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Abstract 
The rapid development of composite materials and structures 
in recent years has attracted the increased attention of many 
engineers and researchers. These materials are widely used 
in aerospace, military, mechanical, nuclear, marine, optical, 
electronic, chemical, biomedical, energy sources, automotive 
fields, ship building and structural engineering industries. In 
conventional laminate composite structures, homogeneous 
elastic plate are bonded together to obtain improved mechani-
cal and thermal properties. However, the abrupt change in 
material properties across the interface between the different 
materials can cause strong inter-laminar stresses leading to 
delamination, cracking, and other damage mechanisms at the 
interface between the layers. To remedy these defects, func-
tionally graded materials (FGM) are used, in which the prop-
erties of materials vary constantly. The purpose of this paper 
is to analyze the thermomechanical bending behavior of func-
tionally graded thick plates (FGM) made in ceramic/metal. 
This work presents a model that employed a new transverse 
shear function. The numerical results obtained by the present 
analysis are presented and compared with those available in 
the literature (classical, first-order, and other higher-order 
theories). It can be concluded that this theory is effective and 
simple for the static analysis of composite material plates with 
specific properties "Case of a typical FGM (ceramic/metal)" 
in thermal environments. 
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1 Introduction 
For the first time, in 1984–1985, a group of Japanese sci-

entist proposed the concept of FGM. Five years later, the first 
international conference [1] was held at Sendai-City in Japan. 
The interest was such that a rapid progress of FGM research 
in Japan was noticed from 1984 to 1996. At the beginning 
FGM was designed as a thermal barrier material for aero-
space and fusion reactors applications [2]. Later, FGMs were 
developed for the military, automotive, biomedical and semi-
conductor industries, and as a general structural element in 
high thermal environments temperature-resistant materials. 
Functionally gradient materials (FGMs) are inhomogeneous 
at the microscopic scale, in which the mechanical properties 
vary regularly and continuously from one surface to another. 
This is done by gradually varying the volume fraction of the 
constituent materials; these materials are made from a mixture 
of ceramic and metal or a combination of different materials. 
The ceramic constituent provides a high temperature resis-
tant material due to its low thermal conductivity and protects 
the metal from oxidation. The ductile metal component, on 
the other hand, prevents fracture caused by high temperature 
gradient stresses in a very short period of time. In addition, a 
mixture of a ceramic and a metal with a continuously varying 
volume fraction can be easily manufactured Surash et al [3], 
Plindera et al [4], [5] and Markworth et al [6]. A number of 
journals dealing with various aspects of the FGM have been 
published in recent years [7], [8], and [9]. Proceedings of inter-
national seminar on FGM also shed light on the latest research 
in these materials, their manufacture, Biest et al [10], studies 
of FGM plates on mechanics, thermal properties and ther-
mo-mechanical response of FGM plates; Reddy [11], Reddy 
and Chin [12], Vel and Batra [13, 14], Cheng and Batra [15]. 
A recent critical review of thermal analysis of FGM plates has 
been published by Swaminathan et al [16].  

In this paper a new exponential refined shear deformation 
plate theory is employed. The exponential function in terms of 
thickness coordinates is used in the displacement field to con-
sider the shear deformations. The originality of the theory is 
that it does not require a shear correction factor, satisfying the 
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Fig. 1 Geometry and coordinate system of the FGM rectangular plate

nullity of shear stress at the upper and lower surfaces of the plate, 
the unknown functions number is only four, while five or more 
in the case of other shear deformation theories [16]. Numerical 
examples are presented to illustrate the accuracy and efficiency 
of this theory by comparing the results obtained with those cal-
culated using various other theories. When Aydogdu [17] com-
pared various HSDPT’s (Higher-order Shear Deformation Plate 
Theories) with available 3D analysis, it has been pointed out 
that, while the parabolic shear deformation proposed by Reddy 
[18] and hyperbolic shear deformation theory proposed by Sol-
datos [19] plate theories yields more accurate predictions for 
natural frequencies and buckling loads, the transverse displace-
ments and stresses are best predicted by ESDT (the exponential 
shear deformation plate theory) proposed by Karama et al [20].

