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Abstract
Location optimization of tower crane as an expensive equip-
ment in the construction projects has an important effect on 
material transportation costs. Due to the construction site 
conditions, there are several tower crane location optimiza-
tion models. Appropriate location of tower cranes for material 
supply and engineering demands is a combinatorial optimiza-
tion problem within the tower crane layout problem that is 
difficult to resolve.  Meta-heuristics are popular and useful 
techniques to resolve complex optimization problems. In this 
paper, the performance of the Particle Swarm Optimization 
(PSO) and four newly developed meta-heuristic algorithms 
Colliding Bodies Optimization (CBO), Enhanced Colliding 
Bodies Optimization (ECBO), Vibrating Particles System 
(VPS), and Enhanced Vibrating Particles System (EVPS) are 
compared in terms of their effectiveness in resolving a prac-
tical Tower Crane Layout (TCL) problem. Results show that 
ECBO performs better than other three methods in both cases.

Keywords
Tower Crane Layout Problem, Enhanced Colliding Bodies 
optimization, Vibrating Particles System, Construction Site 
Layout Planning, Meta-heuristic Algorithm

1 Introduction
In recent decades, many researchers have tried to provide 

the best method for solving the Construction Engineering Opti-
mization Problems (CEOPs). Construction site layout problems 
(CSLPs) are the most interesting CEOPs, because they brought 
the consideration of layout esthetics and usability qualities 
into the facility design process [1]. Many building construc-
tion projects utilize tower cranes for transporting heavy con-
struction materials. Material transportation is one of the major 
activities in the building construction industry, lifting and 
hoisting heavy materials by cranes in construction sites are 
usual tasks that need precise planning [2]. Every construction 
project requires enough space for temporary facilities to per-
form the construction activities in a safe and efficient manner. 
Construction site-level facilities layout is an important step in 
site planning. Planning construction site spaces to allow for 
safe and efficient working status is a complex and multi-disci-
plinary task as it involves accounting for a wide range of sce-
narios. CSLPs are known as combinatorial optimization prob-
lems. There are two methods to solve large size problems, the 
meta-heuristics and the exact methods with the global search 
for smaller search sized problems [3]. For example, Li and Love 
[4] developed a construction site-level facility layout problem 
for allocating a set of predetermined facilities into a set of pre-
determined locations, while satisfying the layout constraints 
and requirements. They applied the genetic algorithm to solve 
the CSLP by assuming that the predetermined locations are in 
rectangular shape and are large enough to accommodate the 
largest facility. Gharaie et al. [5] resolved their model by Ant 
Colony Optimization. Kaveh et al. [6] applied Colliding Bodies 
Optimization (CBO) and its enhanced version (ECBO).

The tower crane is a major facility in the transportation of 
materials, especially heavy prefabricated units such as steel 
beams, ready-mixed concrete, prefabricated elements, and 
large-panel formworks [7]. TCLP tries to find the best position 
of tower cranes and supply points in a building construction 
site for supplying all the requests in a minimum time, has been 
raised from about twenty years ago. Zhang et al. [8] devel-
oped an analytical model by considering the travel time of 
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tower crane hooks and adopting a Monte Carlo simulation to 
optimize the tower crane location. However, considered tower 
crane in their study was a single crane and the effect of loca-
tion of supply points on lifting requirements and travel time 
has been neglected. An artificial neural network model by Tam 
et al. [7] applied for predicting tower crane operations and also 
they employed a genetic algorithm model to optimize the crane 
and supply points layout [7, 9]. The case study used by Tam 
et al. [9] to show the effectiveness of their model was subse-
quently used in several papers to compare the effectiveness of 
other optimization methods. For example, mixed integer lin-
ear programming (MILP) used by Huang et al. [3] to optimize 
the crane and supply points location. Result showed that their 
method reduced the travel time of the hook by 7% compared 
to the results obtained from the previous genetic algorithms. 
Kaveh and Vazirinia [10] compared the performance of CBO, 
ECBO, and VPS in this model and discused the results. A par-
ticle bee algorithm (PBA) with two cases developed by Lien 
and Cheng [11] to optimize the tower crane layout and mate-
rial quantity between supply and demand points. Herdani [12] 
developed an Evolutionary Big-Bang Big-Crunch EBB-BC 
and applied it for optimizing this model. In this paper, four 
newly developed meta-heuristic algorithms called Colliding 
Bodies Optimization (CBO) [13], Enhanced Colliding Bodies 
Optimization (ECBO) [14], Vibrating Particles System (VPS) 
[15], and Enhanced Vibrating Particles System (EVPS) [16] 
are used to optimize the tower crane layout and material quan-
tity between supply and demand points.

