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Abstract
With a focus on wedge failure during rock slope excavation 
and considering stochasticity and finite persistence based on 
a stochastic structural-plane network simulation and Lajtai’s 
rock resistance criteria, we present a simplified method com-
bined with binary particle swarm optimization (BPSO) to cal-
culate the shear strength of 3D rock masses. The probabili-
ties of rock slope failure under excavation surfaces of various 
sizes were obtained using the Monte Carlo method. These 
probabilities can provide a theoretical basis for determining 
excavation stability. The approach was applied to a rock slope 
excavation project in Chongqing, China, and yielded satisfac-
tory results. 

Keywords
wedge failure, rock slope excavation, failure probability, net-
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1 Introduction
Wedge failure is one of the most common mode of rock slope 

failure. In most previous engineering applications, the approach 
to analyzing rock slope stability has been to simply study 
known wedges, which have a definite shape, size, and location 
and good persistence, to obtain a stability coefficient. The ste-
reographic projection method [1], limit equilibrium method [1], 
plastic limit analysis method [2], [3], [4], and other new meth-
ods [5], [6], [7] are all based on mature theories, are well devel-
oped, and are widely used in engineering.

However, excavation differs in that there are not yet any 
good methods for conducting a specific investigation of all 
structural planes within a rock slope; thus, the wedges exposed 
in an excavation surface are stochastic and finite persistent. In 
addition, excavation surfaces are dynamically changing. All 
of these factors create unpredictability and risk regarding rock 
slope stability that cannot be addressed using existing meth-
ods. Thus, we need a new approach that takes into account the 
stochasticity and finite persistence of wedges within a rock 
slope to dynamically analyze the stability of a rock slope exca-
vation, estimate the risk, and guide the construction.

Recently, many scholars have presented the concept of sto-
chastic structural-plane network simulation and reliability anal-
ysis based on statistics and probability theory. These techniques 
can be used to describe the spatial distribution of structural 
planes statistically and to quantify the uncertainty. These two 
methods have been applied successfully in rock mechanics. For 
example, after Baecher presented a circular model of structural 
planes in 1977 [8], many scholars applied it to geotechnical 
engineering [9]–[12]. Einstein et al. used the model to analyze 
the effect of discontinuity persistence on rock slope stability 
[14]. In addition, ever since probability theory was applied to 
slope engineering in the 1970s, great achievements have been 
made, including the analysis of rock slope stability using proba-
bility theory by McMahon et al. [15]–[20]. All of these methods 
effectively address stochasticity in rock slope stability analysis.

The effect of finite persistence on rock slope stability cannot 
be ignored because in practice larger wedges tend to be more 
stable due to the rock bridge between structural planes. Lajtai 
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divided the failure modes of discontinuous rock in direct shear 
into three types [23], [24], and this system has great theoretical 
value and practical significance. Afterwards, many scholars 
studied the propagation and coalescence of structural planes 
based on uniaxial and biaxial compressive tests [14], [25]–[32]. 
All of these methods provide a theoretical basis for addressing 
finite persistence in rock slope stability analysis.

However, the stochasticity and finite persistence of wedges 
make the process of stability analysis too complex for applica-
tion to practical problems. Thus, this article presents a simpli-
fied method to applying the above methods efficiently to rock 
slope excavations combined with BPSO to calculate the shear 
strength of 3D rock masses and obtain the probabilities of rock 
slope failure behind excavation surfaces of various sizes using 
the Monte Carlo method.

2 Stochastic simulation of a structural plane network
To analyze rock slope stability taking into account the sto-

chasticity and finite persistence of wedges, a network model 
that simulates the structural planes must be established first. 
Although the distribution of structural planes is unpredictable 
and complex, they still follow statistical rules. Thus, we can 
use data collected in the field to develop a probability function 
for each set of structural planes and generate a certain number 
of stochastic structural planes using the Monte Carlo method 
to create a 3D network model that is statistically similar to a 
real set of structural planes.

