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Abstract 
Artificial neural network (ANN) is a soft computing tech-
nique that has been used to predict with accuracy compres-
sive strength known for its high variability of values. ANN is 
used to develop a model that can predict compressive strength 
of rubberized concrete where natural aggregate such as fine 
and coarse aggregate are replaced by crumb rubber and tire 
chips. The main idea in this study is to build a model using 
ANN with three parameters that are: water/cement ratio, 
Superplasticizer, granular squeleton. Furthermore, the data 
used in the model has been taken from various literatures and 
are arranged in a format of three input parameters: water/
cement ratio, superplasticizer, granular squeleton that gath-
ers fine aggregates, coarse aggregates, crumb rubber, tire 
chips and output parameter which is compressive strength. 
The performance of the model has been judged by using cor-
relation coefficient, mean square error, mean absolute error 
and adopted as the comparative measures against the experi-
mental results obtained from literature. The results indicate 
that artificial neural network has the ability to predict com-
pressive strength of rubberized concrete with an acceptable 
degree of accuracy using new parameters.

Keywords 
concrete, compressive strength, rubber, neural network, pre-
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1 Introduction 
Normally, waste tires are considered a serious pollution 

problem because the waste rubber is not easily bio-degradable 
even after a long period landfill treatment [1–7]. During the 
last decades, several tentative strategies have been conducted 
to investigate the potential reuse of the recycled waste-tires 
as an innovative technique and to recycle them in civil engi-
neering application [1–8]. Therefore, the addition of rubber 
into concrete makes that concrete regarded as a lightweight 
material. The literature about the use of tire rubber particles 
in cement-based materials focuses on the use of tire rubber as 
an aggregate in concrete such as ground, crumb and chipped 
rubber. Mechanical properties of rubberized concretes depend 
on the type and the content of utilized rubber. It was revealed 
that adding rubber particles to cement-based material provide 
a lower compressive strength [1, 2, 9–11]. The decrease in 
the compressive strength can be justified by the well-estab-
lished fact that the compressive strength of concrete depends 
on the aggregates and on their volumetric proportion. The 
understanding of the relationship between the macroscopic 
mechanical behavior and the microstructural properties (such 
as volume fraction) is far from satisfactory. Some research had 
already been done on soft computing techniques mainly artifi-
cial neural networks to identify a model and control of its dif-
ferent components as: cement, fine aggregates, coarse aggre-
gates, sand, admixtures, ground, crumb and chipped rubber. 
Artificial neural networks (ANN) are known as intelligent 
methods for modeling the behavior of physical phenomena. 
ANN takes data samples rather than entire data sets to arrive 
at solutions, which saves both time and money. 

Artificial neural networks were developed to model the 
human brain. ANN is successfully used in the civil engineer-
ing applications which are suitable examining the complicated 
relations between variables.

Some researchers have used ANN for predicting com-
pressive strength. Topçu et al. [12] constructed feed-forward 
models of ANN method. Authors applied ANN for predict-
ing compressive strength of the waste crushed autoclaved 
aerated concrete. They concluded that the properties of waste 
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autoclaved aerated concrete aggregates can be obtained by 
using ANN. Other studies have used ANN for modeling 
mechanical properties of rubberized concrete based on its 
design mix constituents as follows: cement, fly ash, sand, 
coarse aggregates, admixture and water-binder ratio. Topçu 
et al. [13] applied ANN for predicting compressive strength 
of waste rubber mortars. Their results showed that training 
and testing results are similar to the experimental results. Sari-
demir et al. [14] have used AAN for prediction of long-term 
effects of ground granulated blast furnace slag on compressive 
strength of concrete under wet curing conditions. Their results 
displayed that ANN have strong potential for prediction of 
long-term effects of ground granulated blast furnace slag. 
Gesoglu et al. [15] proposed the ANN for predicting compres-
sive strength. Based on explicit model authors proposed ANN 
for the prediction of mechanical properties of rubberized con-
cretes. In their study, authors have taken cement, silica fume, 
water, superplasticizer, coarse aggregates, fine aggregates, 
crumb rubber and tire chips separately.

