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Abstract

The objective of the paper is to define a complex methodology to analyze black spot locations of road infrastructure network combining 

the benefit of both; Empirical Bayes method and K-mean clustering approach. In the first step, K-mean algorithm is used to define 

homogeneous accident clusters. The homogeneity is described in three terms: traffic conditions, geometric design of the road and 

accident characteristics. Then, Empirical Bayes method is applied to define black spots based on the determined clusters. Due to 

the combination of the introduced methods, a powerful technique is provided that is able to identify high-risk locations and cluster 

dependent segment length as the output of the model.
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1 Introduction
The identification of road sections characterized by high 
crash risk is considered the first step for any successful 
road safety management process. Based on Wen Cheng’s 
and Simon’s (2005) [1] researches, the objective of black 
spot (BS) identification process is “to identify the loca-
tions in a transportation system that have problems and 
its effects will be revealed through evaluated its crash fre-
quency related to other similar locations”. Until now, many 
different BS identification methods have been suggested. 
Empirical Bayes (EB) method is considered as a reason-
ably state-of-the-art methodology. Montella (2010) [2] 
compares seven well-known BS identification methodolo-
gies and concluded that EB is the most effective approach 
among them. The same result is obtained by Qu and Meng 
(2014) [3]. EB usually applies Poisson or negative binomial 
models to predict accident frequency for a given road seg-
ment or entity (i.e. intersection, ramp) in a given road type 
[4]. In order to predict accident frequency in road links 
more effectively, generally two types of data is applied to 

provide input for EB methods: time series of accident data 
of each specific road segment and of a group of similar 
(or homogeneous) segments. During the identification of 
homogeneous accident clusters, road segments properties 
in accident locations, together with causes and types of 
accidents (e.g. road geometry, traffic characteristics, num-
ber of lane, traffic volume) should be considered as key 
attributes of the cluster generation process. Considering 
that traffic accident data is heterogeneous, in general, 
researchers often try to reduce heterogeneity by focusing 
on a specific type of accidents. For instance, Aditya and 
Grembek (2016) [5] have focused on pedestrian crashes 
at crossing and midblock areas in their analysis, Bédard 
et al. (2002) [6] have investigated single-vehicle crashes 
with fixed objects, and Greibe (2003) [7] built an accident 
prediction model for urban junctions. However, due to het-
erogeneity of data certain accident factors can remain hid-
den. Most often, classification of accidents is only based 
on researchers’ experiences, methodological decisions or 
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wishes. Black and Thomas (1998) [8], have segmented the 
road arbitrarily into equal sections to examine the chang-
ing in Moran’s index values of neighbor segments. Kwon et 
al. (2013) [9] have introduced further segmentation meth-
odology based on the differences in road characteristics, 
i.e. number of lanes, average annual daily traffic (AADT). 
They concluded that different segmenting processes based 
on different set of infrastructure attributes can result con-
sequently different estimation values regardless of which 
evaluation method is used. Others have used a moving 
fixed length window, considering that as a more efficient 
segmentation approach [10], [11]. However, this method 
has also some remarkable weakness especially consider-
ing the so called ‘first come first serve’ problem and the 
fixed analysis interval, which could result in either  false 
positives or false negatives during the identification of BS 
locations [12]. Now it seems that, in order to efficiently 
apply EB method in case of homogeneous segments, 
it is useful to couple EB method to other approach that 
allows the aggregation of data in homogeneous segments 
or clusters. Clustering technique is one of the important 
data-mining approaches that  could be used in finding hid-
den relationships and patterns of a large number of acci-
dents [13, 14], and classify them according to the similari-
ties in their attributes and spatial distributions. Depaire et 
al. (2008) [15] have used a latent class generation method 
to identify homogeneous traffic accident types. They sug-
gest that applying clustering as a preliminary analysis can 
reveal hidden relationships and also can help in generating 
homogeneous road segments. Practically, homogeneity of 
accident classes could have many definitions considering 
the type of accidents, severity, spatial distribution, type 
and number of involved vehicles, driver characteristics and 
many other issues. Therefore, it is difficult to reach a pure 
definition of homogeneity. In our research paper, homoge-
neous segments have been defined based on spatial distri-
bution patterns of crashes and traffic and geometric char-
acteristics of the accident location. [5], [16].  Furthermore, 
it has to be mentioned that the combination of EB methods 
and clustering techniques has been successfully applied 
in other fields to identify critical locations (e.g. medicine) 
[17], [18]. Luca et al. (2012) [19] have used C-mean clus-
tering to identify accident attributes from which the EB 
model was subsequently constructed.