In this method, there are several assumptions:
1. The structural plane has the shape of a round disk [8]; 

this shape has been found to approximate the true shapes of 
structural planes in most cases [33].

2. The structural planes in each set comply with a uniform 
probability distribution, and each structural plane has mutu-
ally independent variables [34].

3. The center of each structural plane is uniformly distrib-
uted in the 3D model space [35],[36].

Based on these assumptions, the radius and volume density 
can be calculated using Eqs. 1 and 2 [9]: 

Where r is the radius, l is the trace length, fr(r) is the density 
function of the radius, f(l) is the density function of the trace 
length, d  is the average spacing of the structural planes, λd is 
the linear density, and λv is the volume density.

Fig. 1 shows a 3D stochastic model of a structural plane 
network with a volume measuring 10 meters × 10 meters × 10 
meters and containing three sets of structural planes and a 2D 
model of one section through the network.

  

Fig. 1 Stochastic model of structural plane network

3 Lajtai’s rock resistance criteria
Lajtai studied the strength of intact rock bridges in direct 

shear tests [23],[24] and found three failure modes at different 
normal stresses σa. These modes consist of tensile failure at low 
stress, shear failure at high stress, and crushing of rock bridge sat 
still higher stress, followed by shearing at residual stress values.

Lajtai also found that in most slope stability analyses, the 
range of σa is generally less than the critical value of 2ctanφ, 
where c is the cohesion of the rock and φ is the internal fric-
tion angle. Therefore, the tensile failure mode is more com-
mon under general conditions, thus the shear failure mode is 
neglected in the following discussion.

In the tensile failure mode, with increasing shear force, the 
minimum principal stress σ3 reaches the tensile strength of the 
intact rock σt first and causes several tensile cracks (also called 
wing cracks) to form along the direction of maximum principal 
stress at high angles to the direction of sliding. Simultaneous 
with the appearance of these cracks, the peak shear resistance 
in the sliding direction is attained. Afterwards, shear cracks 
along the direction of sliding appear, followed by shear failure 
of the intact rock (Fig. 2). The peak shear resistance τa and the 
angle between the wing cracks and the direction of sliding θ 
can be calculated as follows [23], [24]:

Fig. 2 Tensile failure in direct shear

Based on Lajtai’s model, Einstein et al. [14] summarized 
structural plane coalescence in two cases (Fig. 3). In high angle 
transitions (ω > θ) between two structural planes, a continuous 
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wing crack develops directly between two planes without sec-
ondary shear cracks. In low angle transitions (ω > θ), wing 
cracks and shear cracks lead to coalescence of the two planes.

Fig. 3 Structural plane coalescence

4 Shear strengths of 2D rock masses
4.1 Shear strengths of structural planes

Fig. 4 shows a structural plane of angle α in a unit length 
of rock mass where T is the lateral shear force, W is the verti-
cal force, S is the shear resistance of the structural plane, and 
N is the normal force on the structural plane. According to 
the Mohr-Coulomb failure criterion, when failure occurs, the 
force-balance equation can be written as follows: 

Substituting σn for W and τ for T in Eq. (5) yields the fol-
lowing equation:

Based on this equation, the shear strength of the struc-
tural plane is related not only to the shear strength parame-
ters but also to the angle α [37]. The shear strength increases 
with increasing values of α; when α reaches 90° – φ, the shear 
strength becomes infinite, indicating that shear failure will not 
occur along this structural plane.

Fig. 4 Force diagram of structural plane in shear

4.2 Shear strengths of rock bridges
Based on the research of Shen, Wong, Robet, et al. [25]-[31], 

we simplified the coalescence of structural planes to four basic 
types that are convenient for computer analysis (Fig. 5).

For angle transitions in range “A”, the two planes coalesce 
by way of shear cracks along the direction of sliding. The shear 
strength of the rock bridges can be calculated as follows:

For angle transitions in range “B”, the two planes coalesce 
by way of shear cracks and wing cracks. The shear strength of 
the rock bridges can be calculated using Eq. 7.

