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Abstract
In this paper, the dynamic behaviour of a family of piecewise 
linear structures, namely the vibration of beams on block-and-
tackle suspension system is analysed. The regularity of the 
vibration modes in one of the linear states induces non-har-
monic, yet periodic free vibration modes. The periodicity con-
straint of the continuous structure is formulated using modal 
analysis in the regular state. The required number of modes 
in the finite modal analysis is specified so that the numerical 
damping caused by the omitted modes does not change the 
periodic or non-periodic nature of the free vibration of the 
continuous structure. It is shown, that the application of five 
excess passive modes allows to draw conclusions about the 
behaviour of the continuous structure. The periodic behaviour 
depends on the number and position of the suspension points 
and the number of the active vibration modes. Analysis of the 
limits of the periodic behaviour reveals that suspension points 
close to the middle of the beam, or first few active vibration 
modes result in periodic vibration of the nonlinear system.

Keywords
block-and-tackle suspension system, piecewise linear system, 
nonlinear normal mode

1 Introduction
In case of structures with linear governing equations all 

vibration modes result in periodic (furthermore harmonic) 
motion, thus they can be depicted by closed curves in the phase 
space with period time depending on the mode only. A well-
known property of these modal solutions is that the linear com-
bination of them yields all solutions of the system [1, 2]. In 
nonlinear systems, this is typically not true. While there are 
possible periodic orbits, the period of these orbits is typically 
energy-dependent, and the amplitude-dependent modal shapes 
cannot serve as the basis of a linear modal analysis. The peri-
odic vibration modes of the nonlinear system, called Nonlinear 
Normal Modes (NNM) have been known for a while, and raise 
several questions and interests, a recent overview of the topic 
can be found in [3]. The principle of superposition does not 
apply in energy- and thus amplitude-dependent NNMs, yet they 
can form a basis of the vibration analysis of nonlinear systems 
when harmonic or periodic excitation is considered [4, 5, 6].  
One of the typical applications of the results is the reduction of 
the unwanted effects of large amplitude vibrations [7]. 

For piecewise linear Multi-Degree-Of-Freedom (MDOF) 
systems the modal analysis is still a possibility to intro-
duce simplifications that facilitate the analysis of the system 
response [8, 9]. A crucial step in handling such systems is the 
change between the different linear phases. This can be done 
by the transformation of the modal displacements and veloci-
ties, for which a numerically effective method is shown in [10]. 
The physical background of the piecewise linear behaviour 
can be for instance the opening or closing of a crack or a gap, 
or a tightening and relaxation of a suspending cable.

For continuous, piecewise linear systems, a similar approach 
can be used. The linear regimes can be treated using modal 
analysis. In this case, the change between the linear states must 
be considered for an infinite number of modal coordinates [11]. 
Due to the orthogonality of the linear vibration modes, this 
transformation is linear and can be represented by a transfor-
mation matrix. For regular structures with pure analytical shape 
functions in each state this transformation matrix can be given 
analytically, but for a general problem the shape functions and 
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thus the transformation matrix can only be calculated numeri-
cally. Numerical computation of the transformation matrix also 
means the reduction of the modal space to finite dimension. 
Neglecting the higher modes introduces a numerical damping 
into the solution [12]. In [13], a general method was introduced 
to find periodic orbits based on modal analysis.

A piecewise linear continuous system, a linear elastic Eul-
er-Bernoulli beam supported by two simple supports and a 
block-and-tackle suspension system is introduced in [12]. The 
massless cable is driven through a set of pulleys. Since the 
cable can only bear tension, the structure has two states called 
active and passive states depending on whether the cable 
exerts a force on the structure or it is slacked. Free vibration 
analysis of the structure was done in [14], initiating the beam 
from one of its active modal shapes. As the displacements and 
the velocities of the midpoint suggested, each of the four ana-
lysed active modal shapes result in a periodic vibration. The 
above periodicity is the consequence of the integer ratio of the 
eigenparameters to the first mode’s eigenparameter in one of 
the linear states. Thus the periods of higher modes are integer 
quotients of the base period in that state, resulting in an integer 
number of half sine waves to occur during the half period of 
the first mode of that state. As the above property originates in 
the regular arrangement of the eigenparameters we will refer 
to such linear states as regular states. Starting the analysis 
from a passive modal shape did not give the same result, hence 
several questions arose about the generality of the existence of 
periodic vibration modes. As all examined active modes pre-
sented the periodic behaviour, it is supposed that this periodic-
ity is the property of a larger set of initial modes.

This paper aims to answer the following questions regarding 
a family of structures derived from the one mentioned above. 
Is the existence of regular normal modes a general property of 
this family of structures, or the known solutions are a few of 
the rare exceptions? If it is a common property, what are the 
limits of existence of these regular nonlinear normal modes? 
Is it possible to characterize the behaviour of the continuous 
structure based on finite modal analysis? If so, what is the 
required number of considered passive modes to predict the 
behaviour of the continuous structure?