Solving real-life problems by meta-heuristic algorithms has 
become an interesting topic in recent years. Many meta-heuris-
tics with different philosophy and characteristics are developed 
and applied to a wide range of fields. The main objective of 
these optimization methods is to efficiently explore the search 
space in order to find global or near-global solutions. Since these 
algorithms are not problem specific and do not require deriv-
atives of the objective function, they have received increasing 
attention from both academia and industry [23]. Meta-heuristic 
methods are global optimization methods that try to reproduce 
natural phenomena (Genetic Algorithm [17], Particle Swarm 
Optimization [18], Water Evaporation Optimization[19]), 
humans social behavior (Imperialist Competitive Algorithm 
[20]), or physical phenomena (Charged System Search (CSS) 
[21], Colliding Bodies Optimization [13], Big Bang-Big Crunch 
[22], Vibrating Particles System (VPS) [15]). Exploitation and 
exploration are two important characteristics of meta-heuristic 
optimization methods. Exploitation serves to search around the 
current best solutions and select the best possible points, and 
exploration allows the optimizer to explore the search space 
more efficiently, often by randomization [23].

After this introduction, tower crane layout with material 
quantity supply and demand optimization described in section 
2, a brief explanation of optimization algorithms presented in 

section 3. Numerical examples are studied in Section 4 and the 
results are discussed in Section 5. Conclusions are derived in 
Section 6.

2 Problem: tower crane layout with material quantity 
supply and demand optimization [11]

Many researches have worked on the locating and trans-
porting time of a tower crane. A mathematical model for deter-
mining the most suitable tower crane location was developed 
by Choi and Harris [24]; Zhang et al. [8] developed the Monte 
Carlo simulation approach to optimize tower crane location; 
Tam et al. [9] employed an artificial neural network model 
for predicting tower crane operations and a genetic algorithm 
model for site facility layout [7, 9]. Huang et al. [3] developed 
a mixed integer linear programming (MILP) to optimize the 
crane and supply locations. However, Tam and Huang consid-
ered only operation time cost of material operation flow and 
ignored other important cost factors such as rent, labor and 
tower crane setup [11]. Lien and Cheng [11] developed a Par-
ticle Bee Algorithm (PBA) to solve a TCL model that more 
practically reflect the actual conditions on a construction site 
and also considered the rent, labor, and tower crane setup cost. 
Herdani [12] applied PSO, BB-BC, and EBB-BC meta-heu-
ristic algorithms to solve this PBA model and discussed the 
results. In this paper, the performance of PSO and four newly 
developed meta-heuristic algorithms CBO, ECBO, VPS, and 
EVPS are compared in terms of their effectiveness in resolving 
a practical TCLP. The meta-heuristics are used to optimize the 
location of the tower crane. Also, these methods used to opti-
mize the operating distance and frequency between demand 
and supply points in terms of total operating costs based on the 
material requirements at demand and supply points.

Travel distance between the supply and demand points can 
be calculated by the Eqs. (1)–(3) referring to Figs. 1 and 2. 

Fig. 1  Radial and tangent movements of the hook
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Fig. 2 Vertical movement of the hook

Hook movement time is an important parameter to evaluate 
the total time of material transportation using a tower crane. 
The hook movement time has split up into horizontal and ver-
tical paths to reflect the operating costs by giving an appro-
priate cost-time factor. Corresponding movement paths along 
different directions can be seen from Figs. 1 and 2.

A continuous type parameter ѱ indicates the degree of 
coordination of the hook movement in radial and tangential 
directions which depends on the control skills of a tower crane 
operator, times for horizontal and vertical hook movements 
can be calculated from Eqs. (4) to (7), respectively.

The total travel time of tower crane at location k between 
supply point i and demand point j, Ti j

k
, , can be calculated using 

Eq. (8) by specifying the continuous type parameter β for the 
degree of coordination of hook movement in horizontal and 
vertical planes. 

The objective function of the TCLP was required to satisfy 
two requirements: (1) The function must be high only for those 
solutions with a high design preference and (2) The function must 
be high only for those solutions that satisfy the layout constraints 
[11]. The objective function of this problem presents as follow: 

where TC is total cost; K is the number of potential crane; 
I is the number of supply points; J is the number of demand 
points; Qi,j is quantity of material flow from Si to Dj ; CUk is 
cost of material flow from Si to Dj per unit quantity and unit 
time by kth crane; R is total rent cost; S is tower crane total 
setup cost; L is total labor cost; Mk is rent cost per month by 
kth crane; DYk is days of renting tower crane/labor work by kth 
crane; ISk is tower crane initial setup cost; MSk is tower crane 
modified setup cost by kth crane; MSTk is modified setup times 
by kth crane; RSIk is disassembly cost; LCk is labor cost per 
person by kth crane; LAk is labor amount by kth crane.