For angle transitions in range “C”, the two planes coalesce 
directly by way of wing cracks. The shear strength of the 
bridges can be calculated as follows:

Rr = hσt .

For case “D”, there is no contribution to the shear strength 
from the rock bridge between two intersecting planes.

Fig. 5 Simplified model of structural plane coalescence

4.3 Minimum shear strength combination
Thus, the strength of structural planes and rock bridges can 

be calculated, and by referring to Einstein’s definition of joint 
persistence [14], we can obtain the shear strength and failure 
path of the rock mass in any direction of shear by determining 
the minimum shear strength combination of the rock bridges and 
structural planes. The procedure can be summarized as follows:

1. Build a 3D stochastic model of the structural plane net-
work and a 2D model along one section. Create a shear zone 
measuring L × B metres in the 2D model and establish new 
coordinates in which the sliding direction is parallel to the x–y 
plane and the shear zone is parallel to the x–z plane (Fig. 6). 
Thus, the search range and coordinate system are determined 
for the next steps.

Fig. 6 Shear zone in 2D network model
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2. Find all of the structural plane segments within the range 
of the shear zone (Fig. 7-a).

3. Separate the high-angle (α ≥ 90° – φ) structural plane seg-
ments from other segments due to their infinite shear strength 
(Fig. 7-b), although they still can be combined with the tensile 
cracks (Fig. 7-d, in circle).

4. To simplify the search process, locate every structural 
plane segment based on a starting point and an ending point 
according to the shear direction and then sort them based on 
the positions of their starting points (Fig. 7-c).

5. Separate structural plane segments that intersect with 
others into several parts defined by their intersections (Fig. 
7-c, in circle).

6. For each possible combination, determine the coalescence 
type of every two adjacent structural plane segments in order. 
Then, calculate the strength of the rock bridges using Eqs.7 
and 8 and add the strength of the structural planes obtained 
from Eq.6 to obtain the total shear strength.

7. Finding the minimum shear strength combination (Fig. 
7-d) yields the shear strength of the rock mass and the failure 
path within the mass.

Fig. 7 Search method for minimum shear strength combination

4.4 Anisotropy and size effect of rock masses in 
shearing

The shear strength of the rock mass, obtained as described 
in section 4.3, is clearly related to the properties of the struc-
tural planes and intact rock. The direction and size of the shear 
zone also affect the shear strength. Therefore, we established 
a network model of structural plane A using the parameters in 
Table1, and shear zones of various directions and sizes were 
investigated.

As shown in Figure 8, each point on the curve represents 
the shear strength of a shear zone on a failure plane which 
has the same strike direction with reference structural plane 
and tend to slide along its dip direction, the angle between the 
normal vector of this shear failure plane and the normal vector 
of preference structural plane is ∆α, which is in a range of 0°to 
360°. Similarly, in Figure 9, each point on the curve stands for 
the shear strength of a shear zone on a failure plane which has 
the same dip angle with reference structural plane but different 

dip directions, the angle between the two dip directions is ∆β, 
which is also in a range of 0°to 360°.The shear strength is a 
minimum when ∆α is 0°, 180°or 360°and when  ∆β is 0°or 
360°, which means that the failure planes are parallel to the 
preferred structural plane. And the shear strength is a maxi-
mum when ∆α and ∆β are about 90°or 270°, which means that 
the normal vector or dip direction of failure planes are perpen-
dicular to the preferred structural plane’s.. In other words, the 
critical shear failure plane is parallel to the preferred structural 
plane in most cases. 

Fig. 8 Shear strength as a function of ∆α

Fig. 9 Shear strength as a function of ∆β

Additionally, the shear strength curve can be drawn by 
changing the width of the shear zones while holding the other 
conditions constant (Fig. 10). The wider the shear zone, the 
lower the shear strength, because the combinations are insuf-
ficient to yield the minimum strength when the shear zone is 
narrow. The shear strength remains constant after the width 
of the shear zone reaches 2 to 3 times the average structural 
plane spacing, which is 1.37 m in this case. Therefore, 2 to 3 
times the average spacing is taken as the shear zone width in 
the following analysis.