The paper is organized as follows. The mechanical system 
and its governing equations are presented in Section 2 along with 
the periodicity of the affected orbits. In Section 3, the numerical 
methods used to find the initial shapes resulting in a periodic 
vibration are presented. The numerical results are presented in 
Section 4, finally, the conclusions are drawn in Section 5.

2 Regular NNMs of a cable-suspended beam
2.1 Mechanical model of the cable-suspended beam

We investigate a family of simply supported beams, streng-
thened by a cable driven through an even number (2c) of pul-
leys attached to the beam (see an example with c = 2 in Fig.1). 

Fig. 1 One member of the analysed family of structures: c = 2.

The elongation and the mass of the cable are assumed to be 
negligible. The radius of the pulleys, their mass and friction 
are neglected as well, thus the cable force is constant along 
the whole cable. The assumption of small displacements is 
applied, hence the direction of the cable force is calculated 
on the initial geometry. Thus, the resultant of the cable force 
is the same vertical force at each suspension point. The con-
straint introduced to the system by the cable connects the dis-
placements of multiple points of the structure, thus the reac-
tion forces exerted by the cable form a one-parameter force 
system. Hence the order of static indeterminacy increases only 
by one. The effect of a similar support on the static behaviour 
of a cable net structure was analysed in [15]. 

The beam is an Euler-Bernoulli beam, the shear deforma-
tion of the cross sections is neglected. The partial differential 
equation of the free vibration for the v(x, t) lateral translation 
of the beam axis is [16]: 

where μ is the specific mass, EI is the bending stiffness, (̇) 
represents derivation with respect to time, and ()' represents 
derivation with respect to x.

The passive and active states of the cable are separated. In 
the passive state, the sum of the displacements of the suspen-
sion points cannot be positive, i.e.: 

and the displacement function is a single analytical function 
on the whole −L/2 < x < L/2 domain.

In the active state, the sum of the displacements of the sus-
pension points equals zero, i.e.: 

and the jump in the shear force is the same non-negative value 
at every i-th suspension point: 

where i = 1 − c, 2 − c, … ,c − 1, c. Thus, the third derivative of 
the v(x, t) function is not continuous, and v(x, t) must be written 
for separate segments of various lengths.
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It is assumed that the cable was attached to the system once 
the beam had reached equilibrium under the effect of self-
weight. The displacements are measured with respect to this 
state. Note that in a more realistic scenario the cable would 
bear load already in the equilibrium state, and the static part 
of the load of a typical cable-stayed beam is large enough to 
avoid the slackening of the cable during the vibration.

2.2 Vibration modes of the linear subsystems
Separation of the variables v(x, t) = u(x)h(t) in Eq.(1) yields 

the general form of the modal shape functions 

and the harmonic time-function 

Here λ is the non-dimensional eigenparameter and ω0 is the 
natural circular frequency of the mode. Substitution of the 
derivatives of the assumed form of the solution in Eq.(1) yields 
that these two parameters are related through: 

The bc and bs modal parameters depend on the initial condi-
tions. The time period of each mode is: 

Henceforth a and p superscripts are used to indicate the 
active and passive state of the cable, respectively.

For the passive state of the cable, the boundary conditions 
yield the A, B, C and D parameters: the translations in the sup-
port and the bending moments i.e. second derivatives in the 
supports are zero: 

In the q-th passive mode, the eigenparameter is 

The eigenparameters are evenly spaced among the positive 
numbers, so we refer to the passive state as a regular state. The 
respective time periods are 

For odd values of q, Bq
p = Cq

p = Dq
p = 0, and Aq

p is arbitrary. 
To make the shape function unique, we normalize it to an L(2)-
norm. This results in the symmetric modal shape functions 

For even values of q, Aq
p = Cq

p = Dq
p = 0, and Bq

p is arbitrary. 
To make the shape function unique, we normalize it to an L(2)-
norm. This results in the skew-symmetric modal shape functions 

The structure remains in the passive state as long as the 
total elongation of the cable remains negative. The elongation 
of the cable in the r-th mode is caused by the translation of the 
suspension points, the sum of the projection of each translation 
on the connecting two cable segments results: 

where α is the angle between the cable and the horizontal. For 
even values of q the skew-symmetric shape results mq = 0.  
For the symmetric modes with odd values of q, considering 
Eqs.(12) and (10), the modal elongation will be: 

The total elongation of the cable during the passive state 
can be written as: 

In the active state, for each j-th segment between the sus-
pension points there is a separate set of Aj, Bj, Cj and Dj param-
eters. The shape function given by these parameters satisfy the 
same boundary conditions as in the case of passive cable, and 
the segments fulfill the connection conditions in the suspen-
sion points. Each connection condition consists of two parts. 
The limits of the translation, the first and the second deriva-
tives from left and right are the same (continuity condition), 
furthermore, the jumps in the third derivative are the same, 
since they are based on the jump in the shear force from the 
resultant of the cable forces. The λr

a eigenparameter is a result 
of this procedure, from which the respective periods are 

To obtain unique solutions, the shape functions are scaled, with 
the purpose that the L(2)-norm over the whole domain equals 1.

