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Abstract

In this study, the Modified Dolphin Monitoring (MDM) operator is used to enhance the performance of some metaheuristic algorithms. 

The MDM is a recently presented operator that controls the population dispersion in each iteration.  Algorithms are selected from 

some well established algorithms. Here, this operator is applied on Differential Evolution (DE), Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), Vibrating Particles System (VPS), Enhanced Vibrating Particles System (EVPS), Colliding Bodied Optimization 

(CBO) and Harmony Search (HS) and the performance of these algorithms are evaluated with and without this operator on three well-

known structural optimization problems. The results show the performance of this operator on these algorithms for the best, the 

worst, average and average weight of the first quarter of answers.
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1 Introduction
Optimization methods are categorized into two general 
groups consisting of mathematical programming methods 
and metaheuristic approaches. Nowadays metaheuristic 
algorithms have been widely used for solving optimiza-
tion problems because these have not some of the defect 
corresponding to the first group of methods and are easy to 
use and require affordable computational time [1]. Many 
metaheuristic algorithms are introduced in the last two 
decades, some of these are as follows:

Genetic Algorithm (GA) [2], Differential Evolution 
(DE) [3], Particle Swarm Optimization (PSO) [4], Bat 
algorithm [5], Dolphin Echolocation Optimization (DEO) 
[6], Simplified Dolphin Echolocation (SDE) algorithm [7, 
8], Grey wolf optimizer [9], Vibrating Particles system and 
its enhanced version (VPS and EVPS) [10, 11], MODRO 
algorithm [12], Colliding bodies Optimization (CBO) [13], 
Harmony Search (HS) [14], Krill Herd (KH) algorithm 
[15], Electro search algorithm [16], Moving Morphable 
Components (MMCs) [17], Jaya algorithm [18], Slap 

Swarm Algorithm (SSA) [19], Improved fruit fly optimi-
zation algorithm [20], Differential Big Bang-Big Crunch 
algorithm [21].

Metaheuristic algorithms have found many applica-
tions in different areas of applied mathematics, engineer-
ing, medicine, economics, and other sciences [22]. In opti-
mization problems, there are always some requirements 
that should be minimized such as material, time, cost of 
the project and etc, and ultemately the final aim is gaining 
an economical result. As mentioned, many metaheuris-
tic methods are introduced in last two decades, maybe it 
can be expressed that all of them have some opportuni-
ties in comparison with other methods for each problem. 
But there is a basic question and that is where each meta-
heuristic algorithm is suitable, especially, when a problem 
is evaluated for the first time and there is no previous opti-
mal answer available. In this situation, it is possible that 
the selected algorithm to be entrapped in local optima. 
Also, it is possible that the obtained answer have a great 
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difference with the optimum one.  In the practical applica-
tion of the metaheuristic methods, all of the answers near 
to the optimum answer are valuable but the answers with a 
great difference with the optimum answer are not valuable 
and it is not clear for the problems that are being solved 
for the first time. In other words, some algorithms are not 
suitable for several optimization problems and also, some 
algorithms should be tunned for a specific set of prob-
lems. The MDM operator has some feature for controlling 
the population dispersion in each variable and iteration. 
Addition of this operator to any algorithm prevents the 
algorithm to be trapped in local optima in comparison to 
the algorithm without this operator. Generally, this oper-
ator enhances the performance of the algorithms and the 
optimum designs of all algorithms with this operator are 
closer to each other corresponding to a suitable value.

It should be noted this operator does not cause any 
change in the main steps of the metaheuristic algorithms. 
Optimum design of structures is performed to gain a suit-
able design with more economical structural cost. In this 
study, Modified Dolphin Monitoring (MDM) operator is 
used to enhance the performance of seven metaheuristic 
algorithms when applied to three well-known structural 
optimization problems. These problems consist of the 
optimum weight design of a truss and a frame designed 
in according to AISC constraints [23] and one truss struc-
ture with frequency constraints. The results are presented 
for seven algorithms with and without the MDM opera-
tor. Benefits of using this operator are presented in the last 
part of section 2.

This paper is organized as follow: In the first section 
introduction is presented. A brief explanation of seven 
algorithms and the MDM operator is provided in section 
2 and the formulation of the objective function is intro-
duced in section 3. Section 4 consists of three well-known 
structural optimization problems with a brief explanation 
of their constraints and finally the concluding remarks are 
presented in section 5. 

