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Abstract
This study proposes a neural network based vibration control 
system designed to attenuate structural vibrations induced 
by an earthquake. Classical feedback control algorithms are 
susceptible to parameter changes. For structures with uncer-
tain parameters they can even cause instability problems. The 
proposed neural network based control system can identify 
the structural properties of the system and avoids the above 
mentioned problems. In the present study it is assumed that a 
full state of the structure is known, which means the at each 
floor horizontal displacements and rotations about the vertical 
axis are measured. Additionally, it is assumed the acceleration 
signal coming from the earthquake is also available. The pro-
posed neural control strategy is compared with the classical 
linear quadratic regulator (LQR) not only in terms of displace-
ment responses, but also required control forces. Moreover, 
the influence of different weighting matrices on performance 
of the proposed control strategy has been presented.
The effectiveness of the neuro-controller has been demon-
strated on two numerical examples: a simple single degree of 
freedom (DOF) structure and a multi-DOF structure repre-
senting a twelve story building. Both structures under con-
sideration have been excited with El Centro acceleration sig-
nal. The results of numerical simulations on the SDOF system 
indicate that using neuro-controller it would be possible to 
obtain smaller amplitudes as compared with the LQ regulator, 
but it would require higher control effort. 
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1 Introduction
Many civil structures located in seismic zones are subjected 

to extreme loading induced by earthquakes. Such an extreme 
loading can cause significant damage to the structure if it is not 
properly predicted by the designer. This is especially import-
ant for high-rise buildings and long-span bridges. Fundamen-
tal guidelines from earthquake engineering require that struc-
tures should be designed in such a way that damage occurs in 
a controlled manner. This means that the whole structure can 
be easily repaired. Moreover, to reduce unwanted vibrations 
caused by earthquakes many structures are equipped with 
vibration-attenuation systems. There are three types of such 
systems, namely: passive, active and semi-active.

Passive vibration-attenuation systems have been described 
by Soong and Dargush (1997) [1]. Examples of passive systems 
can be the tuned mass damper or the viscous fluid damper. 
Another interesting passive control system is a density-vari-
able tuned liquid damper, which has been investigated by Xin 
et al (2009) [2]. Passive systems are effective if the properties 
of a system are precisely known. In the case when the struc-
ture parameters are not known precisely or the system behaves 
nonlinearly, passive systems can become ineffective. To pre-
serve the efficiency of applied vibration-reduction systems on 
structures with unknown or changing parameters such struc-
tures are equipped with active vibration control systems. 

During the past two decades many different active con-
trol strategies have been proposed. Among them are the pole 
placement method (Pnevmatikos and Gantes, 2010) [3], model 
predictive control (Blachowski, 2007) [4] or direct velocity 
feedback (Preumont and Seto, 2008) [5]. 

The third group of vibration-attenuation strategies are 
semi-active methods. Examples of semi-active methods are 
presented in the paper by Lee at al. (2006) [6], where the 
authors utilized a magnetorheological damper to reduce vibra-
tion of an 8-story steel braced building, or in the paper by 
Michajlow et al (2017) [7], where an electric motor was used to 
attenuate vibration of a rotating mechanical structure.

Besides of two mentioned case studies, the research papers 
in semi-active vibration control usually belong to one of the 
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two groups: the first one deals with development of physical 
devices implementing existing control strategies, and the sec-
ond one with development of control algorithms for exiting 
smart devices.

Examples of the first group are papers by Mirtaheri et al 
(2017) [8] in which a novel semi-active frictional damper was 
designed, or by Chu et al (2017) [9] where a new stiffness-con-
trollable tuned mass damper was proposed.

Interesting papers within the second group are: Yu et al 
(2016) [10] who applied second-order sliding mode control 
for magnetorheological elastomer base isolator or Pourzeynali 
et al (2016) [11] who proposed a genetic algorithm and fuzzy 
logic to control a semi-active tuned mass damper. Addition-
ally, development of a control algorithm based on a robust 
market method was proposed by Song et al (2016) [12] and 
design of a decoupled proportional-integral-derivative (PID) 
controller using multi-objective cuckoo search was investi-
gated by Etedali et al (2016) [13].