Fig. 10 Shear strength as a function of shear zone width

(a)

(b)

(c)

(d)
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In Fig. 11, each point corresponds to a shear zone with a 
unique length. The variation in shear strength shows a signif-
icant size effect: shear strength along short shear zones are 
all low, indicating that small rock masses can always be com-
pletely penetrated by structural planes. As the length of a shear 
zone increases, the shear strength increases, and it stabilizes 
at 30% of the intact rock shear resistance after the shear zone 
length reaches approximately 10 times the average structural 
plane radius, which is 1.27 m in this case. This pattern develops 
because the proportion of structural planes and rock bridges 
along the failure path in a large rock mass is relatively constant.

Fig. 11 Shear strength corresponding to various shear zone lengths

5 Shear strength of 3D rock masses
5.1 Slice methods for 3D shear zones

However, analyzing the reliability of a rock slope excava-
tion is a 3D problem, and the assumption in the 2D method 
that structural planes are infinite in the third dimension yields 
lower shear strength. 

Following the Swedish slice method of soil slope stability, 
we can cut the 3D shear zone of a wedge into thin slices along 
the shear direction (Fig. 12). When the number of slices is suf-
ficiently large, the 3D problem can be converted to 2D prob-
lems along each slice, and the shear strength of the 3D shear 
zone can be calculated by adding the shear strength along all 
the slices (Eq.9):

Where R3D is the shear strength of the 3D shear zone, R D
i
2  

is the shear strength of the i-th 2D slice, and ti is the thickness 
of the i-th slice.

Fig. 12 Slice method applied to a 3D shear zone

In this application of the slice method to a 3D shear zone, the 
inter-slice force between each two adjacent slices is neglected; 
the errors caused by this assumption would be small because 
of the force is an internal force. This assumption that shear 
strength of all slices reach the maximum simultaneously leads 
to a higher result, and this assumption that failure of all slices 
happens along the path of minimum shear strength simulta-
neously leads to a lower result; fortunately, the two errors are 
partly counteracted. Nevertheless, this method overcomes the 
greatest defect of the 2D method in that it takes into account 
the form and distribution of the structural planes.

5.2 Search method combined with BPSO
In 2D problems, general analytical methods are applied to 

determine the minimum shear strength combination [38], but 
in a 3D model with a large number of structural planes, such 
methods may be inappropriate. Thus, we applied a recently 
developed artificial intelligence algorithm to solve this problem.

Particle swarm optimization (PSO) simulates the social 
behavior of organisms such as birds. Each solution is consid-
ered a particle in the search space, and each particle has a fit-
ness value. During movement, each particle adjusts its position 
by changing its velocity according to its own experience and 
the group’s experience, finally moving to the optimal position 
[39]. There is a discrete binary version (BPSO) of PSO that 
was introduced by Kennedy and Eberhart in 1997 [40], which 
can be used for the optimization of discrete variables.

Due to its high speed and its simple algorithm, we applied 
BPSO to determine the minimum shear strength combination 
in a 3D shear zone. For this procedure, the following steps 
were followed:

1. Define an n-dimensional search space in which n is the 
total number of structural planes in the 3D shear zone. The 
positions of particles in each dimension are represented by the 
two discrete binary numbers “0” and “1”; “1” indicates that the 
structural plane corresponding to the dimension was chosen in 
the combination, whereas “0” indicates that the plane was not.

2. Initialize a population of particles with random positions 
and velocities in each dimension. Based on the position of each 
particle, use the methods described in section 5.1 to calculate 
the shear strength of the chosen combination in the 3D shear 
zone; this shear strength is the fitness value. Fig. 13 shows a 
chosen combination in a 3D shear zone.