On the other hand, some researchers have investigated the 
impact of water/cement ratio the mechanical properties such 
as compressive strength of rubberized concrete. Results show 
that compressive strength decreased with an increase in the 
water/cement (w/c) ratio. Guneyisi et al. [16] indicate that for 
lower w/c ratio compressive strength is more important in plain 
concrete and with silica fume. For plain concrete compressive 
strength were about 54 and 76 GPa at 0.60 and 0.4 w/cm. With 
increasing rubber content to 50% of the total aggregate vol-
ume, the compressive strength reduced to about 7 and 10GPa 
for w/cm ratios of 0.60 and 0.40, respectively. Uygunoglu et 
al. [17] have studied the effects of partial replacement of fine 
aggregates with scrap tire-rubber in self-consolidating mortar. 
Authors concluded that for a given rubber content, a lower w/c 
leads to a higher compressive strength. Test results indicate 
that for control mix the high value of compressive strength is 
obtained for lower w/c ratio. Note that many researchers used 
superplasticizers in mixes of rubcrete in order to reduce the 
water/cement ratio of the former rubcrete. On the one hand, 
the increase in the water/cement ratio increases the total poros-
ity and the mechanical properties of rubberized concrete are 
closely related to its porosity and pore distribution. The exist-
ing literature related to rubberized concretes shows that the use 
of rubber increases the porosity of rubcrete if natural aggre-
gate contain are partially replaced by rubber [18]. Thomas et 
al. [19] in their study have considered different water/cement 
ratio of 0.40, 0.45, 0.50 and studied the variations of properties 
in different concrete mix where crumb rubber was replaced 
for natural fine aggregates from 0% to 20% in multiple of 
2.5%. The results indicate that the porosity values increases 
with increase in percentage of crumb rubber and water/cement 
ratio. On the other hand, the pore system in cement-based 
materials consists of four types of pores. These are gel pores 

which are directly related to shrinkage and creep, they do not 
influence the strength of concrete adversely through its poros-
ity. Macropores due to deliberately entrained air, macropores 
due to inadequate compaction and capillary pores which are 
responsible for reduction in strength and elasticity. This latest 
category with the highest specific surface area of aggregate 
increases the pore configuration by increasing the pore size, 
porosity and the particle-size distribution. Capillary porosity 
of hardened cement paste depends on w/c ratio. Water / cement 
ratio also governs the transition zone porosity in concrete [20]. 
Furthermore, porosity significantly affects the hardened char-
acteristics of cement-based materials.

The aim of this paper is to use soft computing technique 
as artificial networks to develop a model that can predict with 
accuracy compressive strength. The model is built and val-
orized within three parameters that are: water/cement ratio, 
superplasticizer and granular squeleton. Furthermore, based 
on experimental data gathered from literature, a neural net-
work technique is carried out to derive an explicit ANN for-
mulation for the prediction of compressive strength as a func-
tion of three input parameters cited above where granular 
squeleton gathers fine aggregates, coarse aggregates, crumb 
rubber and tire chips. This ANN formulation conducted to 
model which has physical reality. 

2 Methodology
Collecting and preparing sample data is the first step in design-

ing ANN model. Considering that creation of a good neural net-
work requires the existence of an accurate and comprehensive 
data-set, therefore, 112 different design mixes are collected from 
available literature [15, 21–24] on concrete containing rubber, 
summarized in Table 1 where W/C, SP (kg/m3), GS(kg/m3), Fc 
(MPa) designated water-cement ratio, superplasticizer, Granular 
Squeleton and compressive strength respectively. The constitu-
ent of design mixes used by authors are: cement, water, super-
plasticizer, coarse aggregates (gravel), fine aggregates (sand), 
crumb rubber (0–4mm) and tire chips (4–10mm). In order to 
study the impact of the water/cement ratio, the superplasticizer 
and granular squeleton in the values of the compressive strength 
of rubberized concrete, a test model is carried out to provide 
information about this mechanical characteristic. 

