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Abstract
In classical plasticity the shakedown analysis is among the 
most important basic problems. The principles of shakedown 
analysis are counterparts to those of limit analysis in the sense 
that they provide static and kinematic approaches to the ques-
tion of whether or not shakedown will occur for a body under 
multiple variable loading conditions. The principles of limit 
analysis provide static and kinematic approaches to the ques-
tion of whether or not the plastic limit state will be reached by 
a body under proportional loading. The principles of shake-
down analysis are, however, considerably more difficult to 
apply than those of limit analysis. In spite of these difficulties, 
shakedown analysis is a vital and developing topic in plastic-
ity and a great number of applications have been made. At 
the application of the plastic analysis and design methods the 
control of the plastic behaviour of the structures is an impor-
tant requirement. Since the shakedown analysis provide no 
information about the magnitude of the plastic deformations 
and residual displacements accumulated before the adapta-
tion of the structure, therefore for their determination bound-
ing theorems and approximate methods have been proposed.
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1 Introduction
Shakedown for perfectly plastic material in 1932 was first 

discussed by Bleich [1] and in 1936, Melan [2] extended Ble-
ich’s discussion on indeterminate structures and later in 1938 
he gave the generalization of the static shakedown theorem 
to the elastic, plastic continuum [3]. Independent proofs for 
trusses and frames were presented by Prager [4] and Neal [5]. 
Until 1956 the essential feature of the basic theorems of shake-
down was that no restriction had been imposed on either plas-
tic strains or on the plastic work before the structure reaches 
the shakedown state. However, shakedown should be related 
to the amount of work dissipated on plastic deformation up to 
the shakedown state. In this context, in 1956, Koiter [6] formu-
lated a kinematical shakedown theorem for an elastic-plastic 
body, to fill what appeared to be a gap in the shakedown theory 
at that time which is now known as Koiter’s shakedown the-
orem. In 1960, Koiter [7] reviewed the theory of shakedown 
for quasi-static loading considering an elastic-perfectly plastic 
material behaviour.

1.1 Melan’s statical shakedown theorem
Consider a linearly elastic-perfectly plastic body, with vol-

ume V and surface area S, subjected to quasi-static variable 
multiple loads on the surface Sq. Assume that on the surface  
Su = S – Sq the surface displacements are specified to be zero 
and denote the actual path-dependent stresses and strains caused 
by the variable loads during the period 0 ≤ t ≤ T of the loading 
program by stress σij(xi, t) and strain εij(xi, t), respectively. In 
addition, to construct the static principal we have to define 
those path-dependent elastic stresses and strains which would 
occur during the loading program if the body were perfectly 
elastic. We will denote them by elastic stress σi j

e(xi, t) and elas-
tic strain εi j

e(xi, t) = Hijkl σk l
e (xi, t), here Hijkl is fourth-order sym-

metric tensor .
So long as the yield condition f(σi j

e, k) ≤ 0 is satisfied at every 
point in the body, the actual stresses are identical with the elas-
tic stresses, i.e. σij = σi j

e. Here k representing the plastic proper-
ties of the materials (e.g. the yield stress). When, however, the 
elastic stresses would violate the yield condition they could not 
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increase any further. Then, plastic deformations will occur which 
lead to the redistribution of the stresses. In this state, the actual 
stress field can be expressed as the sum of the elastic stress field 
and another stress field, called the residual stress field (ρij)

Hence, the residual stresses

denote permanent stresses which would remain in the body 
after unloading under elastic conditions. The residual stresses 
are generally also path-dependent, but after shakedown has 
occurred they will not change any more because no more plas-
tic deformations will arise.

After this introduction, the static principle of shakedown 
analysis can be stated as follows:
if any path-independent residual stress field ρij(xi) can be found 
such that the yield condition
is satisfied at every point in the body for any possible loading 

case, then during the loading process this residual stress field 
or another one will develop and the body will shake down. 
Alternatively, if any path-independent residual stress field can 
be found such that the corresponding domain of elastic limit 
loads includes the domain of possible loads then shakedown 
will occur during the loading process.

1.2 Koiter’s kinematical shakedown theorem
Consider a linearly elastic-perfectly plastic body, with vol-

ume V and surface area S, subjected to quasi-static multiple load-
ing on the surface Sq and assume that on the surface Su = S – Sq 
the displacements are zero. In addition, introduce the kinemati-
cally admissible plastic strain rate ε ij

k
ix t,( )  for 0 ≤ t ≤ T which 

are characterized by the property that for the time interval T the 
plastic strains ∆  ε εij

k
T

ij
k

ix t dt= ( )∫
0

,  constitute a kinematically admissi-
ble strain field together with displacement field ∆u u dti

k
T

i
k

0

∫  ,  which at 
the same time, satisfies the boundary condition ∆ui

k = 0 on Su . 
Then the kinematic principal of shakedown analysis states that if 
any kinematically admissible plastic strain rate and velocity field 
can be found such that 

then the body will not shake down during the loading proce-
dure in the time interval 0 ≤ t ≤ T . Alternatively, shakedown 
will occur during the loading procedure in the time interval  
0 ≤ t ≤ T if for all possible kinematically admissible strain rate 
and velocity fields 

In expressions (4) and (5) the stress σi j
k is associated with the 

plastic strain rate ε ij
k �  through the constitutive equations. The 

proof of the kinematic principal can be found in the literature 
(see e.g. Koiter [7], Martin [8]).