Fig. 13 A combination in a 3D shear zone

R R tD D
i

i3 2
= ∑ ⋅ . (9)
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3. For each particle, if the current fitness value is better than 
its best fitness value, then replace the best position and fitness 
value with the current position and fitness value. If the current 
fitness value is better than the group’s best fitness value, then 
replace the group’s best position and fitness value with its cur-
rent position and fitness value.

4. The velocities in BPSO are defined as probabilities; a cer-
tain part of a particle’s position will change to “0” or “1”. Each 
particle is updated using the following equations:

where vij is the velocity of the i-th particle in the j-th dimen-
sion; xij(t) is the position of the i-th particle in the j-th dimen-
sion; t is the number of updates; r, r1 and r2 are independent 
random numbers in the range of [0, 1]; c1 and c2 are acceler-
ation parameters, and w is the inertial weight, which can be 
dynamically changed to adjust the global search capability and 
local search capability.

Generally, the particle velocities are restricted to a range of 
[Vmin, Vmax] to control excessive roaming of particles outside the 
search space.

5. The process is then iterated from steps 3 through 5 until 
a predetermined minimum error is achieved. Finally, the best 
position representing the minimum shear strength combina-
tion and the best fitness value representing the minimum shear 
strength are obtained. 

Fig. 14 shows a search involving 50 particles, approximately 
100 iterations and 233 combinations. BPSO is much more effi-
cient than general analytical methods and thereby enables the 
study of rock slope stability using a large number of 3D net-
work models.

Fig. 14 Search process using BPSO

6 Probability of rock slope failure during excavation
The following steps are used to calculate the probability of a 

rock slope failure involving excavation surfaces of various sizes.
1. Build a stochastic structural plane network model with an 

excavation surface of a size based on field data.
2. In accordance with the analysis described in section 4.4, 

for each set of structural planes, define a set of shear planes 
parallel to the preferred structural plane. The spacing between 
shear planes can be adjusted to achieve the required precision. 

3. Determine the wedges formed by each pair of shear 
planes exposed in the excavation surface. For each wedge 
found, model a “V”-shaped 3D shear zone with a certain thick-
ness (usually 2 to 3 times the average structural plane spacing) 
based on the pair of shear planes (Fig. 15). The direction of 
shearing is along the intersection line between the planes.

Fig. 15 3D shear zone of the wedge

4. Use the method described in sections 5.1 and 5.2 to cal-
culate the shear strength of the 3D shear zone under a series 
of normal stresses (σa). Thus, a fitted envelope curve can be 
drawn to obtain the shear strength parameters c and φ in 
accordance with the Mohr-Coulomb criterion.

5. Divide the weight of the wedge into two parts. One is a 
regular triangular pyramid, and the other is the irregular part 
overlying the failure path in the 3D shear zones, which can be 
calculated by partitioning each 2D slice into a series of vertical 
parts bounded along their bottom by structural planes or rock 
bridges (Fig. 16). Thus, the weight of the wedge can be calcu-
lated as follows:

Where W1 is the weight of the regular triangular pyramid,  
γr is the unit weight of the rock, Sij is the area of the i-th part in 
the j-th slice, and ti is the thickness of the i-th slice.

Fig. 16 Partitioning of 3D wedges

6. In accordance with limit equilibrium theory, calculate 
the stability coefficient of each wedge using the following rela-
tionships (Fig. 17):
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Where W is the weight of the wedge; N1 and N2 are the nor-
mal forces on each shear plane; βs is the angle of the inter-
section line; ωx'1, ωz'1, ωx'2 and ωz'2 are the angles between the 
normal forces and the local coordinates; c1, c2, φ1 and φ2 are the 
shear strength parameters of each shear plane; A1 and A2 are 
the areas of each shear plane; and K is the stability coefficient.

7. In each network model, take the minimum K of all of 
the wedges exposed in the excavation surface as the stability 
coefficient of the entire slope.

8. After a certain number of network models are built, 
obtain the failure probability p using the Monte Carlo method:

where Ki is the stability coefficient of the rock slope in the 
i-th network model and n is the number of network models.