Subject to:

Notice: the objective function limit of actual supply capac-
ities should be smaller or equal to limit supply capacities. 
Besides, the objective function limit of actual demand capaci-
ties should be equal to limit demand capacities. The subject will 
give a penalty when objective function breaks the above rules.

3 Optimization algorithms
Particle Swarm Optimization (PSO) is a well-known algo-

rithm and presented in many papers and books, and for brifity 
it is not repeated in here. However for a through explanation 
of this method and its enhanced version, the interested reader 
may refer to Kaveh [23].

3.1 Colliding bodies optimization
An efficient algorithm, inspired from the momentum, and 

energy rules of the physics, named Colliding Bodies Optimiza-
tion, has been developed by Kaveh and Mahdavi [13]. CBO does 
not depend on any internal parameter and also it is extremely 
simple to implement and to use. In this method, one body col-
lides with another body and they move to the lower cost. Each 
solution candidate “X” at CBO, contains a number of variables 
(i.e., Xi = {Xi,j}) and is considered as a colliding body (CB). The 
bodies with masses being assigned are divided to two main equal
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Fig. 3 Pairs of CBs for collision

groups; i.e., stationary and moving bodies (Fig. 3), where the 
moving bodies move to stationary bodies and a collision occurs 
between the pairs of bodies. The goal of this process is: (i) to 
improve the locations of moving bodies and (ii) to push sta-
tionary bodies toward the better locations. After the collision, 
new locations of colliding bodies are updated based on the new 
velocity by using the collision rules. The main procedure of the 
CBO is described as:

Step 1: The initial positions of colliding bodies are deter-
mined with random initialization of a population of individu-
als in the search space:

where, xi
o determines the initial value vector of the ith collid-

ing body. xmax and xmin are the minimum and the maximum allow-
able values vectors of variables, respectively; rand is a random 
number in the interval ; and n is the number of colliding bodies.

Step 2: The magnitude of the body mass for each colliding 
body is defined as:

where fit(i) represents the objective function value of the 
colliding body i; n is the population size. It seems that a col-
liding body with good values exerts a larger mass than the bad 
ones. Also, for maximization, the objective function fit(i) will 
be replaced by 1/ fit(i).

Step 3: Then colliding bodies objective function values are 
arranged in an ascending order. The sorted colliding bodies 
are divided into two equal groups:

The lower half of the CBs (stationary CBs); These CBs are 
good agents which are stationary and the velocity of these bod-
ies before the collision is zero. Thus:

The upper half of CBs (moving CBs): These CBs move 
toward the lower half. Then, according to Fig. 3, the better and 
worse CBs, i.e. agents with upper fitness value, of each group 
will collide together. The change of the body position rep-
resents the velocity of these bodies before collision as:

where, vi and xi are the velocity and position vector of the ith 
CB in this group, respectively; xi-n/2 is the ith CB pair position 
of xi in the previous group.

Step 4: After the collision, the velocities of the CBs in each 
group are evaluated as:

Stationary CBs:

Moving CBs:

where ε is the Coefficient Of Restitution (COR) of the two 
colliding bodies, defined as:

with iter and itermax being the current iteration number and 
the total number of iteration for optimization process, respec-
tively.

New positions of CBs are updated using the generated 
velocities after the collision in position of stationary CBs, as 
follow for each group:

Moving CB:

where, xi
new  and vi' are the new position and the velocity 

after the collision of the ith moving CB, respectively; x
i n−

2

 is 
the old position of the ith stationary CB pair.

Stationary CB:

where, xi
new  and vi' are the new positions, previous positions 

and the velocity after the collision of the ith CB, respectively. rand 
is a random vector uniformly distributed in the range of [–1,1] 
and the sign "°" denotes an element-by-element multiplication.

Step 6: The process is repeated from step 2 until one termi-
nation criterion is satisfied. Termination criterion is the pre-
defined maximum number of iterations. After getting the near-
global optimal solution, it is recorded to generate the output.

The pseudo of CBO is shown in Fig. 4.

3.2 Enhanced colliding bodies optimization
In order to improve CBO for faster and more reliable solu-

tions, Enhanced Colliding Bodies Optimization (ECBO) was 
developed which uses memory to save a number of historically 
best CBs and also utilizes a mechanism to escape from local 
optima [14]. The pseudo of ECBO is shown in Fig. 5 and the 
steps involved are given as follows:
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Step 1: Initialization
Initial positions of all CBs are determined randomly in an 
m-dimensional search space by Eq. (15).

Step 2: Defining mass
The value of mass for each CB is evaluated according to Eq. (16). 

Step 3: Saving
Considering a memory which saves some historically best CB 
vectors and their related mass and objective function values 
can improve the algorithm performance without increasing the 
computational cost [21]. For that purpose, a Colliding Mem-
ory (CM) is utilized to save a number of the best-so-far solu-
tions. Therefore in this step, the solution vectors saved in CM 
are added to the population, and the same numbers of current 
worst CBs are deleted. Finally, CBs are sorted according to 
their masses in a decreasing order.