2 Theoretical formulation
Consider a rectangular plate in FGM of thickness h, a length 

a according to the x-direction, and has a width b following the 
y-direction, as shown in the Fig. 1. The plate material proper-
ties varying gradually across the thickness (h), from the bot-
tom surface in metal (z = –h/2) to the top surface in ceramic 
(z = h/2).

The present theory function is based on (ESDPT) the expo-
nential shear deformation plate theory proposed by Karama et 
al [20], it is employed in FGM beams context by Osfero et al 
[21]. This function Eq. (1) is used as an exponential distribu-
tion of the shear transverse stresses, it satisfies the nullity of 
these stresses on the upper and lower plate surfaces without 
using shear correction factors. The unknown functions num-
ber is only four, while five or more in the case of other shear 
deformation theories [16], Table 1.     

The proposed present theory based on the assumption that 
the axial and transverse displacements consist of one bend-
ing and one shear part so that the bending component does 
not contribute to the shear forces and so, the shear component 
does not contribute to the bending moments [22].

2.1 Basic assumptions 
For the present theory the following assumptions are used:

• The displacements are small in comparison with the plate 
thickness and, therefore, strains involved are infintesimal. 

Table 1 Plate theories displacement models.

Model Transverse shear 
function Unknown functions

CPT (classical plate theory) ψ(z) = 0 3

FSDPT (Reissner [23]) ψ(z) = z 5

PSDPT (Reddy [18]) 5

SSDPT(Touratier [24],[25] ) 5

ESDPT (Karama et al [20]) 5

Present  (RESDPT) 4

• The transverse displacement w includes two components of 
bending wb and shear ws . These components are functions 
of coordinates x, y only. 

• The transverse normal stress σz is negligible in comparison 
with in-plane stresses σx and σy.

• The displacement u in x-direction and v in y-direction con-
sist of extension, bending and shear components.

2.2 Kinematics 
In this paper a new exponential refined shear deformation 

plate theory is employed. The exponential function in terms of 
thickness coordinates is used in the displacement field to con-
sider the shear deformations. The originality of the theory is 
that it does not require a shear correction factor (Table 1), sat-
isfying the nullity of shear stress at the upper and lower sur-
faces of the plate, the proposed shear function is [21]: 

Based on the above assumptions, the displacement field is 
obtained as follows:  

The kinematic relations can be obtained as follows:

And :  
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Where :

Where ξ(z) is the considred warping funtion derivative (1), 
its variation along the thickness is dipcted in Fig. 2, it is defined 
as follows:

2.3 Constitutive equations
P-FGM is one of the most favorable models for FGMs. 

Effective material properties such as Young’s modulus E, 
shear modulus G, mass density ρ and thermal expansions α are 
assumed to vary continuously in the depth direction accord-
ing to power-low. Poisson’s ratio ν is assumed to be constant 
through the thickness of the plate, Dalale et al [26] states that 
the effect of this coefficient is not important as that of Youg 
modulus in deformations. 

The effective material properties of FG plate with two kind 
of porosities that distributed identical in two phases of ceramic 
and metal can be expressed by using the modified rule of mix-
ture as [27], [28] :

In which PC and PM are the corresponding properties of 
ceramics and metal, respectively, and α' is the volume fraction 
of porosities (α' << 1), for perfect FGM α' is set to zero, VC and 
VM are the volume fraction of ceramic and metal that are 
attached as [29], [30] and [31]:

In this paper the material properties P(z) are assumed to 
vary continuously through the depth of the plate by a power 
mixture law [3], [32], [33] and [34], as follows: 

Where p is the volume fraction exponent or power indice in 
P-FGMs, which takes values higher or equal to zero. 

Fig. 2 Warping funtion derivative variation along the non-dimensional  
width z/h. 

Using the material properties (12), the linear constitutive 
relations are:

Where (σx, σy, τxy, τyz, τyx) and (εx, εy, γxy, γyz, γzx) are the terms 
of the stresses and deformations, respectively. The stiffness  
coefficients can be expressed by:

A polynomial temperature distribution applied through the 
thickness z is considred here [26], it is a combanation of three 
parts, a constant in T1 , a linear in T2 and sinusoidal in T3 , as 
follows: 

In Eq. (13), ∆T = T – T0 in which T0 is the reference tem-
perature.  