A descriptive statistics analysis is carried out to provide 
information and effects of the parameters that are considered 
in this study (water-cement ratio, superplasticizer and granu-
lar squeleton) on compressive strength of the rubberized con-
crete. To allow the descriptive statistics analysis extend to the 
edges of modeling domain, it is ensured that extreme values 
(minimum and maximum values) of each constituent of total 
database are included in descriptive database as: maximum 
value, minimum value, mean and standard deviation of each 
constituent. Table 2 Shows the statistical parameters of the 
data used for statistics analyze.
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Table 1 Database used on modeling (Gesoglu et al, 2010 ; Gesoglu et Guneyisi, 2015; Nguyen, Toumi and Turatsinze, 2010; Ganjian et al 2009; Cuong ,2010)

N° W/C SP GS Fc N° W/C SP GS Fc N° W/C SP GS Fc

1 0,42 13,50 1743,02 81,00 39 0,60 5,25 1487,1 16,20 77 0,40 5,40 1357,2 17,00

2 0,44 13,50 1735,97 82,70 40 0,67 5,25 1477,9 20,10 78 0,47 3,25 1600 52,50

3 0,47 13,50 1728,92 84,00 41 0,71 5,25 1473,3 21,20 79 0,47 3,25 1600 52,10

4 0,60 5,25 1773,4 53,80 42 0,40 13,50 1185 10,50 80 0,47 3,25 1600 51,20

5 0,63 5,25 1767,9 56,80 43 0,42 13,50 1180,2 11,20 81 0,47 3,25 1600 50,80

6 0,67 5,25 1762,4 57,70 44 0,44 13,50 1175,4 11,60 82 0,47 3,25 1420 28,10

7 0,71 5,25 1756,9 60,30 45 0,47 13,50 1170,8 11,70 83 0,47 3,25 1420 27,70

8 0,40 13,50 1721,8 70,40 46 0,60 5,25 1200,8 7,10 84 0,47 3,25 1420 28,30

9 0,44 13,50 1707,9 75,40 47 0,67 5,25 1193,4 8,10 85 0,47 3,25 1420 28,60

10 0,47 13,50 1701 78,30 48 0,71 5,25 1189,7 8,40 86 0,47 3,25 1335 21,50

11 0,60 5,25 1744,8 47,00 49 0,50 13,50 1721,88 85,77 87 0,47 3,25 1335 19,60

12 0,63 5,25 1739,3 50,20 50 0,75 5,25 1751,5 59,70 88 0,47 3,25 1335 19,10

13 0,67 5,25 1734 52,50 51 0,50 13,50 1694,1 79,10 89 0,50 1,52 1785 32,00

14 0,71 5,25 1728,7 55,40 52 0,50 13,50 1666,3 69,40 90 0,50 1,52 1788,4 33,00

15 0,42 13,50 1686,8 67,80 53 0,75 5,25 1694,9 51,30 91 0,50 1,52 1788,5 30,00

16 0,44 13,50 1679,9 68,20 54 0,50 13,50 1610,7 61,70 92 0,50 1,52 1790 25,00

17 0,47 13,50 1673,1 68,00 55 0,75 5,25 1638,3 41,20 93 0,50 1,52 1804 30,00

18 0,60 5,25 1716,1 41,50 56 0,50 13,50 1555,1 47,00 94 0,50 1,52 1813 27,00

19 0,63 5,25 1710,8 43,10 57 0,75 5,25 1581,8 34,20 95 0,50 1,52 1823 20,00

20 0,71 5,25 1700,2 49,30 58 0,50 13,50 1443,9 31,80 96 0,47 3,03 1839,9 63,70

21 0,40 13,50 1637 50,70 59 0,75 5,25 1468,7 23,10 97 0,47 3,29 1743,8 39,50

22 0,42 13,50 1630,5 55,30 60 0,75 5,25 1186 8,60 98 0,47 3,61 1695,7 26,30

23 0,44 13,50 1659,9 56,30 61 0,40 1,80 1678,6 53,50 99 0,47 3,99 1647,7 17,90

24 0,47 13,50 1617,3 55,60 62 0,40 2,25 1652,7 49,70 100 0,40 13,50 1750,02 75,80