2 A brief review of seven metaheuristic algorithms and 
the MDM operator
2.1 Differential Evolutionary 
As Differential Evolutionary (DE) method was presented 
by Storn and Price [3]. This method is based on calcu-
lating the difference between two randomly selected vec-
tors. Initial vectors are created randomly in a permissible 
range. For the next steps, according to the difference of 
the vectors and crossover operator, all vector are updated. 

2.2 Particle Swarm Optimization
Particle Swarm Optimization (PSO) algorithm was pro-
posed by Kennedy and Eberhart [4]. This algorithm 
adopted from the behaviour of the animal flacking. In the 
first step, the algorithm creates a random population in 
permissible range. The velocity determines the next loca-
tion of each population according to global best and the 
population best positions.

2.3 Genetic Algorithm
Genetic algorithm (GA) was introduced by Holland [2] 
that was inspired by biological evolution. The initial pop-
ulation is generated randomly in the permissible search 
space. This algorithm selects the better populations for 
next steps, and using a crossover and mutation operators 
tries to improve the populations.

2.4 Vibrating Particles Systems
Vibrating Particles Systems (VPS) algorithm was devel-
oped by Kaveh and Ilchi Ghazaan [24]. This method is 
adapted from the free vibration of single degree of free-
dom systems with viscous damping so that each answer is 
modelled as a particle that moves to its equilibrium posi-
tion. New positions are updated according to a historically 
best position.

2.5 Enhanced Vibrating Particles System 
Enhanced Vibrating Particles System (EVPS) is a modi-
fied version of the VPS algorithm that was presented by the 
authors [11]. This algorithm employs some new approach 
to gaining the optimum answer.

2.6 Colliding Bodies Optimization
Colliding Bodies Optimization (CBO) algorithm was 
introduced by Kaveh and Mahdavi [13]. This algorithm is 
based on a one-dimensional collision between two bodies 
with each agent being modeled as an object. Initial agents 
are generated randomly in a permissible range. Next steps 
is performed according to velocities and the masses of 
each agent.

2.7 Harmony Search
Harmony Search (HS) algorithm was proposed by Geem 
et al. [14]. This method is based on the promotion pro-
cess of a musician. Initial vectors are generated using ran-
dom numbers in a feasible space. This algorithm consists 
of some operators. Next vectors is updated using these 
operators.
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2.8 Modified Dolphin Monitoring operator
Dolphin monitoring (DM) was introduced by Kaveh 
and Farhoudi [25] for the first time. This algorithm was 
enhanced DM operator and presented Modified Dolphin 
monitoring (MDM) by Kaveh et al. [26]. It should be noted 
that this operator was used for layout optimization of planar 
braced frames [27]. These operators control the population 
dispersion for each variable and iteration. DM expresses 
that the mode value for all population for each variable 
should be repeated as a specified magnitude for each itera-
tion. If the number of mode repetition is bigger or smaller 
than this specified this value some approaches are used to 
until these two values are equal [25]. MDM operator deter-
mines a range and expresses that all values for all popu-
lation and each variable should be in this range in certain 
numbers [26]. The range is equal to average ± (15%) stan-
dard deviation for each variable and the certain number is 
calculated according to Eq. (1).

MPi
i

Maximumnumber of iterations
= +

−

−
10 60

1

1
[ ] , (1)

where MPi is the number of values should be in the range 
in percent for the ith iteration. 

MDM operator applies to metaheuristic algorithms and 
enhances the performance of them to find the optimum 
design. In fact, this operator gives the ability to the algo-
rithms to escape from the local optima. If the selected algo-
rithm is not suitable for a specified problem or the param-
eters of the algorithm is not turned properly, this operator 
will help the algorithm to find an appropriate answer. The 
pseudocode of the MDM operator is as follow:

for j=1:number of variables
while available papulation dispersion index(j) ~= 

mandatory papulation dispersion(j)
if available papulation dispersion index(j) > man-
datory

papulation dispersion(j)
if rand<0.5

a random value from population which are in 
the

range = a random value  
from available population which are out of the

range;
else

a random value from population which are in 
the

range = values that are randomly 
generated within
the feasible range for the jth variable;

end
elseif available papulation dispersion index(j) < 

mandatory papulation dispersion(j)
if rand<0.5

a random value from population which are out 
of

the range = the best available 
optimal variable for the stage;

else
a random value from population which are out

of the range = values that are in the desired range;
end

end
end

end

In above pseudocode, available population dispersion 
index is the percent of the population in the mentioned 
range for each variable and mandatory population dis-
persion is the number of values which should be in the 
range in percent for the ith iteration according to Eq. (1). It 
should be noted that, if the population within the defined 
range is not equal to the value specified in Eq. (1), the 
MDM operator replaces the new values in the answers 
with some mechanisms that are presented in the pseudo-
code of the MDM operator. These approaches improve 
the search ability power of the metaheuristic algorithms. 
Based on the explanations, this operator:

• Controls the population dispersion for each variable 
and iteration,

• Controls the speed of the convergence,
• Enhances the algorithm’s ability to escape from local 

optima,
• Balancing between exploration and exploitation of 

the algorithms,
• Enhances the searchability of algorithms,

and obtains a suitable answer as an optimal answer. 

3 Formulation of the optimization problems 
In this section, the goal is to minimize the weight of skeletal 
structures satisfying certain design requirements. Design 
requirements for the first two problems are the strength 
and displacements constraints according to LRFD-AISC 
specification [23], and the third one considers frequency 
constraints. The mathematical formulation of optimal 
design of the problems can be presented as follow: 
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where {x} is a set of design variables containing the cross- 
sectional area of W-sections; ng is the number of design 
variables; W({x}) is the weight of the skeletal structure; nm 
is the number of elements of the skeletal structure; ρi pres-
ents the material density of the ith member; Ai and Li pres-
ent the cross-sectional area and the length of the ith mem-
ber, respectively. It above equation, xi is the number of a 
W-section and Ai is the cross-sectional area of the ith group.

In this study, two problems are considered as discrete 
optimization and one is for continues optimization prob-
lem. To control the requirements of each problem, penalty 
approach is used according to the following equation:

fitness x w x i
j

nc
( ) ( . ) {( )}, max( , )= + × = ∑

=
1 01

2

1

ε υ υ υε . (3)

fitness(x) and υ are the fitness function and the sum of 
the violations for each problem. In this study, ε1 and ε2 are 
set to 0.3 and 1, respectively, and nc is the total number 
of requirements for each individual design. It should be 
noted that specified constraints for each problem are pre-
sented in subsequent section. 

4 Numerical problems
In this section, three well-known skeletal structures are con-
sidered to investigate the performance of the MDM opera-
tor on seven algorithms. All results are presented with and 
without the incorporating this operator. As mentioned in 
section 3, minimizing the weight of three skeletal structures 
is conducted in this study, these problems are as follow:

• A 3-bay 24-story steel frame with AISC-LRFD [23] 
constraints.

• A 582-bar tower truss structure with AISC-LRFD 
[23] constraints.

• A 72-bar spatial truss structure with frequency 
constraints.

It should be noted that all problems have been solved 30 
times independently, also, the number of population and 
number of iterations are taken as 60 and 1000, respectively.

4.1 A 3-bay 24- story steel frame with AISC-LRFD 
constraints
A 3-bay 24 story frame consisting of the schematic, applied 
loads and the numbering of the member groups is illus-
trated in Fig. 1. This structure consists of 100 joints and 
168 elements that are collected in 20 groups (16 column 
groups and 4 beam groups). The beam and column element 
groups are selected from all 267 W-shape and W-14 sec-
tions, respectively. The material has a modulus of elastic

Fig. 1 Schematic of a 3-bay 24-story frame

ity equal to E = 205GPa (29,732 ksi) and a yield stress of 
fy = 230.28 MPa (33.4 ksi). The effective length factors of 
the members are computed as kx ≥ 1.0 for a sway permitted 
frame and the out-of-plane effective length factor is deter-
mined as ky = 1.0. All columns and beams are considered as 
non-braced along their lengths. According to AISC-LRFD 
[23] constraints are as follow:
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(a) Maximum lateral displacement

∆T
kH
R− ≤ 0 . (4)

(b) The inter-story drift constraints
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where ΔT is the maximum lateral displacement of the 
roof; H is the height of the frame structure; Rk is the max-
imum drift index (in this study it is equal to); di is the 
inter story drift; hi is the story height of the ith floor; ns is 

the total number of stories; Rl shows the inter story drift 
index and its limitation is like Rk index; Pu is the required 
strength (tension or compression); Pn is the nominal axial 
strength [23](tension or compression); Øc is the resistance 
factor (Øc = 0.9 for tension and Øc = 0.85 for compres-
sion); Mu (containing Mux and Muy ) is the required flex-
ural strengths; Mn (containing Mnx and Mny ) is the nominal 
flexural strengths [23] (for two-dimensional frames Muy 
= 0 and Mny = 0); and Øb presents the flexural resistance 
reduction factor (Øb = 0.90).