In both passive and active states, the vibration modes are 
either symmetric or skew-symmetric, for the proof in a spe-
cific case see the appendix of [12]. Skew-symmetric shapes 
are common for both states of the cable. For these modes, both 
the elongation of the cable and the cable force are zero. Such 
vibration modes are linear, they are not affected by the cable. 
In the further analysis, only the symmetric shapes are dealt 
with, thus the skew-symmetric parts are omitted. From now 
on, the r index always represents the r-th symmetric mode.
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For the following steps of the analysis it is assumed that 
the λr

a eigenparameters and the ur
a(x) normalised modal shape 

functions for the active state, and the λr
p eigenparameters and 

the ur
p(x) normalised modal shape functions for the passive 

state are already computed. The ω0r
a  and ω0r

p  natural circular 
frequencies then can be calculated from Eq.(7). In Appendix 
A. we give the details of these calculations, where the elastic 
deformation of the cable is considered. The specific case of our 
analysis can be derived as a limit case, where the stiffness of 
the cable goes to infinity. The extensibility of the cable affects 
the calculation of the active modes only, the passive modes 
remain regular, so we expect that similar behaviour would 
occur in the case of structures with extensible cables, however 
the limits of the Δ parameter would be different.

As long as the cable remains in active state, the vibration of 
the beam can be written as 

where ηr
a and ζr

a depend on the initial conditions at t = 0 (initial 
modal coordinates and initial modal velocities). Similarly, as 
long as the cable remains in the passive state, we can write: 

where ηr
p and ζr

p are based on the initial conditions at t = 0 
(initial modal coordinates and initial modal velocities).

We introduce the infinite vectors of modal initial conditions 
η∞

a, ζ∞
a and η∞

p, ζ∞
p for active and passive states, respectively. 

The C∞
a(t) matrix is an infinite diagonal matrix, its r-th main 

diagonal element is cos(ω0r
a t), the S∞

a(t) matrix is an infinite 
diagonal matrix, its r-th main diagonal element is sin(ω0r

a t). 
Similarly, matrices C∞

p(t) and S∞
p(t) have the same role in the 

passive state. The spectral matrices Ω∞
a and Ω∞

p are infinite 
diagonal matrices with the natural circular frequencies. 
Finally, the modal shape functions are assembled into the 
infinite u∞

a(x) and u∞
p(x) vectors. Using the above matrices and 

vectors, the displacement and the velocity function of the 
beam can be written as: 

in the active state. The symbol T represents the transpose of a 
vector or a matrix. In the passive state, the matrix formulation 
becomes: 

2.3 Switch between the active and passive states
When the state of the cable changes, the modal coordinates 

and the modal velocities need to be transformed. At time tc of 
state change, the displacement and velocity functions can be writ-
ten in both states, i.e., the right-hand sides of Eqs.(20) and (22) 
are equal, and so are the right-hand sides of Eqs.(21) and (23): 

For the transformation, we multiply both sides of these equa-
tions by u∞

p(x) and integrate over the length of the beam. From 
the orthogonality and normalization of the passive modal 
shapes, the 
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term. The elements of this transformation matrix are: 

The transformation matrix defined above then implies the 
following formulas for the transformation of the initial condi-
tions: 

In the current work, finite modal analysis is applied, thus 
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sive states. The vectors and matrices in the reduced system are 
denoted by dropping the infinity symbol. The number of con-
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ces. The omitted higher modes introduce a numerical damping 
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accuracy of the calculation.

2.4 Properties of the regular periodic vibrations
Initiating the beam in the active state of the cable from the 

n-th symmetric modal shape, the beam reaches the v(x,t)=0 
equilibrium position. At this instant, the cable enters the pas-
sive state, hence the velocities need to be transformed into the 
passive state’s modal velocities.

In this passive state, each mode with a symmetric shape 
function has a time period which is the period of the first mode 
(the fundamental period) divided by an odd number’s square 
(see Eqs.(10) and (7)). This regularity in the modal periods 
causes that as long as the state of the cable does not change 
during the half of the passive fundamental period, the move-
ment of each passive modal coordinate is a mode-dependent 
odd number of sine half waves in time. Figure 2 shows a triplet 
of such functions and their combination. 
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Fig. 2 Time-history of three modal co-ordinates and their sum throughout a 
passive half-period: the red, green and blue lines represent the displacement 
in the first, second and third passive mode, respectively, while the black line 

is their sum, and T p
0 1,  is the fundamental period.

Since the number of the half-waves is odd, the passive modal 
velocities at the end of this half-period are exactly the opposite 
of those at the beginning of the passive state. As the state of the 
cable changes back to active, the active modal velocities are the 
opposite of those before the previous state change. Thus, the 
amplitude of every other active mode will be zero, and the beam 
vibrates in the same active mode as it was initially released.

The cable remains slacked during the passive state of the 
half fundamental period. This slackening can be calculated 
using e(t) defined in Eq.(16). To avoid the early change to an 
active state, it must be checked that the function does not 
become to positive during the passive half period. The question 
is if the vibration initiated from the n-th active mode trans-
forms into the passive state such that the cable elongation in Eq. 
(16) does not become positive during the first passive mode. If 
the cable elongation remains non-positive, then the active 
modal shape of the continuous structure has the period 

The time periodicity of these modes is a consequence of the 
regularity of the passive modes, hence we refer to these modes 
as Regular Nonlinear Normal Modes (RNNM).