2.4 Governing equations 
The governing equations of equilibrium can be derived by 

using the principale of virtual work, which is expressed in this 
case as follows: 

Where Ω is the top surface and q is a distributed mechanical 
loads on it. 
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Fig. 3 Stresses resultants of the FGM plate

Substituting Eqs. (5–6) and (13–14) into Eq. (18) and inte-
grating through the thickness of the plate, Eq. (18) can be 
rewritten as [32], [35]:

Stresse resultants N, M, and S in Fig. 3 are defined by:

Substituting Eqs. (13–14) into Eqs. (20–21) and integrating 
through the thickness of the plate, the stress resultants are in 
Eqs. (22–23) respectively, as follows:

Where : 

Extensional and bending stiffness A, B and transverse shear 
stiffness coupling BS, DS and HS, are defined as follows:

And the shear stress resultants are : 

With Aij, Bij, etc, are the stifness matrix terms of the plate, 
defined by:

And 
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shear moments, Nx
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T, Mx
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bT and Mx
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sT, Eq. (15), due 

to thermal loads are defined respectively by:

The governing equations of equilibrium can derived from 
equation Eq. (19) by integration the displacement gradients by 
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one can obtain the equilibrium equations associated with the 
present shear deformation theory: 
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Substituting Eqs. (22–23) into Eq. (28), we obtain the fol-
lowing equations: 

where { f} = { f1, f2, f3, f4}
t is a generalized force vector, dij,  

dijl and dijlm are the following differential operators:

The components of the generalized force vector {f} are given by: 

3 The exact solution for FGM plates
Generally, rectangular plates are classified according to 

used support type [32], [35] and [36]. The simple support 
boundary conditions are:

It is considered here the exact solution of Eq. (28) for a sim-
ply supported FGM plate. To solve this problem, Navier 
assumes that the transverse mechanical and temperature loads, 
q and Ti are given as a double Fourier series as follows:
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Following the procedure of Navier solution, we assume the 
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Where:

In which: z z h= / , α ν α( )
( )

( )z E z z= −1 , Ψ( ) ( ) /z z h=ψ  and 
ξ π

π
( ) sinz z

h= 







1  . 

4 Analytical validation and numerical results 
For the plate in FGM, the material properties used in the 

present study are:
• Metal (Aluminum):

EM = 70 (GPa), v = 0.3; αM = 23 × (10–6/C°).
• Ceramics (Zirconia):

EC = 151 (GPa), v = 0.3; αC = 10 × (10–6/C°).
Numerical results are presented in terms of non-dimen-

sional stresses and deflection. The different non-dimensional 
parameters used are:
• The central deflection: w D

a q
w a b= 









10

0 2 2

2

4
,

• Axial stress: σ σx q x
a b h= 









1

10 0 2 2 22
, ,

• The transverse shear stress: τ τxz xzq
b= − 









1
10 0

0
2

0, ,

• The coordinate thickness: z z h D h EC= =
−( )/ , .

3

212 1 ν

The numerical results are given and represented in Fig. 4–9 
by using the present refined exponential shear deformation 
plate theory (RESDT), it does not require a shear factor of cor-
rection and the number of unknown functions for the present 
theory of a high order is only four. Noted that the factor of shear 
correction is taken k = 5/6 in the first order shear deformation 
plate theory (FSDPT).

In Figures 8–9, it is important to observe that the stresses 
for a plate entirely in ceramics are not the same as for a plate 
entirely in metal. This is because the plate is subjected to a field 
of temperature.

The relation between the present theory and the various 
theories of high order shear deformations and first order and 
the classical plate theory (ESDPT, PSDPT, SSDPT, FSDPT, 
CPT) is illustrated in Fig. 4–9. These figures also give the 
effects ofthe variation of the volume fraction exponent values 
p on the dimensionless center deflection and stresses of the 
FGM rectangular plate. It is clear that the deflection decreases 
as much as the side-to-thickness ratio (a/h) increases.

Figures 4–6 shows an excellent agreement of this theory with 
the other high order shear deformation theories for a square 
FGM plate subjected to a mechanical load.