Table 1 contains the results of seven algorithms consist-
ing of DE, PSO, GA, VPS, EVPS, CBO and HS with the 
effect of the MDM operator and without this effect. In this 
table, the best, worst and mean weights for all and mean 
weight of the first quarter of answers for each method is 
presented.

It can be seen that the lightest design is found by EVPS-
MDM which is 893.95 kN. Although all optimum designs 
with the effect of MDM operator have reached suitable 

Table 1 Results of seven algorithms with and without the effect of the MDM operator for the 3-bay 24- story frame

Element group Optimal W-Shaped sections

DE PSO GA VPS EVPS CBO HS

1 W30x90 W30x108 W30x90 W30x90 W30x90 W30x108 W30x90

2 W8x18 W10x112 W6x15 W14x68 W6x15 W8x18 W8x18

3 W24x62 W18x143 W27x84 W27x84 W24x55 W24x55 W24x62

4 W6x8.5 W5x16 W6x8.5 W10x39 W6x9 W6x8.5 W6x9

5 W14x145 W14x233 W14x132 W14x159 W14x159 W14x132 W14x159

6 W14x109 W14x120 W14x109 W14x82 W14x132 W14x120 W14x176

7 W14x120 W14x132 W14x82 W14x90 W14x109 W14x90 W14x99

8 W14x90 W14x90 W14x90 W14x53 W14x74 W14x90 W14x82

9 W14x61 W14x109 W14x90 W14x61 W14x61 W14x61 W14x61

10 W14x38 W14x120 W14x53 W14x90 W14x38 W14x48 W14x48

11 W14x38 W14x90 W14x34 W14x34 W14x30 W14x38 W14x30

12 W14x26 W14x53 W14x22 W14x61 W14x22 W14x22 W14x22

13 W14x90 W14x82 W14x90 W14x90 W14x90 W14x90 W14x90

14 W14x109 W14x74 W14x99 W14x145 W14x99 W14x90 W14x82

15 W14x90 W14x145 W14x109 W14x132 W14x90 W14x90 W14x90

16 W14x82 W14x233 W14x82 W14x193 W14x90 W14x74 W14x82

17 W14x74 W14x132 W14x61 W14x90 W14x74 W14x74 W14x68

18 W14x61 W14x145 W14x53 W14x99 W14x61 W14x53 W14x53

19 W14x30 W14x22 W14x34 W14x48 W14x38 W14x30 W14x34

20 W14x22 W14x193 W14x22 W14x22 W14x22 W14x22 W14x22

Best weight (kN) 901.64 1362.655 920.525 1025.656 894.03 962.55 905.48

Worst weight (kN) 994.0635 2891.41 1020.923 1149.656 953.6786 1026.734 987.8225

Mean weight (kN) 915.8925 1879.07 945.6831 1081.354 904.0907 978.5107 925.4

Mean weight of  the first quar-
ter of the best answers (kN) 900.3324 1468.32 918.7998 1037.241 896.0129 952.9905 899.0706
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Element group Optimal W-shaped section using MDM operator