1.3 Plastic hinge application in shakedown analysis
One of the most successful applications of shakedown anal-

ysis is proposed in plastic hinge theory. The basic ideas were 
first recognized and applied to the steel beams by Kazinczy 
[9] in 1914. He proved that at a point of a beam plastic hinge 
develops when the moment reaches the plastic moment. In a 
plastic hinge unrestricted plastic rotations can develop only 
in the sense of the moment, while after unloading residual 
deformations remain. Hence the plastic hinges naturally can-
not be considered as actual hinges. For a more concise historic 
development of plastic hinge theory the reader is referred to 
Kaliszky et al. [10] and Kaliszky [11].

2 Control of plastic deformations
By the use of plastic analysis and design methods, signifi-

cant saving in material can be obtained. However, as a result 
of this benefit excessive plastic deformations and large resid-
ual displacements might develop, which in turn might lead 
to unserviceability and collapse of the structure. The most 
important tool for controlling the plastic behaviour of struc-
tures is the application of the static and kinematic theorems 
of shakedown proposed by Melan [3] and Koiter [7], respec-
tively. These two theorems have been successfully applied to 
the solution of a large number of problems (see e.g. Maier [12]; 
Polizzotto [13]; König [14]; Kaliszky [15] Kaliszky and Lógó 
[16-19]; Weichert and Maier [20]; Levy et al. [21] and Simon 
and Weichert [22]). The applications of shakedown theorems 
gives no information on the magnitude of plastic deformations 
and residual displacements accumulated before the adapta-
tion of the structure. Therefore during the past decades sev-
eral bounding theorems have been proposed for the approx-
imate determination of the plastic deformations and residual 
displacements developing during the loading history (see e.g. 
Ponter [23]; Corradi [24]; Capurso et al. [25]; Kaneko and 
Maier [26]; Polizzotto [13]; Tin-Loi [27]; Weichert and Maier 
[20] and Liepa et al. [28]). 

Kaliszky and Lógó [29-30]; Movahedi and Lógó [31]; Lógó 
et al. [32] and Movahedi [33-34] proposed that the complemen-
tary strain energy of the residual forces could be considered an 
overall measure of the plastic performance of structures and 
the plastic deformations should be controlled by introducing a 
limit for the magnitude of this energy:

Here Wp0 is an assumed bound for the complementary strain 
energy of the residual forces and Qr residual internal forces. 

σ σ ρij i ij
e

i ij ix t x t x t, , , .( ) = ( ) + ( )

ρ σ σij i ij i ij
e

ix t x t x t, , ,( ) = ( ) − ( )

0 0 0

T

S
i i
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This constraint can be expressed in terms of the residual 
moments Mi a

r
,  and Mi b

r
,  acting at the ends (a and b) of the finite 

elements as:

By the use of Eq. (7) a limit state function can be con-
structed:

The plastic deformations are controlled while the bound 
for the magnitude of the complementary strain energy of the 
residual forces exceeds the calculated value of the comple-
mentary strain energy of the residual forces. On similar way a 
limit state function can be determined in case of axially loaded 
structures. 

2.1 Reliability based control of the plastic 
deformations

In engineering the problem parameters (geometrical, mate-
rial, strength, and manufacturing) are given or considered 
with uncertainties. The obtained analysis and/or design task is 
more complex and can lead to reliability analysis and design. 
Instead of variables influencing performance of the structure 
(manufacturing, strength, geometrical) only one bound mod-
elling resistance scatter can be applied. 

Reliability methods aim at evaluating the probability of 
failure of a system whose modelling takes into account ran-
domness. Classically, the system is decomposed into compo-
nents and the system failure is defined by various scenarios 
about the joint failure of components. Thus the determination 
of the probability of failure of each component is paramount 
importance.

Here the bound on the complementary strain energy of the 
residual forces controlling the plastic behaviour of the struc-
ture. Introducing the basic concepts of the reliability analysis 
and using the force method the failure of the structure can be 
defined as follows:

where XR indicates the bound for the statically admissible 
forces XS. The probability of failure is given by

and can be calculated as 

Let assumed that due to the uncertainties the bound for the 
magnitude of the complementary strain energy of the residual 
forces is given randomly and for sake of simplicity it follows 
the Gaussian distribution with given mean value Wp0  and 

standard deviation σw. Due to the number of the probabilistic 
variables (here only single) the probability of the failure event 
can be expressed in a closed integral form:

By the use of the strict reliability index a reliability condi-
tion can be formed: 

where βtarget and βcalc are calculated as follows:

Here Φ–1: inverse cumulative distribution function (so 
called probit function) of  the Gaussian distribution. (Due to 
the simplicity of the present case the integral formulation is 
not needed, since the probability of failure can be described 
easily with the distribution function of the normal distribution 
of the stochastic bound Wpo ).