25 0,60 5,25 1658,9 31,80 63 0,40 2,70 1626,8 44,50 101 0,42 13,50 1714,80 72,50

26 0,67 5,25 1648,6 37,60 64 0,40 3,15 1601 40,70 102 0,40 13,50 1693,50 62,80

27 0,71 5,25 1643,6 41,30 65 0,40 3,60 1575,1 35,30 103 0,67 5,25 1705,60 46,10

28 0,40 13,50 1580,6 40,30 66 0,40 4,05 1549,2 34,34 104 0,63 5,25 1653,80 35,80

29 0,42 13,50 1574,3 44,50 67 0,40 4,50 1523,3 27,00 105 0,60 5,25 1601,50 24,30

30 0,44 13,50 1567,7 45,10 68 0,40 2,70 1623,2 43,77 106 0,63 5,25 1482,40 18,20

31 0,47 13,50 1561,5 46,40 69 0,40 3,15 1595,6 37,90 107 0,63 5,25 1197,10 7,20

32 0,63 5,25 1596,6 28,80 70 0,40 3,60 1567,9 33,75 108 0,75 5,25 1723,30 56,40

33 0,67 5,25 1591,7 31,40 71 0,40 4,05 1540,3 31,00 109 0,50 13,50 1166,00 11,70

34 0,71 5,25 1586,8 32,80 72 0,40 4,50 1512,5 25,00 110 0,40 2,25 1651,00 47,20

35 0,40 13,50 1467,6 26,40 73 0,40 3,15 1625,1 42,20 111 0,40 4,95 1410,90 19,40

36 0,42 13,50 1461,7 29,60 74 0,40 3,60 1571,4 36,13 112 0,47 3,25 1335,00 20,20

37 0,44 13,50 1455,8 30,50 75 0,40 3,55 1518 32,43

38 0,47 13,50 1449,8 31,80 76 0,40 4,50 1464,4 26,10

Table 2 Statistical parameters of training

Min Max Mean St.Dev

W/C 0,40 0,75 0,5156 0,1138

SP (kg/m3) 1,52 13,50 7,0291 4,5102

GS (kg/m3) 1166,00 1839,90 1579,7 171,9352

Fc (GPa) 7,10 85,77 40,2713 19,5876

2.1 Preparing training, validation and test data sets 
Usually, the complete set containing all available data sets 

of the system behavior is divided into three subsets, which are 
called training subset, validation subset and test subset. The 

training subset, composed of 70% of random samples from the 
complete database, will be essentially in the learning process. 
On the other hand, the validation subset, which is composed 
of 15% from the complete data set, is used to verify if the net-
work capabilities of generalizing solutions are within accept-
able levels, thus allowing the test subset, which is composed of 
15% from the complete data set, is used to evaluate the predic-
tion performance of the model.

The training of the network is done by Levenberg Marquardt 
algorithm. This algorithm is used for adjusting the weights and 
training efficiency. During the training process, the weights 



861Using Artificial Neural Networks Approach to Estimate Compressive Strength 2018 62 4

Fig. 1 (a) Variation of compressive strength vs granular squeleton (b) Varia-
tion of compressive strength vs superplasticizer (c) Variation of compressive 

strength vs W/C ratio.

are adjusted in order to make the outputs (predicted) close to the 
target (measured) outputs of the network. The sum of the mod-
ified weight input and bias are then modified by a tan-sigmoid 
transfer function. Similarly, output from the hidden layer is mod-
ified by an appropriate weight and the sum of modified output 
signal is again modified by a tan-sigmoid transfer function. After 

completion of the training process, validation of neural network 
is done. Neural network is tested to determine the performance 
of the ANN model for predicting performance parameters.

The objective of the algorithm is to minimize the mean sum 
of squared error for the entire experimental data. To allow the 
training data-set extend to the edges of modeling domain, it is 
ensured that extreme value (minimum and maximum values) 
of each constituent of total data-set are included in training 
data-set, validation and test data sets Table 2. 