Fig. 4 Variation of the dimensionless center deflection (W ) through the 
thickness of a square FGM plate (p = 2) for various theories and different 

side-to-thickness ratio (a/h) with (q0 = 100, ti = 0).

Fig. 5 Variation of dimensionless axial stress (σ x ) through the thickness of 
a square FGM plate (p = 2) for various theories with with (q0 = 100, ti = 0).

Fig. 6 Variation of dimensionless shear stress (τ xz ) through the thickness of 
a square FGM  plate (p = 2) for various theories with (q0 = 100, ti = 0).

Dimensionless axial stress (σ x ), is represented in Fig. 5 and 
Fig. 8. One can see that the maximum compressive stresses occur 
at a point near the upper surface while maximum tensile stresses 
are at a point close to the lower surface of the FGM plate.

Fig. 9 illustrate the dimensionless shear stress (τ xz ) dis-
tributions through the thickness of a square and rectangular 
FGM plate under thermal loads.
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Fig. 7 Effect of the volume fraction exponent p on the dimensionless center 
deflection (W ) of a rectangular FGM plate for different side-to-thickness ratio 

(a/h) with (q0 = 100, ti = 10, b = 2a).

Fig. 8 Effect of the volume fraction exponent p on dimensionless axial stress  
(σ x ) through-the-thickness of a rectangular FGM plate with  

(q0 = 100, ti = 10, b = 2a).

Fig. 9 Effect of the volume fraction exponent p on the dimensionless shear 
stress (τ xz ) through-the-thickness of a rectangular FGM plate with  

(q0 = 100, ti = 10, b = 2a).

Maximum values of (τ xz ) occur with ( z ≅ 0 1. ) of the FGM 
plate, not in the center of the plate as in the homogeneous case. 
The deflection and two axial stresses and shear stresses increase 
with as the thermal load increases. 

The effect of the mechanical and thermal loads is taken into 
consideration. The deflection is larger for plates subjected to 
thermal load only whereas it is smaller for plates subjected to 
mechanical load only. With the inclusion of all loads (q0 = 100, 
t1 = t2 = t3 = 10), the deflection decreases as a/h increase.

Fig. 10 Effect of the thermal field on the dimensionless center deflection (W ) 
of a rectangular FGM plate for different side-to-thickness ratio (a/h) with  

(p = 2, q0 = 100, b = 2a).

Fig. 11 Effect of the thermal field on dimensionless axial stress (σ x ) through-
the-thickness of a rectangular FGM plate with (p = 2, q0 = 100, b = 2a).

Fig. 12 Effect of the thermal field on the dimensionless shear stress (τ xz ) 
through-the-thickness of a rectangular FGM plate with (p = 2, q0 = 100, b = 2a).

Finally, Figures 10–12 show the effect of the thermal field on 
the deflection and stresses. For FGM plates subjected to thermal 
load, the deflection may be stable for all values of  a/h ≥ 5.

The deflection and both axial stresses and shear stresses 
increase with the increase of the thermal load t3. 

The figures emphasize the great influence played by the dif-
ferent thermal and bending loads on the analyzed axial and 
transverse shear stresses.
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5 Conclusions
In this work, we presented the numerical results of static 

bending analysis in composite materials with specific prop-
erties "Case of a typical FGM (ceramic / metal)" in thermal 
environments, using the refined exponential shear deformation 
plate theory (RESDPT). 
• The present theory has a strong similarity to classical plate 

theory in many aspects, it does not require a shear correc-
tion factor, and gives an exponential description of the shear 
stresses across the thickness while satisfying the condition 
of zero shear stress on the free edges.

• In addition, the present theory shows an excellent agree-
ment with the ESDPT theory [20], the conventional SSDPT 
theory  [24, 25] and the parabolic shear deformation plate 
theory PSDPT [18].

• Gradients in material properties play an important role in 
determining the response of FGM plates. 

• All comparative studies have shown that the deflections and 
stresses obtained using the present refined theory (with four 
unknowns) and other high-order shear deformation theories 
(five unknowns) are almost identical. 
Therefore, it can be said that the proposed theory is not only 

accurate but also simple to study and analyze the thermo-me-
chanical bending response of thick FGM plates. Composite 
materials with gradients of properties made from a ceramic 
/ metal mix capable of resist extreme temperatures. The mix-
ture of the ceramic and metal with continuously varying vol-
ume fraction can eliminate interface problems of sandwich 
plates and thus the stresses distributions are smooth.