9. Change the size of the excavation surface, and obtain the 
failure probability in every case.

Fig. 17 Limit equilibrium analysis of wedge stabilityˆ
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Table 1 Parameters of structural planes

Sets Dip angle (°) Dmax D(n,a)

Distribution Mean Variance Normal Exponential Log-normal Weibull α = 0.05

Bedding surface Normal 15 2.56 0.0743 0.8745 0.1221 1 0.1231

Structural plane A Normal 67 6.64 0.1276 0.1295 0.1632 0.9363 0.1466

Structural plane B Normal 75 6.64 0.1154 0.1937 0.0963 0.1876 0.1662

Sets Dip direction (°) Dmax D(n,a)

Distribution Mean Variance Normal Exponential Log-normal Weibull α = 0.05

Bedding surface Normal 300 2.56 0.0873 1 0.1348 0.1135 0.1231

Structural plane A Normal 130 10.21 0.0972 0.2175 0.1032 0.2341 0.1466

Structural plane B Normal 34 3.58 0.1327 0.9427 0.1284 1 0.1662

Sets Spacing (m) Dmax D(n,a)

Distribution Mean Variance Normal Exponential Log-normal Weibull α = 0.05

Bedding surface Exponential 0.67 1 0.2948 0.1037 0.1269 0.2759 0.1231

Structural plane A Exponential 0.57 0.8 0.1385 0.1127 0.2954 0.1396 0.1466

Structural plane B Exponential 0.84 0.5 0.4532 0.1235 1 0.9348 0.1662

Sets Trace length (m) Dmax D(n,a)

Distribution Mean Variance Normal Exponential Log-normal Weibull α = 0.05

Bedding surface Exponential 0.67 3 0.2537 0.0658 0.1894 0.2371 0.1231

Structural plane A Exponential 1 1 0.1654 0.1021 0.1367 0.1569 0.1466

Structural plane B Exponential 0.67 1 0.1632 0.1176 0.1604 0.1573 0.1662

Sets c (kPa) Dmax D(n,a)

Distribution Mean Variance Normal Exponential Log-normal Weibull α = 0.05

Bedding surface Normal 15 2.56 0.0249 0.1535 0.1206 0.1346 0.1231

Structural plane A Normal 20 5.11 0.1233 0.9476 0.0843 1 0.1466

Structural plane B Normal 20 5.11 0.1182 0.1794 0.1569 0.1762 0.1662

Sets φ (°) Dmax D(n,a)

Distribution Mean Variance Normal Exponential Log-normal Weibull α = 0.05

Bedding surface Normal 10 1.02 0.0471 0.1258 0.1342 0.1158 0.1231

Structural plane A Normal 12 1.54 0.0893 0.2374 0.1449 0.1932 0.1466

Structural plane B Normal 12 1.54 0.1383 0.1428 0.1218 0.9432 0.1662

(13)

(14)

(15)

(16)
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7 Results and discussion
This approach was applied to a rock slope excavation project 

in Chongqing, China. Several months earlier, a wedge failure 
accident had occurred causing 3 deaths and 3 injuries (Fig. 18). 

Fig. 18 Wedge failure during excavation

The rock slope is 70 meters long and 21.6 meters tall and 
has a 3-meter-thick soil layer overlying the slope crest with 
a weight of 20kN/m3. The slope gradient is 75°, and the slope 
direction is azimuth 90°. The bedrock consists mainly of mod-
erately weathered mudstone with a unit weight of 25kN/m3. 
The mean tensile strength of the intact rock is 730kPa, and 
the variance is 90kPa. The rock mass contains a set of bedding 
planes and two other sets of structural planes; their parameters 
are listed in Table 1.