 After that, a bivariate correlation procedure computes Ken-
dall’s taub-b with the significance level is used. Correlations 
measure how variables or rank orders are related. A bivariate 
correlations procedure computes the pairwise associations for 
set variables (compressive strength, water/cement ratio, gran-
ular squeleton, superplasticizer) and displays the results in a 
matrix. Subsequent to this step, curves estimation of com-
pressive strength as a dependent variable function of others 
independent variables (the above parameters) are established. 
Scatterplot representations (Fig. 1) show the curve estimation 
of compressive strength versus the parameters cited above.

The Curve Estimation procedure produces curve estimation 
regression statistics and produce related plots for three (03) dif-
ferent curve estimation models. A separate model is produced for 
each dependent variable. Curve estimation is most appropriate 
when the relationship between the dependent variable (compres-
sive strength Fc) and the independent variable (water/cement 
ratio, granular squeleton and superplasticizer) is not necessarily 
linear. R-squared is statistical parameter that estimates the pro-
portion of the total variation in the series that is explained by the 
model. If the R squared (R2) change associated with a variable 
is large, that means that the variable is a good predictor of the 
dependent variable. For each model: R², is calculated for differ-
ent models: linear, logarithmic, quadratic, S-curve, and exponen-
tial. Fig .1 shows that the curve fit chart gives a quick visual 
assessment of the fit of each model to the observed values. From 
the plot (a), it appears that the Exponential model better follows 
the shape of the data. In particular, the linear model seems to 
overestimate compressive strength for cases with medium values 
of granular squeleton (1250 kg/m3 < GS < 1650 kg/m3). From the 
plot (b), it appears that the Quadratic model better follows the 
shape of the data. From the plot (c), it appears that the Exponen-
tial model better follows the shape of the experimental data. The 
results of R square (R2) are summarized in Table 3.

Table 3 Estimation of R square vs the input data with different curves esti-
mation regression models.

Equation
R2

Granular Squeleton Superplasticizer W/C 

Exponential 0,654 0,066 0,018

Quadratic 0,503 0,173 0,015

Logarithmic 0,501 0,132 0,014

Linear 0,500 0,161 0,014
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Fig. 2 Simple Model Neuron

2.2 Preprocessing of data
Data pre-processing is an important and critical step in the 

data process. In this step, the knowledge of database reduces 
the complexity of the data and offers better conditions. Pre-pro-
cessing has a huge impact in the success of data project. Ana-
lyzing data that has not been carefully separated for such prob-
lems can produce confusing results. If there is inappropriate 
information present, then knowledge discovery becomes very 
difficult during the training process. Three data preprocess-
ing procedures are conducted to train the ANN model more 
efficiently that are: (1) solve the problem of missing data, (2) 
normalize data and (3) randomize data. Through this step, we 
used decimal scaling and data normalization to map the data 
to uniform scale. Scaling of input are ranged between [–1; +1] 
greatly improves the learning speed as these values fall in the 
region of sigmoid function.

2.3 Artificial neural network architecture and training 
parameters 

Artificial neural network (ANN) is a type of artificial intel-
ligence technique that mimics the behavior of the human brain 
[14]. The concept of neural networks was introduced by McCull-
och et al. [25]. They developed the first neural network model for 
the first time and developed a cell model as in Figure 2 [26, 27].

The neural network approach is promising tool for prob-
lems where the solution algorithm is unknown or so compli-
cated that is impossible to solve the problem directly. It has 
been receiving an increasing attention and may be used to 
develop the predictive models. ANN modeling is nonlinear 
information processing paradigm that simulated the behav-
ior of the human brain and nervous system. A neural network 
is massively parallel distributed processor made up of sim-
ple processing units that have a natural tendency for storing 
experimental knowledge and making it available for us. The 
main component of neural network is the neuron. A neural net-
work is a network of many simple processes, which are named 
nodes or neurons. Each neuron receives weighted inputs from 
other neurons and communicates its outputs to other neurons 
by using an activation function.

Thus, information is represented by massive cross-weighted 
interconnections. Neural networks might be single-or multi 
layered. Three important processes must be considered in 

constructing a successful artificial neural network: Training, 
validation and testing. The connection weights of the neural 
network are adjusted through the training process, while the 
training effect is referred to as learning. Training of neural 
networks usually involves modifying connection weights by 
means of a learning rule. The learning process is done by giv-
ing weights and biases computes from a set of training data by 
adjusting the weights according to a certain condition.