Step 4: Creating groups
CBs are divided into two equal groups: (i) stationary group 
and (ii) moving group. The pairs of CBs are defined according 
to Fig. 3.

Step 5: Criteria before the collision
The velocity of stationary bodies before the collision is zero 
(Eq. (17)). Moving objects move toward stationary objects and 
their velocities before collision are calculated by Eq. (18).

Step 6: Criteria after the collision
The velocities of stationary and moving bodies are calculated 
using Eqs. (19) and (20), respectively.

Step 7: Updating CBs
The new position of each CB is calculated by Eqs. (22) and (23). 

Step 8: Escape from local optima
Meta-heuristic algorithms should have the ability to escape 
from the trap when agents get close to a local optimum. In 
ECBO, a parameter like Pro within (0, 1) is introduced and it 
is specified whether a component of each CB must be changed 
or not. For each colliding body, Pro is compared with rni (i = 
1,2,...,n) which is a random number uniformly distributed 
within (0, 1). If rni < Pro, one dimension of the ith CB is 
selected randomly and its value is regenerated as follows:

where xij is the jth variable of the ith CB. xj,min and xj,max are 
the lower and upper bounds of the jth variable, respectively. 
In order to protect the structures of CBs, only one dimension 
is changed. This mechanism provides opportunities for the 
CBs to move all over the search space thus providing better 
diversity.

Step 9: Terminating condition check
The optimization process is terminated after a fixed number 
of iterations. If this criterion is not satisfied go to Step 2 for a 
new round of iteration.

3.3 Vibrating particles system
The VPS is a population-based algorithm which simulates 

a free vibration of single degree of freedom systems with 
viscous damping [15]. Similar to other multi-agent meth-
ods, VPS has a number of individuals (or particles) consist-
ing of the variables of the problem. In the VPS each solution 

x xx rand x i nij j j j= + × −( ) = …, , , , , , , ;min max min 1 2

Fig. 4 Pseudo code of the CBO

Fig. 5 Pseudo code of the ECBO [14]

(24)
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candidate is defined as “X”, and contains a number of variables  
(i.e., Xi = { Xi

j }) and is considered as a particle. Particles are 
damped based on three equilibrium positions with different 
weights, and during each iteration the particle position is 
updated by learning from them: (i) the historically best posi-
tion of the entire population (HB), (ii) a good particle (GP), 
and (iii) a bad particle (BP). The solution candidates gradually 
approach to their equilibrium positions that are achieved from 
current population and historically best position in order to 
have a proper balance between diversification and intensifica-
tion. Main procedure of this algorithm is defined as:

Step 1: Initialization
Initial locations of particles are created randomly in an n-di-
mensional search space, by Eq. (25):

where, xi
j is the jth variable of the particle i.xmax and xmin are 

respectively the minimum and the maximum allowable values 
vectors of variables. rand is a random  number in the interval 
[0,1]; and n is the number of particles.

Step 2: Evaluation of candidate solutions
The objective function value is calculated for each particle.

Step 3: Updating the particle positions
In order to select the GP and BP for each candidate solution, 
the current population is sorted according to their objective 
function values in an increasing order, and then GP and BP are 
chosen randomly from the first and second half, respectively.

According to the above concepts, the particles position are 
updated by follow equation:

where xi
j is the jth variable of the particle i. ω1, ω2, ω3, are 

three parameters to measure the relative importance of HB, 
GP and BP, respectively (ω1 + ω2 + ω3 = 1). rand1, rand2, and 

rand3 are random numbers uniformly distributed in the range 
of [0, 1]. The parameter A is defined as: 

Parameter D is a descending function based on the number 
of iterations: 

In order to have a fast convergence in the VPS, the effect of 
BP is sometimes considered in updating the position formula. 
Therefore, for each particle, a parameter like p within (0,1) is 
defined, and it is compared with rand (a random number uni-
formly distributed in the range of [0,1]) and if p < rand, then  
ω = 0 and ω2 = 1 – ω3.

Three essential concepts consisting of self-adaptation, 
cooperation, and competition are considered in this algorithm. 
Particles move towards HB so the self-adaptation is provided. 
Any particle has the chance to have influence on the new posi-
tion of the other one, so the cooperation between the parti-
cles is supplied. Because of the p parameter, the influence of 
GP (good particle) is more than that of BP (bad particle), and 
therefore the competition is provided.