There is a set of exceptions from the above type of RNNMs. 
For certain structures, the shape functions of some symmetric 
passive modes of the beam coincide with the shape functions of 
symmetric active modes. In those passive modes, the mr modal 
cable elongation is zero, and the same sinusoidal modal shape 
appears among the active and passive shapes with the same 
eigenparameters and natural frequencies. In these modes, both 
the modal cable elongation and the modal cable force is zero, 
and no distinction can be made between the two states. The 
vibrations in these modes remain linear, similarly to the case 
of skew-symmetric modal shapes, and the time period of these 
modes is T n

a
0 . The formula of Eq.(28) would include multiple 

periods of the motion.

Numerically following the motion of the beam allows the 
consideration of a finite number of modes only. This causes a 
numerical damping in the calculation: the energy of the trun-
cated passive modes is numerically dissipated. It is an open 
question if the infinite modal analysis would result in a peri-
odic vibration. One possibility is that considering the neglected 
higher modes causes the cable elongation to become positive 
during the T p

0 1, /2 time, ruining the periodicity. The other option 
is that the higher modes do not change the passive state, and the 
consideration of infinite modes will decrease the energy loss to 
zero. Our goal is to propose a method on how the results of the 
reduced order model can be used to estimate the behaviour of 
the infinite modal analysis. Then the criteria on the existence of 
periodic modes are analysed.

3 Finding periodic modes of the generalized model
3.1 Characterization of the vibration in the passive 
state

The motion is started by initiating the beam from a sym-
metric active mode. In order to find modes that result in peri-
odic motion, the elongation of the cable needs to be analysed. 
The sign of the elongation e(t) of the cable during the passive 
fundamental half-period should not be positive. Considering 
the symmetry of the passive half-period in time, it is sufficient 
to analyse the time period of length T p

0 1, /4. 
The initial active state is assumed to be the n-th mode with 

unit modal amplitude. To simplify the calculation, measuring 
the time is started at the first active-passive transformation. 
Then the S matrices become zero matrices and the C matrices 
become identity matrices, so transformations (26) and (27) 
simplify to: 

From the assumption on the initial shape, the vector of 
modal translations is zero, while the vector of active modal 
velocities contains zero values except for the n-th component, 
which is −ω0,n

a , thus ζ a = −ω0,n
a en, where en is the n-th unit 

vector. The initial values of the passive modal velocities are 
ζ ωp

n
a

n
a
nT e T e= − = −

0,
Ω . With this notation, the elongation of 

the cable is 

where m is the vector containing the mr modal elongations of 
the cable. Let us introduce the T2 = Ωp–1TΩa matrix. Then T2rn 
denotes the entry in the r-th row and n-th column of that 
matrix, and Eq.(30) can be simplified as 

where k is the number of passive modes considered (for the 
infinite analysis it would be infinity).
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The definition of the T2 matrix shows its effect: the coeffi-
cients of higher passive modes are always divided by the cor-
responding natural circular frequencies, so the effect of higher 
modes becomes negligible. One column of the T2 matrix rep-
resents the amplitudes of the modal coordinates of the pas-
sive modes. These amplitudes multiplied by the modal cable 
elongations in the m vector define the coefficients of harmonic 
functions. The sum of these harmonic functions must be anal-
ysed for its maximum value in the analysed time range.

3.2 On the existence of periodic vibrations
Our goal is to quantify the negativity of e(t). Since e(0) = 0, 

the maximum of e(t) is not sufficient for this purpose, rather, 
its stationary values must be considered. For the approximate 
solution with k passive modes let ek denote the maximum sta-
tionary value of e(t), which occurs at t Tk

p∈( 0 4
0 1

; /
,

 (i.e. ė(tk) 
= 0). If the e(t) function becomes positive during the analysed 
time, then ek will be its maximum. If the e(t) function remains 
non-positive during the analysed time, then the above defini-
tion of ek skips the beginning of the motion. We justify the 
application of ek by the fact that, in this latter case, the approx-
imated e(t) function starts decreasing after t = 0, and, as long 
as this function does not reach its first stationary point, it can 
not become positive.

For the numerical calculation of ek, we propose the fol-
lowing method. The 0 4

0 1
; /

,
T p(   time domain is discretized in 

equal intervals at ti = i∆t, and e(ti ) are calculated. The interval 
Δt must be chosen such that the calculated values must follow 
sufficiently smoothly the highest considered passive mode.