Then, other validation data are used to check the general-
ization. In general, initial weights and biases joining nodes of 
an input layer, hidden layers and an output layer are commonly 
assigned randomly. The weights and biases are changed for 
the output of networks to match required data values. As input 
data are passed through hidden layers, sigmoidal activation 
functions are generally used. During the training procedure, 
the data are selected uniformly. A specific pass is completed 
when all data sets have been processed. Generally several 
passes are required to attain a desired level of estimation 
accuracy. Consequently, learning corresponds to determining 
the weights and biases associated with the connections in the 
networks training until the network stabilize. Initial estimated 
weight values are progressively corrected during a training 
process that compares predicted outputs to known outputs, 
and back propagates any errors to determine the appropriate 
weight adjustments necessary to minimize the errors.

Sum function is a function that calculates the effect of 
inputs and weights .This function calculates the net input that 
comes to a cell [28, 29].

The weighted sum of inputs components can be calculated as 
in Eq. (1):  

where (net)j is the weighted sum of the j neuron for the input 
received from the preceding layer, xi is the output of the i neu-
ron in the preceding layer. b a fix value as internal addition. 
Sum function is sent to a preselected transfer function, called 
an activation function. The filtered output (Output)j (compres-
sive strength) is generated in the outgoing end of the artificial 
neuron ( j) through the mapping of the transfer function. Usu-
ally, among the types of transfer functions, the sigmoid trans-
fer functions are used to solve problems [30]. The function 
considered in our work is the hyperbolic tangent function (Eq. 
2). She offers more accurate predictions. The behavior of an 
ANN depends on both the weights and transfer function that is 
specified for the units. The transfer function can be repre-
sented by the following equation: 

where: α is a constant used to control the slope of the 
semi-linear region and (Output) is compressive strength. This 
function transforms the interval [–∞; +∞] to [–1; +1].

net w x bj
i

n

ij i( ) = +
=
∑
1

*

Output e e e ej

net net net netj j j j( ) = −( ) +( )( ) − ( ) ( ) − ( )α α α α
/ .

(1)

(2)
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Once the training phase of the model has been successfully 
accomplished, the network performance is verified by present-
ing independent validation datasets to the ANN. This process 
is calling “validation”.

Different ANN architectures were tried using this code and 
the appropriate model structure was determined. The selected 
architecture was 3-3-1-1.

The values of parameters used in the research are as follows:
• Number of input Layer units = 3 (That means there are 3 

nodes in the input layer corresponding to three parameter 
namely: Water-Cement ratio (W/C), superplasticizer (SP) and 
Granular squeleton (GS: Association of coarse aggregates, 
fine aggregates, crumb rubber and tire chips))

• Number of hidden layer = 3
• Number of output layer unit = 2
• Number of first output layer units = 3
• Number of second output layer unit = 1
• Learning rate = 0.9
• Error after learning = 0.001

In this study, the artificial neural network model is divided 
into three parts, called layers, which are known as: Input layer, 
hidden layer and output layer. Input layer receive dataset. Hid-
den layer are composed of neurons which are extracting pat-
terns associated with the process being analyzed. Output layer 
is composed of neuron, which result (compressive strength) is 
from the processing performed by the hidden layers. 

Note that in this study the key parameters used in model are 
water-cement ratio and granular squeleton.

2.4 Performance evaluation of trained models 
The performance of a neural network depends on the archi-

tecture and settings parameters. In this study, statistical anal-
ysis involving the mean square error (MSE) (3), mean absolute 
error (MAE) (4) and coefficient of correlation (R) (5) were 
conducted to evaluate the performance of model. Lower MSE 
indicates more accurate estimation. MSE provides informa-
tion on the short term performance which is measure of the 
variation of predicted values around the measured data. 

where Oi , Pi and Mi denote the observed or target values, 
ANN predicted values and  the mean of Oi respectively. N rep-
resents the total number of data.