DE PSO GA VPS EVPS CBO HS

1 W30x90 W30x90 W30x90 W30x90 W30x90 W30x90 W30x90

2 W10x22 W6x15 W5x19 W6x15 W6x15 W6x15 W6x15

3 W24x55 W24x55 W24x55 W21x44 W24x55 W24x55 W24x55

4 W6x16 W6x8.5 W6x8.5 W6x8.5 W6x8.5 W6x8.5 W8x10

5 W14x159 W14x159 W14x159 W14x145 W14x159 W14x132 W14x159

6 W14x132 W14x132 W14x109 W14x159 W14x132 W14x109 W14x132

7 W14x109 W14x109 W14x120 W14x99 W14x109 W14x90 W14x99

8 W14x74 W14x74 W14x90 W14x74 W14x74 W14x90 W14x90

9 W14x68 W14x53 W14x61 W14x68 W14x61 W14x61 W14x68

10 W14x38 W14x43 W14x38 W14x61 W14x38 W14x74 W14x43

11 W14x34 W14x34 W14x38 W14x30 W14x34 W14x30 W14x30

12 W14x22 W14x22 W14x22 W14x22 W14x22 W14x22 W14x22

13 W14x90 W14x90 W14x90 W14x109 W14x90 W14x99 W14x90

14 W14x99 W14x99 W14x109 W14x99 W14x99 W14x109 W14x99

15 W14x90 W14x90 W14x90 W14x109 W14x90 W14x109 W14x99

16 W14x90 W14x90 W14x82 W14x99 W14x90 W14x90 W14x82

17 W14x68 W14x82 W14x74 W14x74 W14x74 W14x82 W14x68

18 W14x61 W14x61 W14x61 W14x48 W14x61 W14x43 W14x61

19 W14x34 W14x34 W14x30 W14x38 W14x34 W14x38 W14x34

20 W14x22 W14x22 W14x22 W14x22 W14x22 W14x22 W14x22

Best weight (kN) 896.1678 895.3705 896.55 901.58 893.9539 897.29 896.7

Worst weight (kN) 904.5019 959.6632 989.14 1002.944 896.5583 980.59 950.42

Mean weight (kN) 898.19 918.9328 922.18 937.41 894.9684 928.4 918.7902

Mean weight of  the first quar-
ter of the best answers (kN) 895.63 896.0737 915.4977 922.44 893.9616 899.2201 898.47

values. Fig. 2 illustrates the convergence curves of the 
seven algorithms with and without the effect of the MDM 
operator for the best optimal design and average answer of 
all runs for this problem.

4.2 A 582-bar tower truss structure with AISC-LRFD 
constraints
The schematic of the 582-bar tower truss with the height 
of 80 m is presented in Fig. 3. The symmetry of the tower 
around x-axis and y-axis is considered to group the 582 
members into 32 independent size variables. A single load 
case is considered consisting of the lateral loads of 5.0 kN 
applied in both x and y directions and a vertical load of –30 
kN applied in the z-direction in all nodes of the tower. A dis-
crete set of 137 economical standard steel sections selected 
from W-shape profile list based on area and radii of gyration 
properties is used to size the variables. The lower and upper 
bounds on size variables are taken as 39.74 cm2 and 1387.09 
cm2, respectively. The stress limitations of the members 
are imposed according to the provisions of AISC-LRFD 

[23]. The other constraint is the limitation of nodal 
displacements (these should not be more than 8.0 cm or 
3.15 in. in any direction). Also, the maximum slenderness 
ratio is limited to 300 for tension members, and it is recom-
mended to be 200 for compression members according to 
AISC-LRFD design code provisions [23].

Optimal, the mean and the mean weight of the first 
quarter of the best answers are provided in Table 2. 

Table 2 shows that the best designs are achieved with 
EVPS, EVPS-MDM and DE-MDM which are 21.032 m3. 
Fig. 4 illustrates the convergence histories using the men-
tioned algorithms with the effect of the MDM operator and 
without this effect for best optimal design and mean answer.

4.3 A 72-bar spatial truss structure with frequency 
constraints
The third problem is a 72-bar spatial truss that as illustrated 
in Fig. 5. This truss structure has 20 nodes and 48 degrees 
of freedom, and four non-structural masses of 2270.0 kg 
are attached to the nodes 1–4. All elements of the structure 
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Fig. 2  Convergence curves of the seven algorithms with the effect of the MDM operator and without this effect for best optimal design and average 
answers for the 3-bay 24-story frame.
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Fig. 3 Schematic of the 582-bar tower truss

have a modulus of elasticity E = 6.89×1010 N/m2, density 
ρ = 2770 kg/m3, and cross-sectional area A = 0.0025 m2. 
In this problem, the layout of the truss is considered 
unchanged during the optimization and only the size opti-
mization of this truss structure is investigated according 
to frequency constraints (ω1 = 4 Hz and ω3 6 Hz). Also, the 
minimum cross-sectional of all design variables is consid-
ered as 0.64510-4 m2.

Table 3 reports a comparison of the optimal results 
gained by the utilized algorithms for the effect of this 
operator and without this effect. It can be seen that the 
optimal weight is obtained by EVPS algorithm with the 
effect of the proposed operator. 