In the numerical calculation of e(t), only a finite number of 
modes can be considered. The proposed method allows a prog-
nosis on the behaviour of a given mode. If there is no energy 
loss during the transformation, then a consecutive active-to-
passive and passive-to-active transformation should provide 
the same active state as it was before the first transformation. 
Mathematically it means that the TTT product is an identity 
matrix. If there is an energy loss caused by the transformation, 
then the n,n entry of the TTT product: 

is smaller than one and represents the ratio of the kinetic 
energy remaining in the n-th active mode to the kinetic energy 
initially in the same mode. In a simple estimation on the error, 
we assume that all the disregarded energy is accumulating in 
the (k + 1)-th passive mode. In that case, every higher mode 
would have zero velocities, and from the assumption that no 
energy loss would occur in the infinite system implies that: 
tn n
k
,

+ =1 1 . Thus, the maximal value of the Tk + 1,n entry is 

With this, the maximal amplitude from the (k + 1)-th pas-
sive mode can be calculated, according to Eq.(30) it is 

The maximum possible value of mk + 1 is the number of the 
pulleys multiplied by the amplitude of the passive modal 
shape. This amplitude is the same for every k, from Eq.(12) it 
is 8 / L sin⋅ α , leading to 

Eq.(35) shows that the effect of higher modes is smaller, 
hence the assumption that all the truncated terms appear in the 
(k+1)-th mode gives an upper limit. The sin α term is a constant 
multiplier during the calculation of ek and dk . As we are primar-
ily interested in the sign and ratio of these terms, its actual value 
is indifferent. Further calculations were done with α = 30°.

Using estimation (35) on the amplitude of the truncated 
term in the e(t) function, we can conclude that the n-th active 
shape results in an RNNM if the ek critical value is nega-
tive and the dk amplitude calculated with k passive modes is 
smaller than – ek. In those cases, the critical point remains 
negative even with the added sinusoidal term. If the positive ek 
critical value is larger than dk then the critical value remains 
positive, and those modes cannot be considered as RNNMs. If 
the critical value is between – dk and dk , then a further analysis 
of higher modes is required to decide whether the mode is an 
RNNM or not.

4 Results
4.1 The required number of passive modes to draw a 
conclusion on the periodicity

We analysed the stationary values ek and the maximal differ-
ences dk on a large number of active modes of various structures 
from the introduced family. The natural frequencies and modal 
shape functions of beams with 2, 4 and 6 suspension points 
(i.e. with c = 1, c = 2 and c = 3, respectively) with different 
positions of the pulleys were calculated. Then transformation 
matrices T and stationary values ek were calculated with vari-
ous number of passive modes (up to k = 15), initiating the beam 
from the n-th active mode with a unit modal amplitude at t = 0. 
To determine the stationary values ek, the quarter-period of the 
passive state was divided into 6366 points, to compute values 
of e(t). Thus, the full period of the fastest changing 15th mode 
was divided into 56 steps. So, the maximal difference between 
a sinusoidal function and its linear interpolation at the discrete 
points is 1 2

2 56
0 16−

⋅
≈cos π
. % , and the error of the maximum of 

the function is in the same order of magnitude. The analysis 
was done for 535 active modes of structures with c = 1 and Δ 
varying between 0 and L/2, for 1129 active modes of structures 
with c = 2 and Δ varying between 0 and L/6, and for 477 active 
modes of structures with c = 3 and Δ varying between 0 and 
L/10. Every active mode was one of the first 6 modes.

t T Tn n
k T

n n, ,
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k
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First, the number of the required passive modes was anal-
ysed. The number of excess modes is defined as the difference 
between the considered number of passive modes and the index 
of the initial active mode, i.e. k − n. Figures 3–4 show the ratio 
of the maximal truncation error dk to the maximal stationary 
value ek as a function of the number of excess modes. Green 
points represent negative ek: using these combinations, the 
vibration transforms with a smaller amplitude into the same 
single active mode as it was started, so these are the numeri-
cally damped periodic solutions. Red points represent positive 
ek: these vibrations change back into the active mode earlier 
than the half-period of the first passive mode, hence they result 
in a nonperiodic free vibration. To follow the progress of the 
error while increasing the number of passive modes, the points 
are connected by lines. Green and red dashed lines connect 
the consecutive green and red points, respectively. Thin black 
lines connect consecutive points of different colours. These 
lines represent the number of applied passive modes, where 
the non-periodic vibration becomes periodic (or the periodic 
vibration becomes non-periodic) due to the inclusion of the 
next passive mode. This step typically changes the tk instant of 
the stationary point, and the change often occurs near the k ≈ n 
value. The frequency of the n-th active mode is close to the fre-
quency of the (n + 1)-th passive mode, the corresponding modal 
shapes are typically similar to each other, so the T matrix has 
relatively large values right below its main diagonal. Thus, by 
passive modes near the (n + 1)-th one have a significant effect 
on the instant of the stationary point of the infinite system, the 
inclusion of the k-th passive modes (i.e. where k = n + 1) play a 
crucial role in the calculation. This is the reason why the k < n 
part of these graphs were not drawn. 

The points of the sinusoidal vibration modes were also 
omitted. As it was mentioned earlier, in these modes the elon-
gation of the cable is constant zero in the passive mode as well, 
thus the maximum of the dk /e

k cannot be calculated.
The graphs allow deciding whether a number of passive 

modes are enough to draw conclusions about the behaviour of 
the continuous structure. Function values with higher absolute 

Fig. 3 Relative errors as a function of the excess modes for c = 1 structures. 
Each line represents one of the first 6 active modes of a structure with a 

specific Δ. 