To choose a proper distribution for each parameter in Table 
1, frequency histogram according to the field data should be 
plotted first. One or several sorts of distributions may be suit-
able for a parameter, such as normal distribution, log-normal 
distribution, exponential distribution, and Weibull distribu-
tion. In order to determine the most appropriate one, we have 
taken the hypothetical test for each distribution using the 
Kolmogorov-Smirnov test method which is shown as Eq. 17, 
thus to judge whether the distribution would be accepted or 
not. Finally, combined with the shape of histogram, the most 
suitable distribution for each parameter can be selected.

According to the equation above, the specific distribution 
is considered to be acceptable with a certain significance level 
if  Dmax – the max numeric difference between the sample dis-
tribution function F(x) and the specified distribution function 
G(x) – is less than D(n,a), which is the critical value with the 
significance level of α, and n is the sample quantity.

An earlier analysis of wedge stability using certain param-
eters of the structural planes and persistence of 100% indi-
cated that the larger wedges yield low stability coefficients, as 
shown by the curve in Fig. 19. However, in this case, the stabil-
ity coefficients of the wedges with different sizes considering 
the stochasticity and finite persistence (points in Fig. 19) show 
different patterns. Although the points are scattered, the sta-
bility coefficients first decrease and then increase with increas-
ing wedge size. The points corresponding to the small wedges 
are near the curve, indicating that the small wedges are less 
affected by the discontinuities. With increasing wedge size, 

the stability coefficients increase rather than decrease because 
of the presence of rock bridges. By fitting an envelope to the 
lowest bound of all the points, it is concluded that the critical 
wedge is approximately 2 to 12 meters tall instead of the larg-
est ones, which is consistent with what is frequently observed: 
wedges that are very large or small are typically stable.

Fig. 19 Stability coefficients of wedges of various heights

Stochastic models of structural plane networks measuring 
90 × 40 × 32 meters were built in cases of excavation surface of 
different length and width, and the failure probabilities in each 
case were obtained. As shown in Fig. 20, the deeper and lon-
ger the excavation, the higher the failure probability. Addition-
ally, with increasing excavation depth, the failure probability 
increased sharply at first and then reached a steady value. This 
pattern developed because the wedges exposed first are small 
ones with a relatively low stability coefficient, followed by the 
exposing of wedges that are larger and more stable.

In the accident in Chongqing, the wedge failure occurred 
when the excavation surface was 6.2 meters tall and 70 meters 
long. According to the results shown in Fig. 20, the failure 
probability reached 50%. We can also conclude that when 
the excavation surface was less than 4 meters tall and 10 
meters long, its probability of failure was relatively low, and 
any slope-retaining structures should have been constructed 
before any subsequent excavation.

Fig. 20 Probability of rock slope failure with excavation surfaces of various 
sizes

D F x G x Dmax x n= ( ) − ( ) <
−∞< <+∞ ( )max .

,α (17)
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8 Conclusions
1.	 BPSO has the advantages of high speed and a simple algo-

rithm, which can improve the processing speed greatly for 
determining the minimum shear strength combination in 
3D shear zones.

2.	The orientation of the shear zone affects the shear strength 
in rock masses. The shear strength is a minimum when the 
dip angle and direction of the shear zone are equal to the 
average dip angle and direction of the structural planes, 
respectively, and the shear strength is a maximum when 
these two orientations are orthogonal.

3.	 The width of the shear zone affects the shear strength in the 
rock mass. The wider the shear zone, the lower the shear 
strength, and the shear strength takes on a constant value 
after the width of the shear zone reaches 2 to 3 times the 
average structural plane spacing.

4.	 The length of the shear zone affects the shear strength in 
the rock mass. Shear strength in short shear zones are typ-
ically low. As the length of the shear zone increases, the 
shear strength increase and finally stabilize after the shear 
zone reaches a certain length.

5.	 Generally, with increasing wedge size, the stability coef-
ficient decreases at first and then increases because of the 
presence of rock bridges. 

6.	 In this case, the deeper and longer the excavation, the 
higher the failure probability. With increasing excavation 
depth, the failure probability increases sharply at first and 
then attains a constant value.
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