Step 4: Handling the side constraints
There is a possibility of boundary violation when a particle 
moves to its new position. In the proposed algorithm, for han-
dling boundary constraints a harmony search-based approach is 
used [21]. In this technique, there is a possibility like harmony 
memory considering rate (HMCR) that specifies whether the vio-
lating component must be changed with the corresponding com-
ponent of the historically best position of a random particle or it 
should be determined randomly in the search space. Moreover, if 
the component of a historically best position is selected, there is 
a possibility like pitch adjusting rate (PAR) that specifies whether 
this value should be changed with the neighboring value or not. 
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Step 5: Terminating condition check
Steps 2 through 4 are repeated until a termination criterion is 
fulfilled. Any terminating condition can be considered, and in 
this study the optimization process is terminated after a fixed 
number of iterations. The pseudo code of the VPS is shown in 
Fig. 6.

3.4 Enhanced Vibrating particles system
In this method, two new parameters are introduced as 

“Memory” and “OHB”. Memory acts as HB with the differ-
ence that it saves NB number of the best historically positions 
in the entire population, and OHB (one of the best historically 
positions in entire population) is one row of Memory that is 
selected randomly. HB is replaced with Memory in the EVPS 
algorithm. Another change in the VPS algorithm is that Eqs. 
(26) and (27) should be replaced with Eqs. (29) and (30). In 
Eqs. (29) and (30), one of (a), (b) and (c) equations are applied 
with the probability of , ω1, ω2 and ω3, respectively [16]. 

where ( +1) applied randomly. It should be noted that OHB, 
GP and BP are determined for every particle independently. 
Other sections of the EVPS are defined exactly the same as in 
the VPS algorithm [16].

Pseudo code of the EVPS algorithm is illustrated in Fig. 7.

3.5 Encoding of solutions
There is a population of individuals in each optimization 

algorithm. Every individual consists of an encoding of a can-
didate solution (colliding body in CBO, and vibrating particle 
in VPS) and a fitness that indicates its quality. Selecting an 
appropriate encoding method is an important step in apply-
ing meta-heuristics to an optimization problem. There are a 
number of encoding schemes such as binary encoding [25], 
permutation encoding [26], real value encoding [27], and tree 
encoding [28] for combinatorial optimization problems. In this 
paper, a hybrid encoding method which involves two string of 
number is used (Fig. 8); the first one is a vector of real number 
strings containing the quantity of material between supply and 
demand pairs whereas the second is a vector of integer strings 
contain the code of tower cranes location. The location and 
material quantity of each crane are modeled as a string like 
Fig. 8. For instance, solution candidates of the best particle for 
each numerical example shown in relevant sections.

4 Numerical examples
A case study presented by Tam et al. that used to evaluate 

several models such as: [3, 7, 10, 12, 29]. Numerical examples 
consist of modeling a single tower crane layout and modeling a 

Fig. 7 Pseudo code of the enhanced vibrating particles system algorithm [16]

Fig. 8 Definition of the solution candidates for each crane
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Fig. 9 Plan view of the tower crane layout case [11]

multi-tower crane layout considering 9 available material sup-
ply locations and 9 demand locations in a site which also pro-
vides 12 potential locations to set up and operate one and two 
tower cranes. Coordinates of the potential locations are listed 
in Table 1 and plan view of the TCL case is shown in Fig. 9.

4.1 Example 4.1: Single tower crane layout
In this case study, a single tower crane was used where the 

results of the actual supply capacities should be smaller or equal 
to limit supply capacities shown in Table 2. Besides, the result 
of the actual demand capacities should be equal to the limit 
demand capacities shown in Table 3. The parameter values of 
single tower crane layout problem are presented in Table 4.

4.2 Example 4.2: Multi-tower crane layout
In this case study, two tower cranes are utilized where the 

results of the actual supply capacities should be smaller or equal 
to the limit supply capacities shown in Table 5. Besides, the 
result of the actual demand capacities should be equal to the 
limit demand capacities shown in Table 6. The parameter values 
of multi-tower crane layout problem are presented in Table 7.

5 Results and discussion
According to the central limit theorem, if the sample size 

gets larger the distribution of the sample mean converges to 
the normal distribution; the sample size must be equal or more 
than 30. Therefore, 30 independent experimental runs are per-
formed for each problem and algorithm through 5000 iterations 
for single tower crane layout problem and 10000 iterations for 

Table 1 Coordinates of the potential locations [11]

# 1 2 3 4 5 6 7 8 9 10 11 12

Demand point j

X 34 34 51 60 76 76 60 51 43

Y 41 51 65 65 51 41 26 25 44

Z 15 15 15 15 15 15 15 15 15

Supply point i

X 73 83 87 73 55 35 22 36 55

Y 26 31 45 67 73 67 46 27 15

Z 2 2 1.5 1.5 1.5 0 0 1 1

Tower crane position k

X 45 65 65 45 51 60 70 70 60 51 42 42

Y 36 36 57 57 33 33 41 52 58 58 52 41

Z 30 30 30 30 30 30 30 30 30 30 30 30

Table 2 Limit Supply Capacities for single tower crane layout [11]