This theory can be implemented via a displacement based 
finite element method as is shown by [37]. For this, the vari-
ational statement in Eq. (19) requires that the bending and 
shear components of transverse displacement wb and ws be 
twice differentiable and C1-continuous, whereas the axial 
displacements u0 and v0 must be only once differentiable and 
C0-continuous. Thus, a finite element formulation of the pres-
ent theory will be considered in the future work to solve more 
complex problems.

References
[1] Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I. (Eds.) "Proceedings of 

the First International Symposium on Functionally Gradient Materials". 
FGM ’90. Japan, Oct. 8–9. p. 379. 1990.

[2] Koizumi, M. "FGM activities in Japan". Composites Part B: Engineering, 
28(1–2), pp. 1–4. 1997. 

 https://doi.org/10.1016/S1359-8368(96)00016-9
[3] Suresh, S., Mortensen, A. "Fundamentals of functionally graded materi-

als: processing and thermomechanical behaviour of graded metals and 
metal-ceramic composites". IOM Communications Ltd., Cambridge, UK. 
1998. 

[4] Pindera, M-J., Arnold, S. M., Aboudii, J., Hui, D. "Use of Composites in 
Functionally Graded Materials". Composites Engineering, 4(1), pp. vii-ix 
(Foreword), 1994. 

[5] Pindera, M.-J., Aboudi, J., Arnold, S. M., Jones, W. F. "Use of composites 
in multi-phased and functionally graded materials". Composites Engi-
neering, 5(7), pp. vii-ix (Foreword), 1995. 

[6] Markworth, A. J., Ramesh, K. S., Parks Jr, W. P. "Modelling studies ap-
plied to functionally graded materials". Journal of Materials Science, 
30(9), pp. 2183–2193. 1995. 

 https://doi.org/10.1007/BF01184560
[7] Miyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A., Ford, R. G. 

"Functionally Graded Materials: Design, Processing and Applications". 
Kluwer Academic, Dordrecht. 1999. 

 https://doi.org/10.7569/RAA.2014.097301
[8] Paulino, G. H., Jin, Z.-H., Dodds, R. H. "Failure of Functionally Graded 

Materials". In: Reference Module in Materials Science and Materials En-
gineering, Chapter 2.13. pp. 607–644. Elsevier, 2017. 

 https://doi.org/10.1016/B978-0-12-803581-8.00875-4
[9] Noda, N. "Thermal stresses in functionally graded materials". Journal of 

Thermal Stresses, 22(4–5), pp. 447–512. 1999. 
 https://doi.org/10.1080/014957399280841
[10] Van der Biest, O., Gasik, M. Vleugels, J. (Eds.) "Proceedings of the 

Eighth International Symposium on Multifunctional and Functionally 
Graded Materials". (FGM 2004). Jul. 11–14, Leuven, Belgium, 2004.

[11] Reddy, J. N. "Analysis of functionally graded plates". International Jour-
nal for Numerical Methods in Engineering, 47(1–3), pp. 663–684. 2000.

[12] Reddy, J. N., Chin, C. D. "Thermomechanical Analysis of Functionally 
Graded Cylinders and Plates". Journal of Thermal Stresses, 21(6), pp. 
593–626. 1998. 

 https://doi.org/10.1080/01495739808956165
[13] Vel, S. S., Batra, R. C. "Exact Solution for Thermoelastic Deformations 

of Functionally Graded Thick Rectangular Plates". AIAA Journal, 40(7), 
pp. 1421–1433. 2002. 

 https://doi.org/10.2514/2.1805
[14] Vel, S. S., Batra, R. C. "Three-dimensional analysis of transient thermal 

stresses in functionally graded plates". International Journal of Solids 
and Structures, 40(25), pp. 7181–7196. 2003. 