(a)

(b)
Fig. 4 Relative errors as a function of the excess modes for a) c = 2 and  

b) c = 3. Each line represents one of the first 6 active modes of a structure 
with a specific Δ.

value than one mean insufficient number of passive modes 
to decide periodicity, the inclusion of more passive modes is 
required. If the position of the stationary point does not change 
radically, then a function value between 0 and 1 represents the 
non-periodic modes. Under the same circumstances, a func-
tion value between –1 and 0 represents a periodic mode. The 
conclusion based on this property is that there is wide range 
of periodic and non-periodic solutions. Using at least n + 5 
passive modes, the periodicity of the resulting motion does not 
change anymore. 

4.2 Beams suspended on two points
The next step is the analysis of the c = 1 case, where the 

symmetric vibration of the beam can be treated in the same 
way as a three-span girder with partial middle supports which 
exert reactions only upwards.

Figure 5 shows the stationary values ek as the function of the 
position Δ of the pulleys is varied between its physically possi-
ble values. Each calculation was done with 15 passive modes, 
the different colours represent the result of different starting 
modes. Boxed points represent the maximum stationary value 
for periodic modes ek < 0, while stars represent the maximum 
stationary value calculated for active modes with non-periodic 
behaviour, ek > 0. Empty circles denote the modes where the 
stationary value is zero (ek = 0). A small change of Δ typically 
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only has a small effect on the vibration mode and the passive 
modal amplitudes, thus the calculated points were connected 
with linear segments.

The graph shows that stationary values of the first mode 
(red line in Figure 5.a)) are never positive. This means that, 
independent of the position of the suspension points, the first 
mode is always periodic. The typical behaviour for higher 
initial modes is that a large Δ results in positive ek and thus 
non-periodic vibration, while smaller Δ results in negative ek 

and thus periodic vibration. The transition occurs around Δ 
≈ 0.3L, for some modes it happens in one single transition, 
while for some modes there are isolated regions with periodic 
or non-periodic behaviour.

A structure with Δ = L/6 has the same mechanical behaviour 
as the structure analysed in [12] and [14]. The suspension 
points above the supports do not interact with the beam. The 

six points in Fig.5 at Δ = L/6 represent two sinusoidal active 
modal shape (with n = 1 and n = 4), and four RNNM (with n = 
2, n = 3, n = 5 and n = 6), in compliance to the results of [14].

The graphs in Fig.5 have curved segments, where the 
instant of the stationary point changes smoothly. These seg-
ments are separated by sudden jumps (e.g., the n = 3 case has 
one between Δ = 0.116L and Δ = 0.117L). At these points, the 
stationary point with larger ek ceases to exist as Δ is varied, 
and a stationary point with smaller ek appears at a different tk 
instant. To explain this jump, the time-history of the e(t) func-
tions of two vibrations is shown in Figure 6.a.: the n = 3 mode 
of the already mentioned Δ = 0.116L and Δ = 0.117L structures. 
Figure 6.b. shows e(t) around the stationary point of the Δ = 
0.117L highlighting that there is an inflection point before the 
first stationary point, denoted by a full and an empty circle, 
respectively. As the slope of the function at the inflection point 
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Fig. 5 The ek stationary values of different active modes for c = 1 structures as a function of the position of pulleys for various initial modes n. 

Fig. 6 a) Time-histories of two e(t) functions of a c = 1 structure during the passive state of the n = 3 mode. Small boxes drawn around the stationary points 
are magnified below. b) The same functions around the stationary point of the Δ = 0.117L structure. c) The same functions around the stationary point of the Δ 

= 0.116L structure. The empty circles represent the stationary points, and the full circles the inflection points right before them.
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changes sign, the stationary point after the inflection vanishes. 
At Δ = 0.116L, there is no stationary point anymore, the next 
candidate for this purpose is at a different time instant. This is 
shown on Figure 6.c. around the stationary point of a structure 
with Δ = 0.116L.

Another type of the singularities can be observed in the 
graphs at the ek = 0 points, where the slope of the function 
changes sign. A few examples are at Δ = L/6 for n = 1, at Δ = 
L/10 and Δ = 3L/10 for n = 2, at Δ = L/14, Δ = 3L/14 and Δ = 
5L/14, for n = 3. These points belong to trivial normal modes, 
their distribution follows the regular pattern of Δ/L = (2j − 1)/
(4n + 2) with integer j. As it was shown in [17], these active 
modes have pure sinusoidal vibration shapes, which coincide 
with one of the passive modes as well. Thus, no distinction can 
be made between the active and passive state and the period 
will be T n

a
0 , which differs from the limit value, calculated 

from the left or from the right along the function with Eq.(28).

4.3 Beams suspended at more than two points
Figures 7 and 8 show the stationary values ek as a function 

of the position Δ of the pulleys varied between its physically 
possible values for the c = 2 and c = 3 structures, respectively. 