Spatial clustering can be applied in case of many types of 
road database, characterized by different aggregation level. 
In many researches, during safety investigations and black-
spot analysis traffic accidents  are examined as the function 

of speed, traffic volume or other variables (e.g. differenti-
ating continuous road segments or intersections [16], [20], 
[21]). The emphasis tends to be on explaining how different 
road segments or elements influence crash likelihoods. On 
the other hand, many well-accepted, well-structured meth-
ods handle the segmentation process and even the black-
spot analysis for entire roads components [5], [19] or even 
entire districts without the differentiation of intersections 
and continuous road sections. The reason for the applica-
tion of a more general model, the relatively high aggrega-
tion level, and the skipping of a more detailed investigation 
is the spread of the application of more general factors in 
this scientific field that are related to the spatial and the 
temporal distribution of the accidents.

The initial research has been focused on the spatial vari-
ations of automobile accidents. Cluster analysis tool aims to 
assemble different accidents into groups based on their spa-
tial distribution factor. In case of this approach the degree of 
proximity between two accidents is maximal if belonging to 
the same group and minimal otherwise. Thus, cluster anal-
ysis can be used to discover structures in data without pro-
viding an explanation or interpretation. [22], [23]. However 
spatial pattern can be used to provide possible explanations 
regarding the relationship, between different accidents 
based on their spatial locations, regardless of the road char-
acteristic of the location (i.e. road segment, intersection). 
In other words, spatial clustering can classify similar acci-
dents, based on their characteristics (causes of occurrence), 
into groups without having information on these character-
istics initially. Since it has a significantly higher probability 
that neighboring accidents in space and time have strongly 
related causes of occurrence than distantly located acci-
dents and thus their distribution regarding causes and types 
are more homogeneous [24], [25].

In accordance with the above introduced methodologi-
cal results and accepted assumptions the objective of this 
research is to define an effective accident classification 
approach which results such clusters of accidents, which 
can be characterized by homogeneous infrastructure attri-
butes and road locations. In this case, the accident classes 
define specific road sections as well, where the EB method 
can be applied.

2 Cluster analysis
Cluster analysis have several definitions, depending on 
where it is used, but generally its major goal is to organize 
a large data set (or set of objects) into constrained number 
of smaller homogeneous groups based on similarities or 
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dissimilarities between the components of the investigated 
sample. Thus generally, discovering the size and structure 
of the analyzed data can be considered as a fundamental 
goal of cluster analysis. 

Partitioning methods are one of the most well-known 
clustering algorithms. This method is generally based on 
finding a clustering structure that minimizes a certain error 
criterion. The method of the Sum of Squared Error (SSE) is 
a reasonably commonly used technique to derive this error. 
A widely used algorithm that applies squared error is the 
K-mean algorithm. The analytical approach presented in 
this paper is based on the K-mean clustering algorithm.

The principle of this technique is as follows: each object 
(accident) in this method is represented by a geographical 
point, and each point has different attributes and coordi-
nates. The algorithm starts with an initial set of cluster cen-
ters chosen randomly for a predetermined number of clus-
ters (k). In the iteration process, each data object is assigned 
to its nearest center, according to Euclidean distance of the 
accidents. In the next step cluster centers are recalculated 
in accordance with equation (1) [26]. The iteration stops 
when no more cluster centers need to be relocated,
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k

=
=
∑1

1

,	 (1)

where μk is the mean of cluster k and Nk is the number of 
objects (road crashes) belonging to cluster k.