 https://doi.org/10.1016/S0020-7683(03)00361-5
[15] Cheng, Z.-Q., Batra, R. C. "Three-dimensional thermoelastic deforma-

tions of a functionally graded elliptic plate". Composites Part B: Engi-
neering, 31(2), pp. 97–106. 2000. 

 https://doi.org/10.1016/S1359-8368(99)00069-4
[16] Swaminathan, K., Sangeetha, D. M. "Thermal Analysis of FGM Plates 

– A Critical Review of Various Modelling Techniques and Solution Meth-
ods". Composite Structures, 160, pp. 43–60. 2017. 

 https://doi.org/10.1016/j.compstruct.2016.10.047
[17] Aydogdu, M. "Comparison of Various Shear Deformation Theories for 

Bending, Buckling, and Vibration of Rectangular Symmetric Cross-ply 
Plate with Simply Supported Edges". Journal of Composite Materials, 
40(23), pp. 2143–2155. 2006. 

 https://doi.org/10.1177/0021998306062313
[18] Reddy, J. N. "A Simple Higher-Order Theory for Laminated Composite 

Plates". Journal of Applied Mechanics, 51(4), pp. 745–752. 1984.
 https://doi.org/10.1115/1.3167719
[19] Soldatos, K. P. "A transverse shear deformation theory for homogenous 

monoclinic plates". Acta Mechanica, 94(3–4), pp. 195–220. 1992.
 https://doi.org/10.1007/BF01176650
[20] Karama M, Afaq K. S., Mistou S. "Mechanical behavior of laminated 

composite beam by the new multilayered laminated composite structures 
model with transverse shear stress continuity". International Journal of 
Solids and Structures, 40(6), pp. 1525–1546. 2003. 

 https://doi.org/10.1016/S0020-7683(02)00647-9

https://doi.org/10.1016/S1359-8368(96)00016-9
https://doi.org/10.1007/BF01184560
https://doi.org/10.7569/RAA.2014.097301
https://doi.org/10.1016/B978-0-12-803581-8.00875-4
https://doi.org/10.1080/014957399280841
https://doi.org/10.1080/01495739808956165
https://doi.org/10.2514/2.1805
https://doi.org/10.1016/S0020-7683(03)00361-5
https://doi.org/10.1016/S1359-8368(99)00069-4
https://doi.org/10.1016/j.compstruct.2016.10.047
https://doi.org/10.1177/0021998306062313
https://doi.org/10.1115/1.3167719
https://doi.org/10.1007/BF01176650
https://doi.org/10.1016/S0020-7683(02)00647-9


938 Period. Polytech. Civil Eng. A. B. Benyamina, B. Bouderba et al.

[21] Osofero, A. I., Vo, T. P., Nguyen, T.-K., Lee, J. "Analytical solution for 
vibration and buckling of functionally graded sandwich beams using vari-
ous quasi-3D theories". Journal of Sandwich Structures and Materials, 
18(1), pp. 3–29. 2016. 

 https://doi.org/10.1177/1099636215582217
[22] Zhang, D.-G., Zhou, Y.-H. "A theoretical analysis of FGM thin plates 

based on physical neutral surface". Computational Materials Science, 
44(2), pp. 716–720. 2008. 

 https://doi.org/10.1016/j.commatsci.2008.05.016
[23] Reissner, E. "On transverse bending of plates, including the effect of 

transverse shear deformation". International Journal of Solids Structures, 
11(5), pp. 569–573. 1975. 

 https://doi.org/10.1016/0020-7683(75)90030-X
[24] Touratier, M. "An efficient standard plate theory". International Journal 

of Engineering Science, 29(8), pp. 901–916. 1991. 
 https://doi.org/10.1016/0020-7225(91)90165-Y
[25] Zenkour, A. M. "The refined sinusoidal theory for FGM plates on elastic 

foundations". International Journal of Mechanical Sciences, 51(11–12), 
pp. 869–880. 2009. 

 https://doi.org/10.1016/j.ijmecsci.2009.09.026
[26] Delale, F., Erdogan, F. "The crack problem for a nonhomogeneous plane". 