Each calculation was done with 15 passive modes, the differ-
ent colours represent the results of different starting active 
modes. Boxed points represent the maximum stationary value 
for periodic modes ek < 0, while stars represent the maximum 
stationary value calculated for active modes with non-periodic 
behaviour, ek > 0. Empty circles denote the modes where the 
stationary value is zero ek = 0.

For c = 2, the first three active modes have no positive  val-
ues, for c = 3 the first five modes have no positive  value. It 
means that these active modes result in RNNMs independent 
of the position of the pulleys. This is a generalization of our 
former finding for the c = 1 case. The conjecture that the first 
2c − 1 mode is always an RNNM would require an extensive 
numerical testing, which is out of the scope of this paper.

The conclusion that was drawn on the higher modes of the  
c = 1 structures can be generalized as well. As long as Δ is suf-
ficiently small, the higher active modes result in regular vibra-
tion modes. The positive ek stationary points do not appear 
below the Δ = 0.1L point for c = 2 and below the Δ = 0.08L point 
for c = 3. While these limits depend strongly on the number of 
pulleys, it is worth noting that positive ek and thus nonperiodic 
vibration occurs only when the last pulley is at a distance of 
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Fig. 7 The ek stationary values of different active modes for c = 2 structures.

Fig. 8 The ek stationary values of different active modes for c = 3 structures.
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0.3L − 0.5L from the center of the beam. So we formulate the 
conjecture that as long as (2c − 1)Δ < 0.3L, initiating the struc-
ture from any active mode results in periodic vibration.

The limit case of ∆→L/6 represents, again, the same struc-
ture analysed in [12] and [14]. The graphs of n = 1 and n = 4 
modes approach zero as ∆→L/6, while the graphs of higher 
modes have a negative value on the Δ = L/6 end.

There are jumps in the calculated functions ek(∆/L), which 
have the same background as that explained in relation to Fig. 
6. The zero limit values at the trivial normal modes have the 
same mechanical explanation as in the c = 1 case.

One new phenomenon worth noting is the kinks at some points 
(e.g. at Δ/L = 0.15 in the n = 3 curve of Figure 7.a.). These points 
are not related to a sudden jump, a continuous function reaches 
these values. Furthermore, we observed, that the modes with 
these local minimums can be paired with a trivial normal mode, 
which has zero ek value. The frequencies of these two modes 
are relatively close to each other, for the above mentioned c = 2 
structure with Δ/L = 0.15 the eigenparameters are λ2

a = 4.868π 
and λ3

a = 5π. The non-smooth function of the stationary values 
might be caused by the non-separated modes of the active state.

5 Conclusions
In this paper, we gave an explanation of a phenomenon 

occurring during the free vibration of a piecewise linear struc-
ture with regular natural frequencies in one state. We have 
shown that there is a wide range of system parameters where 
nonlinear periodic vibrations occur, but there are active modes 
resulting in non-periodic vibration as well. The piecewise lin-
ear system we investigated is a beam suspended at 2, 4 or 6 
points by a cable driven through a set of equidistant pulleys. The 
symmetric topology of the pulleys resulted in symmetric and 
skew-symmetric vibration modes only. As every skew-sym-
metric modal shape results in a trivial harmonic vibration 
mode, only the symmetric modal shapes were analysed. 

We have introduced a stationary value to measure the peri-
odicity of the vibration without the need for an infinite modal 
analysis. The partial modal analysis of the continuous system 
neglects higher order modes. We derived the maximal ampli-
tude of the first truncated mode. The ratio of this maximal 
amplitude to the stationary value allowed us to draw conclu-
sions on the periodic or non-periodic motion of the continuous 
system. Based on numerical studies, we gave a recommenda-
tion on the number of necessary passive modes in a numerical 
calculation with reduced modes.

A systematic study of the stationary values allowed us to 
draw conclusions on the periodicity of the vibration modes. 
We concluded that, depending on the number of suspension 
points, the first few active modes result in a regular nonlinear 
normal mode. The higher modes might result in non-periodic 
motion, but for sufficiently small distances between the pul-
leys, the motion remains periodic.

The periodic vibration modes support further analysis of 
NNMs. As the suspension allows the construction of slender 
structures, the analysis of forced vibration plays an important 
role in the design process. The periodic free vibration modes 
presented in this research lay the foundation of that analy-
sis. Experimental validation of the current results requires 
the beam to be released from an active modal shape, which 
requires the application of static displacements according to 
that modal shape. This is an impractical task, but future analy-
sis of the forced vibration offers the possibility to validate our 
prospective results.