In our case two input variables are applied to calculate 
distance of cluster elements from cluster centres; the spa-
tial location of each accident and the AADT data within 
a homogeneous road geometry. The spatial location is a 
key variable in classifying accidents, since it has signifi-
cantly higher probability that neighbouring accidents have 
strongly related causes than in case of distant located acci-
dents. Considering that the accidents are located on the 
road network, a section-kilometre based localization seems 
to be more appropriate to represent spatial identification 
of accidents, than geographical coordinates (the longitude 
and latitude). It allows us to avoid classifying accidents in 
the same cluster, which are closely located but occurred 
on different roads. Accordingly in K-mean clustering 
method a cumulated distance parameter has been defined 
in one dimension space for each accident starting from 
the beginning of the road, as presented in Fig. 1. To con-
sider the homogeneity of traffic during the segmentation 
process, AADT is also involved in the clustering method 
as a main input variable (See Fig. 1), so each resulted
cluster - which expectedly equals a constrained spatial 

Fig. 1 Illustration of K-mean clustering (c1, c2. c3 and c4 are clusters)

 
interval, with other words a section of the road - can be 
characterized by reasonably low heterogeneity regarding 
AADT. Fig. 1 represents a visual explanation on how acci-
dent clusters generated by the above introduced methodol-
ogy can also be applied to define specific segmentation of the 
road based on homogeneity criterion regarding accident and 
infrastructure parameters (the road is clustered according 
to its accident distribution and AADT). In the same figure 
(Fig. 1) cluster generation is strongly depending on AADT 
(different cluster is identified for different AADT as in case 
of cluster c3 and c4) and accident free sections are excluded 
from the segmentation process (empty intervals between 
clusters are not involved in section generation process).

The application of K-mean algorithm can be very 
attractive; since the road accident based segmentation 
method makes it possible to relate the length of the identi-
fied segments strongly to the clusters’ lengths. Therefore, 
empty sections between clusters with no accident history 
will be excluded from the evaluation process. Each clus-
ter length depends on the number of accidents contained 
by the cluster and their spatial distribution. This approach 
can help in minimizing false negatives and false positives 
during the estimation process related to BS location iden-
tification. Another reasonable advantage of K-mean clus-
tering in road accident classification is its easy implemen-
tation. Simplicity of application even in case of large data 
sets makes the advantageous characteristic of the model 
even more articular (e.g. compared to hierarchical meth-
ods, density-based methods). On the other hand in case 
of K-mean clustering method the number of clusters (k) 
has to be determined in advance, which can cause uncer-
tainty when no prior knowledge is available. Accordingly 
the question now is as follows: how the number of clusters 
(k) of road accidents can be determined?

2.1 Determining the number of clusters (k0)
According to the basic approach, to determine the num-
ber of clusters (k0) using K-mean clustering method it is 
required to test different numbers of k and analyze the 

μ
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changes of the variances (or SSE) compared to cluster cen-
ters. Clustering method that minimizes SSE is often called 
minimum variance partition. This method is used to mea-
sure the compactness degree of clustering. SSE represents 
the sum of squared differences between each cluster ele-
ment and its cluster’s center. SSE can be written in the fol-
lowing algebraic formula (equation 2 and 3),

SSE N Sk k
k

K

=
=
∑1
2 1

,	 (2)

where,
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where |xi – xj| is the absolute distance between each object 
(accident) j and its cluster’s center i for each cluster.

In case of minimizing SSE the number of clusters (k0) 
becomes reasonably close or equal to the number of the 
investigated objects (accidents), since the value of SSE 
becomes 0 if each individual object has an own cluster 
with a cluster centre coinciding with location of the given 
accident. Accordingly each data point will end up with its 
own little cluster, and the distance from each data point 
to its cluster centre is going to be zero, which is the best 
lower variance (or SSE) value. To avoid over fragmenta-
tion an additional methodological step needs to be intro-
duced in the process. The process of segmentation can be 
characterized by the changes of SSE value depending on 
the changes of cluster numbers. In this case, obviously, 
the velocity of SSE is investigated projected to the unit 
change of the number of clusters (if the analyzed func-
tions were continuous, SSE function differentiated by 
the number of clusters would be investigated). In light of 
the above mentioned aspects, when the function of SSE 
depending on number of clusters is analyzed the environ-
ment of the point where the slope of the curve’s tangent 
changes an order of magnitude (e.g. when its absolute 
value is less than 1) is critical. At this point the number 
of clusters starts to increase faster and faster so this point 
seems to be appropriate to be applied as a constraint of 
the number of clusters.