Fig. 3 Training data, validation, test and all results of ANN

Fig. 4 The Instances vs Errors results between targets and outputs 

3 Results
The neural network architecture selected for the modeling 

compressive strength of rubberized concrete (3-3-1-1) is trained. 
The regression plot showing the prediction of trained, validation 
and test of ANN model are exhibited in Fig. 3. The compres-
sive strength reached both from training and experiments were 
obtained as seen in Fig. 3.a. The compressive strength reached 
both from validation and from experiments were obtained as 
seen in Fig. 3.b. The model subsequent to training and validation 
is testing. Furthermore compressive strength results obtained 
from both test and experimental data are plotted in Fig. 3.c. All 
values of training, validation and testing are plotted in Fig. 3d. 
Correlation coefficient for training, validation and testing are: 
99.72%, 99.76%, and 97.70% respectively.

Also, the errors percentage rates of compressive strength 
reached from training, testing and validation in ANN model 
are given in Fig. 4.

The statistical values for compressive strength found from 
training, validation and testing in ANN model as correlation 
coefficient (R), Mean Squared Error (MSE) and Mean Abso-
lute error (MAE) are also given in Table 4.

The predicted compressive strength is generated. Eq. 6–10.

MSE O P Ni ii

N
= −( )( )=∑ 2

1
/

MAE O P Ni ii

N
= −( )( )=∑ 1

/

R
O M P N

O M P N

i i i ii

N

i i i ii

N

i

N
=

−( ) −( )
−( ) −( )

=

==

∑
∑∑

1

2 2

11

(3)

(4)

(5)
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Table 4 Statistical values of proposed ANN model,

Equation
Compressive Strength

Training set Validation Testing set

Samples 78 17 17

R 0,9972 0,9976 0,9770

MAE 1,1336 1,0674 2,8333

MSE 2,3100 1,8102 23,7079

Fig. 5 Compressive Strength vs Granular Squeleton

Where:
x: input value

4 Discussion
Analyzing the results, it can be seen that the statistical val-

ues coefficient of correlation (R), mean absolute error (MAE) 
and mean square error (MSE) from training set in ANN model 
were found as 99.72 %, 1.1336 and 2.3100 respectively, these 
values were found in testing and validation as 99.76%, 1.0674, 
1.8102 and 97.70%, 2.8333, 23.7079 respectively.

The errors for the values used for training, validation  and 
testing  range between -8.107 and 13.29 for all the input values. 
Furthermore, the values used for training, validation and test-
ing data that have an error between –2.476 and 2.028 are very 
important than the others values as seen in Fig. 4.

In our model, we have used three inputs that are water/cement 
ratio, superplasticizer and granular squeleton which included 

seven data gathers: water, cement, superplasticizer, fine aggre-
gate, coarse aggregate, fine rubber and crumb rubber. The model 
gives a higher coefficient of correlation (R) with lower MAE and 
MSE. However, the model gives good results in the validation 
and testing set. 

With an increase of rubber particles, granular squeleton 
decreases as seen in Fig. 5. From the low errors between the 
target and output values shown in Fig. 4, it clearly appears that 
the predicted values decrease with granular squeleton. Itcan 
be noticedthat there exist a good correlation in the variation of 
experimental data and predicted values of compressive strength.

5 Conclusions 
To wrap, a prediction model was carried out in artificial 

neural networks in order to predict of rubberized concrete on 
compressive strength. The model was trained with important 
parameters that are water/cement ratio, granular squeleton and 
output experimental data: compressive strength.

Using only the input data in trained model the compressive 
strength values of rubberized concrete were found for testing 
the model. Error technique has been employed for determin-
ing the compressive strength. The values are very closer to 
the experimental data obtained from training, testing and val-
idation for artificial neural networks. The model gives good 
results in the validation and testing set with a higher coeffi-
cient of correlation (R), lower MAE and MSE. The statistics 
values calculated for comparing experimental data with artifi-
cial neural networks model have shown good prediction for the 
ANN constructed model. 

As a result, compressive strength values of the rubberized 
concrete can be predicted in ANN without attempting any 
experiments.
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