The analysis presented in this paper neglects the mass of 
the cable. The actual mass of the cable would affect the results 
in several ways. In both states, the cable would perform a 
free vibration as a string. In the passive state, the motion of 
the cable is independent of the beam. In the active state, the 
motion of the cable and the motion of the beam is connected. 
Furthermore, the equilibrium state of the cable would be a 
catenary, which introduces a nonlinearity in the response of 
the structure in the active state. Consideration of all the above 
effects would modify the analytical calculation of the active 
and passive modal shapes, and possibly the regular distribution 
of the passive modes, thus it is beyond the scope of this paper.
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Appendix A. Frequency matrix of a beam with active suspension system

In this Appendix, we present the systematic approach we derived and used for the calculation of the frequency matrix, the eigen-
parameters and the modal shape functions of the beam on a block-and-tackle suspension system with the active state of the cable. 
However, in the paper we were dealing with an inextensible cable, as a general approach, the following derivation considers the 
elastic deformation of the cable, so this is an extension to the algorithm shown in [18]. To determine the ur

a(x) functions for the 
active state of the beam suspended on 2c points (see Fig.1), we have to divide the function into sections at the coordinates of the 
pulleys. Each of these modal shapes must fulfill Eq. (1) and can be written in the form of Eq. (5). The parameters must be given for 
each segment, so we introduce the subscript l to distinguish between the segments. In the l-th segment, the function has the form 

and the function is valid between the xl–1 and xl coordinates. The xl coordinates represent both ends of the beam and the suspen-
sion points with x0 = –L/2, x2c + 1 = L/2 and xl = (2l – 2c – 1)∆ for l = 1,…,2c. The Al, Bl, Cl and Dl parameters can be calculated 
from the boundary and the continuity conditions of the beam.

These conditions can be formulated in a much simpler form if we introduce a ζl local reference system with a simple transla-
tion: ζl = x – xl–1. The shape function of the given segment will be: 

From here on we omit the a superscript and r subscript. The segment can be written as: 

with the following relationship between the coefficients: 
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
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
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The advantage of the translated coordinate system is that the constraints are written for function values only at ξ = 0, ξ = 2Δ 
and ξ = δ points (see Fig.1 for the meaning of Δ and δ).

Now the boundary and continuity conditions are given in detail. First, the simply supported beam has pinned support at both 
ends. This means that the deflection and the bending moment is zero at these points. This latter one is proportional to the second 
derivative of the deflection, hence the conditions can be written in the following form: 

The next group of equations represent the continuity of the beam at the suspension points. The translation, the rotation and 
the bending moment must be the same on the left and right-hand side of each suspension points. As the rotation is related to the 
first derivative of the translation, while the bending moment is proportional to the curvature, and thus to the second derivative 
of the translation, these conditions can be written as: 

for the first suspension point and as: 

for every other suspension point with l = 2,…,2c. For brevity, we simplified the equations by the constant terms EI and λ/L.
The last group of equations represents the jump in the shear force. The shear force is proportional to the third derivative of 

the translation, and the jump must be the same in each suspension point. We compare each jump to the first one: 

for every suspension point with l = 2, 3, …, 2c.
The last condition states that the vertical force transmitted from the cable to the beam is equal to the jump in the shear force. 

The latter one is proportional to the jump in the third derivative in any of the suspension points: 

where EI is the bending stiffness of the beam. The vertical force is calculated from the elongation of the cable, which can be 
calculated from the translations of the suspension points with: 

The sinα term projects the translation to the direction of the cable, while 2 is the number of sloped cable segments in each 
suspension point. Let s denote the stiffness of the cable, so the cable force will be S = s ∙ Δℓ, its vertical component Sy = S ∙ sinα. 
There are two cable segments connecting to the suspension point so we can write short 2Sy = Vjump . Substituting the partial 
results, we can write the last condition as: 

The assumption of the cable’s inextensibility means, that s is infinite, and the right-hand side of Eq. (47) becomes zero. From 
the formula one can see that the validity of the assumption of an inextensible cable depends on the EI/s ratio.

Equations (40–47) can be written in a homogeneous form using (38) yielding the linear algebraic equation system: 

Fc = 0.

Here vector c = [J1, K1, L1, M1, J2, K2, L2, M2, ... M2c + 1]
T consists of the unknown coefficients and F is the frequency matrix 

containing the above-described continuity and boundary conditions. These conditions can be written in blocks that help under-
standing the structure of the frequency matrix. This way the frequency matrix in case of c = 2 has the form: 

U U
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U U U U U U
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where β = EIλ3/4s sin2 αL3 and the matrix blocks are the following: 0m × n denotes the m × n zero matrix, 

In Eq.(49), the block-row starting with P  represents Eq.(40), the block-row starting with 02 × 4 represents Eq. (41), the row 
starting with β C represents Eq.(47), the block-row starting with Ã represents Eq.(42), the block-rows starting with 03 × 4 repre-
sent Eq.(43) and the rows starting with C  represent Eq.(44).

The homogeneous Eq.(48) has nontrivial solutions if and only if the determinant of the frequency matrix is zero: |F| = 0. The 
matrix always can be partitioned into four blocks: 

with an 8 × 8 upper left block R and the respective S, W and U matrices. It can be shown that the lower triangular hypermatrix 
U is not singular, so the determinant can be calculated as: |F| = |U| ∙ |R – SU –1W |. The nonlinear equation |F| = 0 must be solved 
for the λ eigenparameters, then the Jl, Kl, Ll, Ml parameters can be computed from the homogeneous equation, which can be 
transformed to the Al, Bl, Cl, Dl values with Eq.(39).
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