From the above three types of methods active control has 
the biggest potential to deal with large scale civil structures. 
Apart from the above-mentioned classical active control strat-
egies neural networks emerged as an attractive tool to design 
vibration controllers.

The development of the neural-network theory has been 
inspired by research on the human brain (Grossberg 1982) 
[14]. Before neural networks attracted attention of research-
ers working in active control based protection of structures 
located in earthquake zones, they have been applied in many 
fields of science and engineering. Examples of these are 
robotics, telecommunication and transportation (Demuth et 
al, 2007) [15]. Pioneering research on application of neural 
control to reduce vibration of seismically excited structures 
has been conducted in the middle of the 1990s by Chen [16], 
Ghaboussi and Joghataie [17].

Chen et al. (1995) proposed a back propagation-through-time 
neural controller, which consisted of two components: a) a 
neural emulator to represent a structure to be controlled and 
b) a neural network to determine the control action on the 
structure. Ghaboussi and Joghataie (1995) developed neu-
ral-network-based control for a three-story frame structure 
subjected to ground excitations. Their neural emulator fore-
cast the future response not only of the structure, but also of 
the actuator. Then, Bani-Hani and Ghaboussi (1998a,b) [18], 
[19] applied the previously developed neuro-controller in the 
benchmark problem of the active tendon system.

The research group of Liut (1999, 2000) [20], [21] proposed 
a training scheme for a neural-network-based controller, which 
did not require the emulator of the structure to be controlled. 
Optimal structural control using neural networks has been 
proposed by Kim et al (2000) [22]. Their controller minimized 
a quadratic cost function representing the total energy of the 
controlled structure. 

Another neural network based control strategy has been pro-
posed by Hung et al (2000) [23]. The approach, called Active 
Pulse Control algorithm, was used to calculate the control force 
during an earlier period and applied to the structure during a 
later period at each time step. Thus, the problem of the time 
delay effect due to the computation time was circumvented.

Cerebellar Model Articulation Controller (CMAC) used 
originally by Albus (1975) [24] in robotics has been applied to 
reduce vibration of seismically excited structures by Kim et al 
(2002) [25]. The advantage of CMAC over a multi-layer neural 
network (MLNN) was the fact that the training of CMAC is done 
locally. Additionally it has faster convergence than MLNN.

The influence of the number of neurons in a hidden layer of 
a neural network on its overall performance has been studied 
by Cho et al. (2005) [26]. Recently, nonlinear vibration control 
of 3D irregular structures has been investigated by Kim et al. 
(2016) [27].

This paper presents neural networks based control algorithm, 
which was originally presented by Kim et al (2000). The algo-
rithm aims to minimize an instantaneous performance index, 
consisting of the mechanical energy of the structure and the con-
trol effort. The effectiveness of the algorithm has been demon-
strated on two examples: a single DOF structure and a multi-
story building. Additionally, the present paper compares the 
efficiency of neural control with the linear quadratic regulator, 
similarly as it was done in the case of Lyapunov based control 
by Achour-Olivier and Afra (2016) [28]. However, contrary to 
the above mentioned paper, in this work we analyze not only 
displacement responses obtained using neural network based 
and LQR control strategies, but also the required control forces.

2 Theoretical background
2.1 Classical theory for optimal control of structural 
vibrations

Equations of motion
Motion of a structural system under seismic excitation is 

governed by the following set of second order differential 
equations

where M, C, K are mass, damping and stiffness matrices, 
respectively; q(t) is a vector of relative displacements, q t( )
ׁ is a vector of velocities and q t( )  is a vector of accelerations;  
  q q qt t txg yg zg( ) ( ) ( ), ,� denote components of ground accelera-
tions in x, y and z direction, respectively; B indicates location 
of control forces, and finally u(t) represents the time history of 
control forces.

State equations
The equations of motion can be easily transformed into 

state space representation, which is frequently used in the con-
trol engineers community. 