3 Empirical Bayesian
After applying K-mean clustering to divide the road into 
segments based on the similarity of the analyzed accidents, 
as described in section 2, it is required now to evaluate the 
level of risk of the resulted segments in order to identify 
BS segments on the road. EB method is considered as a 

state-of-the-art technique for doing that. This approach 
combines both the observed and predicted crash frequen-
cies, for a specific road network, in one statistical model, 
applying the equation (4) below.

N wN w NE p= + −( )1 0 ,	 (4)

where NE is the expected number of crashes; Np is the pre-
dicted number of crashes; and N0 is the observed number 
of crashes. NE is usually measured for three years to avoid 
any dispersion in the data, i.e. due to any special events or 
improvements in the road. The weight adjustment factor w 
is a function of Np over-dispersion parameter (See equa-
tion 5) [20]. Therefore w represents the degree of reliabil-
ity in obtaining Np for the studied three years.
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q = over-dispersion parameter from the associated Np  model.
The process of identifying BS using EB method is 

started by dividing the road into segments, that has 
already been done (in clustering section), and followed by 
calculating the predicted number of crashes NP for each 
segment characterized by the number and type of acci-
dents, AADT and length of the given section, by using the 
formula in equation (6), which allows us to calculate NE 
(equation 4),

N a b AADT Lp = + ⋅ ( )+ ( )( )exp ln ln ,	 (6)

where a and b are the regression parameters, their value 
depends on the category of road and type of crash [20]. 
Finally, the excess risk derived by EB method is calculated 
as the difference of NE and NP in which a positive value can 
refer to a BS. This technique also allows us to arrange the 
BS segments according to the degree of dangerousness.

4 Data
In our case study, the motorway road M3 in Hungary is 
examined. This road has a total length of 281 km and it con-
nects the capital Budapest with Nyíregyháza city located 
in the northeastern part of the country. Each accident 
occurred on this road from the year 2013–2015 is recorded 
regarding its coordinates, type and severity (excluding 
ramp and intersection accidents). Traffic volume (AADT) 
for different sections of the road is also included in the 
dataset for the same period. The accident data is included 
fatal serious and slight injury accidents together in accor-
dance with HSM’s recommendations (AASHTO 2010).
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Fig. 2 Defining the value of k0 based on the “Number of clusters-SSE” 
function

5 Results and discussion
A cluster analysis has been applied initially in order to 
divide accidents into homogeneous groups based on their 
spatial distribution assuming homogenous traffic and geo-
metric conditions. To do so, the first step is to identify 
the applied number of clusters (k0). In order to determine 
k0 an initial k0 value is required. In our study, the maxi-
mum value of section length has been defined of 10 km , 
in this case the number of clusters is about 30 (281/10≈30). 
Accordingly, the initial cluster number is 30. In the next 
step “number of cluster-SSE” function is defined based on 
the calculation of SSE values derived from the unit change 
of the cluster number. Then, optimal value of k0 is derived 
(See Fig. 2).

It can be noted from figure (2) that as the number of 
clusters (k) is increasing the variance is decreasing until 
it achieves zero. So, the best k point is there, where the 
difference quotient of function values and domain values 
changes an order of magnitude (becomes small enough 
- e.g. when its absolute value is less than 1). Up to this 
point each added cluster results in a substantial reduction 
in the value of variance but after that point, increasing k 
will result less-and-less reduction in the value of variance. 
As mentioned above, this consideration is similar to take 
the second derivative of the variance as a function of the 
number of clusters (indicating how much the difference 
changes as another cluster is added). In accordance with 
the result of the analysis, k = 40 seems to be the optimal 
cluster number.