1 2 3 4 5 6 7 8 9

1500 1000 1500 1000 1500 1000 1500 1000 1500

Table 3 Limit Demand Capacities for single tower crane layout [11]

1 2 3 4 5 6 7 8 9

900 800 700 600 500 600 700 800 900

Table 4 Single TCLP Parameter Value [11]

LAi LCi RSIi MSTi MSi ISi DYi Mi Vω Vα β Vh α CUi

5 100 2000 10 500 5000 80 1000 7.57 53.3 0.25 60 1 1.92

Table 5 Limit Supply Capacities for multi-tower crane layout [11]

Crane # 1 2 3 4 5 6 7 8 9

Cr # 1 750 500 750 500 750 500 750 500 750

Cr # 2 750 500 750 500 750 500 750 500 750
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Fig. 10 Average cost convergence curves of single tower crane layout problem

multi-tower crane layout problem. Employing four optimiza-
tion methods, the problem is solved by MATLAB R2014a [30]. 
Since the performance of the ECBO, VPS, PSO, and EVPS are 

dependent on the control parameters, several tests have been 
conducted to select the appropriate parameters for finite-time 
performance of these algorithms. The parameter settings of 
algorithms used for both single tower crane layout and multi-
tower crane layout are listed in Table 8.

5.1 Results and discussion for single tower crane 
layout

As can be seen from Table 9 and Fig. 10, the best mean 
costs are 59346.6, 59371.5, 59373.8, 59563.6, and 59622 for 
ECBO, CBO, EVPS, VPS, and PSO, respectively. These val-
ues are better than those obtained using either PSO (59828.7), 
BB-BC (59842.6), or EBB-BC (59842.6). It shows the robust-
ness of CBO, ECBO, and EVPS. Also, the best cost of ECBO 
(59307.8)  is better than other used algorithms. Thus, ECBO 
obtained a better evolution result than either PSO, BB-BC, 
EBB-BC, VPS, EVPS, or CBO. Moreover, the performance of 
both of ECBO, and EVPS are better than their standard ver-
sions (CBO, and VPS). 

Table 6 Limit Demand Capacities for multi-tower crane layout [11]

1 2 3 4 5 6 7 8 9

900 800 700 600 500 600 700 800 900

Table 7 Multi-TCLP Parameter Value [11]

Crane # LAi LCi RSIi MSTi MSi ISi DYi Mi Vω Vα β Vh α CUi

Cr # 1 5 100 2000 10 500 5000 80 1000 7.57 53.3 0.25 60 1 1.92

Cr # 2 5 100 2000 10 500 5000 80 1000 2.8 33.1 0.25 35 1 1.92

Table 8 Parameter settings of the algorithms

CBO
Pop. size

100

ECBO
Pop. size CM size pro

100 5-10 0.1-0.2

VPS
Pop. size α w1 w2 p

100 0.05-0.1 0.3 0.3 0.15-0.25

EVPS
Pop. size α w1 w2 p

100 0.05-0.1 0.3 0.3 0.15-0.25

PSO
Pop. size inertia weight c1 c2

100 0.4-0.9 2 2

Table 9 The Comparison Result of Algorithms for single TCLP.

Previous Works Present Work

PSO [12] BB-BC [12] EBB-BC [12] PSO VPS EVPS CBO ECBO

Best cost 59536.1 59555.8 59460.6 59474.4 59519.5 59310.8 59307.8 59307.8

Mean cost 59828.7 59842.6 59463.8 59622 59563.6 59373.8 59371.5 59346.6

St. Dev. 106.6 134.1 7.5 64.4 18 12.8 41.7 31

Worst cost 60670.2 60278.7 59469.8 59746.3 59594 59379.9 59542.9 59385.4
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Fig. 12 ECBO Best single tower crane layout design

The encoding of single tower crane location is shown in 
Fig. 11. In this string, cells represent the material quantities 
into the demand point 1 from supply points 1 through 9. Sim-
ilarly, cells  represent the material quantities into the demand 
point 2 from supply points 1 through 9. And cells 19 through 
81 are decoded in the same way. The number placed in cell 82 

Fig. 13 Average cost convergence curves of multi-tower crane layout  
problem

 represents the number of the selected tower crane location. The 
optimal material quantity and location alternative for the sin-
gle tower crane Fig. 12 (decoded matrix) shows, with the best 
tower crane location shown at C2. Table 10 shows the ECBO 
optimal design for demand and supply points material quanti-
ties. As can be seen from Fig. 12 and Table 10, supply points 
S1, S2, S4, S5, S8, and S9 are closest to C2 and have allocated 