Mq Cq Kq

MI MI MI

 
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The above state space representation is continuous in time. 
However, for practical purposes we usually have to discretize 
the state equations. Applying zero-order-hold (ZOH), which 
assumes that control forces are constant during a single time step 
TS we can rewrite the above equations (2) in the following form

The performance index is defined as follows

where Q and R are weighting matrices responsible for ampli-
tude reduction and control effort, respectively. Finally, the feed-
back control scheme considered in this paper is presented in Fig. 1.

Fig. 1 General idea of neural networks based feedback control

2.2 Mathematical model of a single neuron
The mathematical model of a single neuron is inspired by 

the biological neural system, in which a single neuron receives 
a number of input signals from neighbouring neurons. Then, 
based on the strength of the cumulative signal coming to the 
neuron, it is activated or not.

In Fig. 2 the individual symbols have the following mean-
ing: ini denotes the i-th input to the neuron, net denotes the 
cumulative signal coming to the neuron, f(net) is the activation 
function, and finally out is the output from the neuron.

Fig. 2 Mathematical representation of single neuron

Based on the above figure, the following equations for 
cumulative signal resulting in the output of the neuron can be 
derived: net in out f netii

ni= = ( )∑ = and .0

For a biological system the activation function is usually 
assumed to be the Heaviside step function. However, for engi-
neering systems two other functions are applied. They are: 

linear function f(net) = net
or sigmoid function f net

e net( ) =
+ −

1
1

.

2.3 Multi-layer neural network for vibration control
As it was shown in Fig. 3, the neural networks applied in 

vibration engineering generally consist of three types of lay-
ers. They are: input, hidden and output layer. The number of 
layers and neurons in individual layers depends on the prob-
lem under consideration. In the current study the network con-
sisting of three layers has been used. The input to the neural 
controller are the ground acceleration and state vector of the 
structure, and its output are control forces. The parameter to 
be assigned are weights between input and hidden layers, and 
hidden and output layers.

In order to find optimal control forces the weights have to 
be determined is such a way that the performance index (4) 
is minimized at every time instant. When searching for these 
optimal values of weights we will mimic the steepest decent 
rule, which means that weights will be improved at every iter-
ation based on current inputs, i.e.
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where Wkj(n) denotes weights between hidden and output 
layers at the n-th iteration. ∆Wkj is the weight update, which is 
determined using the following formula

where η is the learning rate.
Using Eq. 4 and performing all necessary differentiations 

we will get the following formula for the weight update

∆Wkj = ηδkf(netj)

where

In the above formula rk is the weighting factor for the k-th 
control force and g'(netk) is the derivative of the activation 
function for the output layer. Similarly, we can determine the 
weight update for the weights between hidden and input layers

and finally 

∆Vji = ηδj ini

where

Fig. 4 Flow chart of the considered optimal neuro-controller

The training procedure of the neuro-controller presented 
above (cf. Fig. 4) can be summarized as follows:

Step 1. Initialize weights; set target cost (TC).
Step 2. Set cost function J to zero and let n = 1.
Step 3. Feed input signals to neural network, delayed sig-

nals of state and ground acceleration.
Step 4. Calculate network output, f(netj), j = 1,2,...,M and 

g(netk), k = 1,2,...,N.
Step 5. Apply control force uk, k = 1,2,...,N to the struc-

ture and obtain responses.
Step 6. Calculate cost function Jn and J = J + Jn.
Step 7. Calculate response sensitivity [∂x/∂u].
Step 8. Calculate δk, k = 1,2,...,N; ΔWkj, k = 1,2,...,N; and j 

= 1,2,...,M.
Step 9. Calculate δj, j = 1,2,...,M; ΔVji, j = 1,2,...,M; and i = 

1,2,...,L.
Step 10. Update weights Wkj = Wkj + ΔWkj, Vji = Vji + ΔVji, 

and n←n + 1.
Step 11. If n < Ns then go to step 3, else go to next step.
Step 12. If J > TC then go to step 2, else STOP.
In the above algorithm Ns corresponds to the time horizon 

used in the performance index.