Journal of Applied Mechanics, 50(3), pp. 609–614. 1983. 
 https://doi.org/10.1115/1.3167098
[27] Wattanasakulpong, N., Ungbhakorn, V. "Linear and nonlinear vibration 

analysis of elastically restrained ends FGM beams with porosities". Aero-
space Science and Technology, 32(1), pp. 111–120. 2014. 

 https://doi.org/10.1016/j.ast.2013.12.002
[28] Yahia, S. A., Atmane, H. A., Houari, M. S. A., Tounsi, A. "Wave propaga-

tion in functionally graded plates with porosities using various higher-
order shear deformation plate theories". Structural Engineering and Me-
chanics, 53(6), pp. 1143–1165. 2015. 

 https://doi.org/10.12989/sem.2015.53.6.1143

[29] Simsek, M. "Fundamental frequency analysis of functionally graded 
beams by using different higher-order beam theories". Nuclear Engineer-
ing and Design, 240(4), pp. 697–705. 2010. 

 https://doi.org/10.1016/j.nucengdes.2009.12.013
[30] Duc, N. D., Cong, P. H. "Nonlinear postbuckling of an eccentrically stiff-

ened thin FGM plate resting on elastic foundations in thermal environ-
ments". Thin-Walled Structures, 75, pp. 103–112. 2014. 

 https://doi.org/10.1016/j.tws.2013.10.015
[31] Wakashima, K., Hirano, T., Niino, M. "Functionally Gradient Materials 

(FGM) Architecture: A New Type of Ceramic-Metal Assemblage De-
signed for Hot Structural Components". In: Space applications of ad-
vanced structural materials, SP-303, pp. 97–102. 1990. 

[32] Reddy. J. N. "Mechanics of Laminated Composite Plates and Shells: 
theory and analysis". Boca Raton, FL: CRC Press. 1997. 

[33] Marur, P. R. "Fracture behaviour of functionally graded materials". 
PhD thesis, Auburn University. Publication number: AAI9931107 ISBN: 
9780599312609. 1999.

[34] Praveen, G. N., Reddy, J. N. "Nonlinear transient thermoelastic analysis 
of functionally graded ceramic-metal plates". International Journal of 
Solids and Structures, 35(33), pp. 4457–4476. 1998. 

 https://doi.org/10.1016/S0020-7683(97)00253-9
[35] Bouderba, B., Houari, M. S. A., Tounsi, A. "Thermomechanical bending 

response of FGM thick plates resting on winkler-pasternak elastic foun-
dations". Steel and Composite Structures, 14(1), pp. 85–104. 2013. 

 https://doi.org/10.12989/scs.2013.14.1.085
[36] Khdeir, A. A., Reddy, J. N. "Exact solutions for the transient response of 

symmetric cross-ply laminates using a higher-order plate theory". Com-
posites Science and Technology, 34(3), pp. 205–224. 1989.

 https://doi.org/10.1016/0266-3538(89)90029-8
[37] Vo, T. P., Thai, H.-T. "Free vibration of axially loaded rectangular com-

posite beams using refined shear deformation theory". Composite Struc-
tures, 94(11), pp. 3379–3387. 2012. 

 https://doi.org/10.1016/j.compstruct.2012.05.012

https://doi.org/10.1177/1099636215582217
https://doi.org/10.1016/j.commatsci.2008.05.016
https://doi.org/10.1016/0020-7683(75)90030-X
https://doi.org/10.1016/0020-7225(91)90165-Y
https://doi.org/10.1016/j.ijmecsci.2009.09.026
https://doi.org/10.1115/1.3167098
https://doi.org/10.1016/j.ast.2013.12.002
https://doi.org/10.12989/sem.2015.53.6.1143
https://doi.org/10.1016/j.nucengdes.2009.12.013
https://doi.org/10.1016/j.tws.2013.10.015
https://doi.org/10.1016/S0020-7683(97)00253-9
https://doi.org/10.12989/scs.2013.14.1.085
https://doi.org/10.1016/0266-3538(89)90029-8
https://doi.org/10.1016/j.compstruct.2012.05.012

	1 Introduction
	2 Theoretical formulation
	2.1 Basic assumptions 
	2.2 Kinematics
	2.3 Constitutive equations
	2.4 Governing equations

	3 The exact solution for FGM plates 
	4 Analytical validation and numerical results
	5 Conclusions 
	References 