Fig. 11 Definition of the solution candidates for single crane case

Table 10 Best results of ECBO for single tower crane layout problem

D1 D2 D3 D4 D5 D6 D7 D8 D9 Actual 
supply

Limit 
supply

Supply 
degree

C2 S1 0 0 0 0 0 600 700 0 0 1300 1500 86.7%

S2 0 0 0 0 500 0 0 0 0 500 1000 50%

S3 0 0 0 0 0 0 0 0 0 0 1500 0%

S4 100 0 300 600 0 0 0 0 0 1000 1000 100%

S5 0 800 400 0 0 0 0 0 0 1200 1500 80%

S6 0 0 0 0 0 0 0 0 0 0 1000 0%

S7 0 0 0 0 0 0 0 0 0 0 1500 0%

S8 800 0 0 0 0 0 0 0 200 1000 1000 100%

S9 0 0 0 0 0 0 0 800 700 1500 1500 100%

Total 6500 11500 57%

Actual 
demand 900 800 700 600 500 600 700 800 900 6500

Limit  
demand [11] 900 800 700 600 500 600 700 800 900 6500
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capacities of 1300, 500, 1000,1200, 1000, 1500, respectively. 
Table 11 shows the best design of Ref. [12] (EBB-BC). C2 was 
the best tower crane location identified in Ref. [12]. Further-
more, the results demonstrate that ECBO not only optimized 
the tower crane location but also minimizes operating costs 
in line with demand and supply point capacity requirements.

5.2 Results and discussion for multi tower crane 
layout problem

The statistical results of the five meta-heuristics are listed 
in Table 12 and cost convergence curves are shown in Fig. 13. 

Table 11 Best results of EBB-BC for single tower crane layout problem [12].

D1 D2 D3 D4 D5 D6 D7 D8 D9 Actual 
supply

Limit 
supply

Supply 
degree

C2 S1 73 0 0 0 0 250 250 250 250 1073 1500 71.5%

S2 0 0 0 0 250 250 250 250 0 1000 1000 100%

S3 0 0 0 250 250 100 150 26 250 1026 1500 68.4%

S4 250 250 250 250 0 0 0 0 0 100 1000 100%

S5 5 250 249 0 0 0 0 0 0 504 1500 33.6%

S6 0 0 0 0 0 0 0 0 0 0 1000 0%

S7 107 50 33 16 0 0 0 8 0 214 1500 14.3%

S8 215 100 67 33 0 0 0 16 200 631 1000 63.1%

S9 250 150 101 51 0 0 50 250 200 1052 1500 70.1%

Total 11500 57%

Actual 
demand 900 800 700 600 500 600 700 800 900 6500

Limit 
demand 900 800 700 600 500 600 700 800 900 6500

Table 12 The Comparison result of algorithms for multi-TCLP.

Previous Works Present Work

PSO [12] BB-BC [12] EBB-BC [12] PSO VPS EVPS CBO ECBO

Best cost 115702.5 114236.3 113887.9 117063.9 116287.7 116128 116029.2 115807.6

Mean cost 116494.4 114501.6 113919.3 117275.4 116449.1 116238.8 116192.7 115876.9

St. Dev. 331.71 163.9 45.04 128.2 131.7 77.78 91.7 36

Worst cost 117143.1 114965.6 114037.6 117626 116678.9 116485.3 116392.7 115937.8

Fig. 14 Definition of the solution candidates for multi crane case (cell 1 to 82)

Fig. 15 Definition of the solution candidates for multi crane case (cell 83 to 164)
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Table 13 Best results of ECBO for multi-tower crane layout problem

D1 D2 D3 D4 D5 D6 D7 D8 D9 Actual 
supply

Limit 
supply

Supply 
degree

C2 S1 0 0 0 0 1 260 416 72 0 749 750 99.5%

S2 0 0 0 0 246 249 0 4 0 499 500 100%

S3 0 0 0 30 252 91 0 0 377 750 750 50%

S4 27 2 213 257 0 0 0 0 0 499 500 49.9%

S5 0 257 234 256 0 0 0 0 0 747 750 49.8%

S6 4 244 249 0 0 0 0 0 0 497 500 49.7%

S7 450 296 0 0 0 0 0 0 1 747 750 49.8%

S8 416 0 1 0 0 0 0 0 78 495 500 49.5%

S9 0 0 1 0 1 0 2 303 443 750 750 50%

C3 S1 0 0 1 0 0 0 282 369 0 652 750 43.5%

S2 0 0 0 0 0 0 0 1 0 1 500 0.1%

S3 0 0 0 0 0 0 0 0 0 0 750 0%

S4 0 0 0 0 0 0 0 0 0 0 500 0%

S5 0 0 1 57 0 0 0 0 0 58 750 3.9%

S6 0 0 0 0 0 0 0 0 0 0 500 0%

S7 1 1 0 0 0 0 0 0 1 3 750 0.2%

S8 2 0 0 0 0 0 0 2 0 4 500 0.4%

S9 0 0 0 0 0 0 0 49 0 49 750 3.3%

Total 11500 57%

Actual 
demand 900 800 700 600 500 600 700 800 900 6500

Limit 
demand 900 800 700 600 500 600 700 800 900 6500

Table 14 Best results of EBB-BC for multi tower crane layout problem [12].