3 Illustrative examples
3.1 Single degree of freedom (SDOF) system

The first example is a simple single degree of freedom sys-
tem. It consists of a mass, a viscous damper and elastic col-
umns. For the SDOF system presented in Figure 5 the equation 
of motion has the following form

The structural parameters of the system are m = 1 kg,   
d = 1.25 N/m/s, k = 39 N/m. The structure is subjected to 
ground acceleration, which occurred during the El Centro 
earthquake (Figure 6). The sampling time is TS = 0.02  s.

The neural controller consists of three layers (input, hidden 
and output layer) having 3,4 and 1 neuron, respectively. The 
structural response of the system with and without control is 
presented in Figure 7.

The responses of the SDOF system subjected to the neural 
network based control and classical linear quadratic regulator 
(LQR) are compared in Fig. 8. One can notice that the con-
trol forces obtained by LQR are higher than those obtained 
by the neuro-controller. However, the application of smaller 
the neuro-controller based forces results in higher structural 
responses (Figure 7). This is especially evident for the first 5 
seconds while the neuro-controller works in a training mode.
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Fig. 5 Single degree of freedom system subjected to ground acceleration

3.2 Multi - degree of freedom (MDOF) system
The second example is a 12 story building (Figure 9) inves-

tigated earlier by Jiang and Adeli (2008) [29]. For this struc-
ture a 3D finite element model has been created. In the next 
step, to reduce the number of DOFs in the dynamic model of 
the system the floor diaphragm assumption has been applied 

followed by the Guyan condensation. Eventually, the initial FE 
model having 462 DOFs, has been reduced to 36 DOFs. 

The next step was modal analysis. The first mode shapes of 
the structure and corresponding natural frequencies have been 
presented in figure 10. El Centro earthquake was applied as a 
seismic excitation.

In Figs 11, 12 and 13 the responses of the MDOF system 
have been presented. These plots correspond to three differ-
ent values of the weighting factor R, namely 10–4, 10–5 and 
10–6, respectively. Looking at these responses we can conclude 
that the higher the weight the slower the influence of the con-
troller on the vibration level. In Fig. 11 the approximate time 
of training is 25 seconds, which corresponds to the weighting 
factor R = 10–4. While in figure 12 and 13 for smaller R values, 
we observe faster training of the neuro-controller and after 7 
seconds significant attenuation of the structural vibration can 
be observed. The control forces for the above values of the 
weighting factor are shown in figs 14–16.
 

 

m 

k/2 k/2 

u(t) 

qxg(t) 

qt(t) 

q(t) 

d 

Fig. 6 Time history of the applied acceleration signal

Fig. 7 Response of the SDOF system subjected to the El Centro earthquake
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Floor 
diaphragms 

3D frame 
elements 

12 x 4.5m 

2 x 5.5m 2 x 5.5m 

Fig. 10 Mode shapes of the twelve story buildingFig. 9 The twelve story building under consideration

Fig. 11 Top floor response of the 12 story building with the weighting factor for control forces R = 10–4

Fig. 8 Comparison of control forces for the linear quadratic regulator and neuro-controller
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Fig. 14 Time history of control force with the weighting factor R = 10–4

Fig. 12 Top floor response of the 12 story building with the weighting factor for control forces R = 10–5

Fig. 13 Top floor response of the 12 story building with the weighting factor for control forces R = 10–6
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4 Conclusions
In the present study neural network based control has been 

proposed to attenuate vibration of structures subjected to 
earthquake excitation. The influence of parameters such as the 
learning rate η of a neuron and the weighting factor R of a 
performance index have been investigated. It was found that a 
wrong selection of these parameters can reduce the effective-
ness of the neuro-controller and even cause stability problems. 
Additionally, it was observed that the weighting factor has 
strong influence on the time history of control forces. It was 
demonstrated on the example of a real engineering structure 
that in some cases the control forces tend to high frequency 
oscillation, which would be undesirable for hardware imple-
mentation of such control forces.

Eventually, one has to mention also the advantage of the  
neural network based control, which is related to the flexibility 
of the training process. It allows one to find proper weighting 
matrices of the neuro-controller for any structure even in the case 
when its dynamic properties are not known properly in advance.
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