The resulted number of accidents in each cluster and its 
corresponding segment length is presented in Table I. It is 
important to mention that some clusters are omitted since 
they just represented a single accident (their cluster lengths 
equal to zero since their accidents are far enough from any 
other accident). The next step is to evaluate the resulted 
segments, using EB approach (equations 4, 5 and 6) to 

calculate the expected number of crashes NE for a given 
section. Then in case of a positive excess risk derived by 
EB method (the difference value between NE and NP).

Table 1 Cluster information and the final BS identification process

Cluster 
ID

Observed number 
of rashes

Length 
(km)

Excess 
EB Result

1 8 2,78 -29,10

2 20 9,27 -14,28

3 26 6,92 -17,16

4 20 5,58 -24,84

5 54 10,44 -42,42

6 46 6,94 -7,20

7 24 4,36 3,71 BS

9 6 0,06 0,87 BS

10 30 4,36 -6,30

11 34 6,05 -29,28

13 34 8,67 -16,78

14 10 11,41 -7,12

15 32 4,31 0,81 BS

16 24 5,29 -9,09

17 24 3,09 -2,01

18 18 4,39 -18,75

19 14 4,41 -10,97

20 4 3,65 -19,80

21 26 6,05 -14,02

22 14 3,17 -7,02

23 44 6,76 -16,06

24 28 4,52 -12,12

25 4 0,40 0,04 BS

28 14 2,91 -12,15

29 20 3,88 -7,64

31 22 8,53 -10,05

32 22 2,69 -2,61

33 8 4,15 -25,09

36 24 5,73 -17,98

38 18 5,58 0,77 BS

39 40 6,58 7,70 BS

40 24 5,15 -3,89

Note: cluster 8,12, 26, 27, 30, 34, 35, 37 are excluded since it represent a 
single point (crash) cluster

6 Conclusions
Previous researches have demonstrated that K-mean algo-
rithm can be a useful tool to cluster large data sets in 
many scientific fields. This paper illustrates the benefits of 
applying this type of clustering technique in segmenting 
roads according to the number and distribution of acci-
dents occurred on the road considering traffic situation 



Ghadi et al.
Period. Polytech. Civ. Eng., 63(1), pp. 46–52, 2019|51

and parameters of road geometry in each section homog-
enous. According to our results, clustering can be a well 
applicable complementary approach of EB method to pro-
vide an effective and simple BS identification technique. 
Traditional road segmentation methods, like screening 
methods can result in different estimated values regard-
less of which evaluation method is used [9]. Since K-mean 
clustering can over bridge these deficiencies it seems to 
be a good initial methodological step before implement-
ing risk calculation of the sections. As a key advantage of 
K-mean clustering it identifies all road sections which are 
affected by traffic accidents, by grouping homogeneous 
accidents separately in as small segments as possible and 
thus excluding empty and less risky road sections between 
these clusters. This consequently results in re-sectioning 
the whole road network according to the spatial distribu-
tion of accidents. Therefore, all potential segments can 
be examined and classified according to its risk level. To 
evaluate the robustness of the model; a case study has been 
implemented. A road of 281 km length with about 220 
fatal, serious and slight injury accidents has been exam-
ined. Clustering method is started with an initial value 
of predetermined cluster number (k). Then the optimized 
number of clusters has been identified (based on the rate 
of change in variance or SSE) (See Fig. 1). Each resulted 
cluster has had its own specifically defined length depend-
ing on the number of accidents and their spatial distribu-
tion, and also on AADT values of the sections. The final 
result of the investigated case study has presented 40 spa-
tially segmented accident clusters with different lengths, 
among them 6 clusters have been classified as BS with a 
different level of risk. The resulted BS (Table II) can be 
further investigated according to its level of risk, since 
sections with higher positive excess risk values derived by 
EB method are more risky. However, Huzjan et al (2017) 
[27] found that harmonization of regulated speed limits on 
motorways can highly affect  crash potential, accordingly, 
speed and another accident related factors should be con-
sidered in future works to find more homogeneous cluster 
of  accidents.
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