The numerical analyses shows that the given mean values 
and different expected probability on the bound of the com-
plementary strain energy of the residual forces can influence 
significantly the magnitude of the plastic limit load.

3 Shakedown analysis with limited residual strain 
energy capacity 

The mechanical model can be given by the following condi-
tions: determine the maximum load multiplier   and cross-sec-
tional dimensions under the conditions that 
(i) the structure with given layout is strong enough to carry 

the (dead loads + live loads), 
(ii) satisfies the constraints on the self-equilibrated residual 

forces and limited strength capacities, 
(iii) satisfies the constraints on plastic deformations and resid-

ual displacements, 
(iv) safe enough and the required amount of material does not 

exceed a given limit. The design solution

3.1 Deterministic problems
Applying the static principle, the statically admissible bend-

ing moment fields Mj should be considered. These can easily be 
obtained on the statically determinate released structure if we 
choose the magnitudes of the redundant forces arbitrarily and 
determine the bending moment distribution of the structure by 
the use of equilibrium equations. Then, a statically admissible 
stable shakedown load multiplier msh can be obtained from the 
condition that even the maximum bending moment does not 
exceed the fully plastic moment, i.e. max|Mj| ≤ Mp.

The solution method based on the static theorem of shake-
down analysis is formulated as follows:

g X X X XR S R S, ;( ) = − ≤ 0

P Ff g= ( )0

P f X dxf = ∫ ( ) .

P f W dxf calc p w,
( , ) .= ∫

0
σ
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βtarget f targetP= − ( )−Φ 1

,
;

βcalc f calcP= − ( )−Φ 1

,
.

1

6 1

2 2

0E
l
I

M M M M W
i

n
i

i
i a
r

i a
r

i b
r

i b
r

p
=
∑ ( ) + ( )( ) + ( )




≤

, , , ,

g W
E

l
I

M M M MW Mp
r

p
i

n
i

i
i a
r

i a
r

i b
r

i b
r

0 0

1

2 21

6
,

, , , ,( ) = − ( ) + ( )( ) + ( )
=
∑ 





(7)

(8)

(9)

(10.a)

(10.b)

(10.c)

(10.d)

(10.e)

(10.f)



4 Period. Polytech. Civil Eng. M. M. Rad

Maximize msh

subject to

Here F, K, G, G*: flexibility, stiffness, geometrical and 
equilibrium matrices, respectively. Eq. (11.b) is an equilibrium 
equation for the residual moment, Mr. Eq. (11.c) express the 
calculations of the elastic fictitious moments, Me. Eq. (11.d) is 
used as yield conditions. Eq. (11.e) is used to control the plastic 
deformations. The material redistribution is controlled by Eq. 
(11.f). This is a mathematical programming problem which 
can be solved by the use of nonlinear algorithm. Selecting one 
of the loading combination Qh; (h = 1, 2, ..., 5);  a shakedown 
load multiplier msh can be determined, then the limit curve can 
be constructed (Fig. 1).

Fig. 1 Limit curve and safe domain

3.1.1 Formulations of axially loaded structures
The design solution method based on the static theorem of 

shakedown analysis is formulated as below:

Maximize msh

subject to

3.2 Probabilistic problems
Here all the equations have the same meanings as in Eqs.

(11.a–d) and (11.f) while Eq.(13.e) is the reliability condition 
which controls the plastic behaviour of the structure by use of 
the residual strain energy.

Basic reliability problems are formulated as below:

Maximize msh

subject to

3.2.1 Alternative design formulations
The classical minimum volume design model can be cre-

ated by interchanging the objective function Eq.(13.a) and the 
last constraint Eq.(13.f) an alternative design formulation can 
be formulated as follows:

Minimize V Ali i= ∑

Here all the equations have the same meanings as they had 
before in Eqs.(13.b-e) while Eq.(14.f) gives an upper bound for 
the external loads. The application of shakedown analysis and 
design methods with limited residual strain energy capacity 
for deterministic and probabilistic problems (pile foundations 
and skeletal frame structures) are proposed by Movahedi and 
lógó [31]; Lógó et al. [32] and Movahedi [35].     

4 Conclusions
In this paper a review about the application of shakedown 

analysis with limited plastic deformations and displacements 
of elasto-plastic were presented. Shakedown analysis is a vital 
and developing topic in plasticity and a great number of applica-
tions have been made. At the application of the plastic analysis 
and design methods the control of the plastic behaviour of the 
structures is an important requirement. Since the shakedown 
analysis provide no information about the magnitude of the 
plastic deformations and residual displacements accumulated 
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before the adaptation of the structure, therefore for their deter-
mination bounding theorems and approximate methods have 
been proposed. The numerical analysis shows that the bounds 
can influence significantly the results of shakedown analysis.
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