D1 D2 D3 D4 D5 D6 D7 D8 D9 Actual 
supply

Limit 
supply

Supply 
degree

C3 S1 245 250 0 0 0 0 242 250 0 987 750 131.6%

S2 250 0 0 0 0 0 250 0 0 500 500 100%

S3 0 0 0 0 0 0 0 0 250 250 750 33.3%

S4 0 0 67 250 250 0 0 0 0 567 500 113.4%

S5 0 0 184 46 0 250 0 0 0 480 750 64%

S6 0 172 0 0 0 0 208 209 0 589 500 117.8%

S7 0 0 0 0 0 0 0 0 0 0 750 0%

S8 0 0 0 0 0 0 0 0 0 0 500 0%

S9 0 0 0 0 0 0 0 0 0 0 750 0%

C6 S1 0 0 0 0 0 100 0 250 0 350 750 46.7

S2 50 0 0 0 250 0 0 0 200 500 500 100%

S3 249 244 250 250 0 0 0 0 0 993 750 132.4%

S4 0 134 199 0 0 0 0 0 0 333 500 66.6%

S5 0 0 0 54 0 0 0 0 0 54 750 7.2%

S6 0 0 0 0 0 0 0 0 0 0 500 0%

S7 0 0 0 0 0 0 0 0 64 64 750 8.5%

S8 106 0 0 0 0 0 0 0 136 242 500 48.4%

S9 0 0 0 0 0 250 0 91 250 591 750 78.8%

Total 11500 57%

Actual 
demand 900 800 700 600 500 600 700 800 900 6500

Limit 
demand 900 800 700 600 500 600 700 800 900 6500
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Fig. 16 ECBO Best multi-tower crane layout design

It shows that ECBO performs better than other algorithms 
and gives better solutions. As can be seen from Table 12, the 
mean costs are 115876.9, 116192.7, 116238.8, 116449.1, and 
117275.4 for ECBO, CBO, EVPS, VPS, and PSO, respectively. 
Also, the best cost of the ECBO (115807.6)  is better than 
other utilized algorithms. Moreover, the performance of both 
of ECBO, and EVPS are better than their standard versions 
(CBO, and VPS). Although Ref. [12] produced better costs, 
these result are not real since it neglected the influence of sup-
ply capacity constraint (See Eq. 14, and Table 14).

The encoding of multi-tower crane are shown in Figs. 14 and 
15. For simplicity in understanding, the solution code of each 
crane is shown as a separated string. In fact, these two strings 
are connected. Fig. 16 (decoded matrix) shows the optimal mate-
rial quantity and location alternative for the multi-tower crane, 
with the best tower crane locations shown at C2, and C3. In this 
strings cells  in represent the material quantities into the demand 
point 1 from supply points 1 through 9 by first crane. Similarly, 
cells  represent the material quantities into the demand point 1 
from supply points 1 through 9. And other cells are decoded in 
the same way. The numbers placed in cells 82 and 164 represent 
the number of the selected tower crane locations.

Table 13 shows the best ECBO optimal design for demand 
and supply points material quantities. As seen in Fig. 16 and 
Table 13, supply points S1 through S9 are closest to C2 and 
have allocated capacities of 749, 499, 750, 499,747, 497, 747, 
495, 750, respectively. Also, supply points S1, S2, S5, S7, S8, 
and S9 are closest to C3 and have allocated capacities of 651, 1, 
58, 3, 4, 49, respectively. Table 14 shows the best design of Ref. 
[12]  (EBB-BC). C3, and C6 are the best tower crane location 
identified in Ref. [12]. Furthermore, the results demonstrate 
that ECBO not only optimizes the tower crane location but 
also minimizes operating costs in line with demand and sup-
ply point capacity requirements.

6 Conclusions
This paper presented a performance comparison of four 

newly developed meta-heuristic algorithms CBO, ECBO, VPS, 
and EVPS in terms of their effectiveness for resolving a prac-
tical TCL problem. These algorithms are inspired by physical 
laws. Results show that ECBO performs better in comparison 
with other algorithms for solving both case studies. The ECBO 
optimized both of crane location and operating costs. Also, 
the ECBO, and EVPS algorithms have beter performane than 
their standard versions. Future works can execute hybridized 
algorithms to solve these problems.
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