intact element 
stiffness matrices and damage spring stiffness matrix as Eq. 9.

Where HIn = dcr/h is health index of spring equivalent to 
cracked section n, which can be obtained by using an appropriate 
target function and optimization algorithm, in future research.

6 Conclusions
This study presents a new method for calculating the stiffness 

and natural frequencies of cracked beams. Cracked beams are 
modelled by simple beams elements and component connected 
together by pined and massless rotational spring. New method 
based on strain energy was proposed to obtain the stiffness of 
rotational spring. Stiffness matrices for beams with multiple 
cracks were assembled.

In cracked beam, the stiffness of rotational spring equivalent 
to cracked section is dependent on depth of the crack in section 
conforming to Eq. 5.

The stiffness of rotational spring equivalent to uncracked 
section is proportional to the bending rigidity of section pro-
posed in Eq. 8

The effect of cracks on different vibrational modes of cracked 
beams depended on location of the cracks. There was no effect 
of crack on the in-plane natural frequency when the crack was 
located at the nodal points of the mode shape.
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