Fig. 6 shows the penalized weight convergence his-
tory curves obtained by the seven used algorithms with 
the effect of the MDM operator and without this effect for 
best optimal design and average answer of all runs of this 
problem.

Table 2 Results of seven algorithms with and without the effect of the MDM operator for the 582-bar tower truss

Element group Optimal sections
DE PSO GA VPS EVPS CBO HS

1 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 41.87088

2 159.3545 159.3545 143.8707 169.0319 159.3545 136.1288 123.2256

3 45.67733 45.67733 53.2257 45.67733 45.67733 53.2257 58.90311

4 109.6772 109.6772 115.4836 128.3868 109.6772 114.1933 114.1933

5 45.67733 45.67733 45.67733 47.35474 45.67733 45.67733 47.35474

6 39.74186 41.87088 39.74186 45.67733 39.74186 39.74186 41.87088

7 90.96756 90.96756 94.19336 75.48372 85.80628 90.96756 100.645

8 45.67733 45.67733 45.67733 49.35474 45.67733 45.67733 45.67733

9 39.74186 41.87088 39.74186 47.35474 39.74186 39.74186 39.74186

10 81.29016 85.80628 90.96756 84.51596 85.80628 84.51596 66.45148

11 45.67733 45.67733 45.67733 47.35474 45.67733 45.67733 49.35474

12 126.4514 128.3868 118.0643 114.1933 126.4514 128.3868 109.6772

13 140.6449 128.3868 128.3868 123.2256 140.6449 143.8707 167.7416

14 92.90304 92.90304 92.90304 100.645 92.90304 92.90304 92.90304

15 136.1288 143.8707 149.6771 143.8707 140.6449 143.8707 123.2256

16 58.90311 58.90311 58.90311 66.45148 58.90311 58.90311 58.90311

17 114.1933 118.0643 123.2256 136.1288 114.1933 114.1933 128.3868

18 45.67733 45.67733 45.67733 47.35474 45.67733 45.67733 49.35474

19 39.74186 45.67733 39.74186 56.70956 39.74186 39.74186 47.35474

20 75.48372 81.29016 81.29016 75.48372 75.48372 75.48372 100.645

21 45.67733 45.67733 45.67733 53.2257 45.67733 45.67733 49.35474

22 39.74186 39.74186 39.74186 41.87088 39.74186 39.74186 47.35474

23 41.87088 45.67733 47.35474 53.2257 41.87088 39.74186 39.74186

24 45.67733 45.67733 45.67733 45.67733 45.67733 45.67733 45.67733

25 39.74186 39.74186 39.74186 56.70956 39.74186 39.74186 49.35474

26 39.74186 41.87088 39.74186 66.45148 39.74186 41.87088 41.87088

27 45.67733 47.35474 45.67733 47.35474 45.67733 45.67733 45.67733
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Element group Optimal cross sections using MDM operator
DE PSO GA VPS EVPS CBO HS

28 39.74186 39.74186 39.74186 53.2257 39.74186 39.74186 49.35474

29 39.74186 39.74186 39.74186 74.1934 39.74186 39.74186 57.09666

30 45.67733 45.67733 45.67733 49.35474 45.67733 45.67733 53.2257

31 39.74186 47.35474 39.74186 58.90311 39.74186 39.74186 41.87088

32 45.67733 47.35474 45.67733 62.64504 45.67733 45.67733 45.67733

Best weight (m3) 21.03382 21.20483 21.22301 22.57956 21.03264 21.20394 22.16075

Worst weight (m3) 21.44113 22.08113 21.36968 24.12907 21.19636 21.69758 22.88688

Mean weight (m3) 21.22183 21.55488 21.21097 23.2212 21.08794 21.48144 22.43518
Mean weight of the first quar-
ter of the best answers (m3) 21.07914 21.30911 21.1322 22.84546 21.03296 21.34984 22.21064

Element group Optimal cross sections using MDM operator
DE PSO GA VPS EVPS CBO HS

1 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

2 159.3545 159.3545 136.1288 128.3868 159.3545 136.1288 159.3545

3 45.67733 45.67733 53.2257 58.90311 45.67733 53.2257 45.6773

4 109.6772 109.6772 115.4836 115.4836 109.6772 114.1933 118.0643

5 45.67733 45.67733 45.67733 45.67733 45.67733 45.67733 45.6773

6 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

7 85.80628 85.80628 94.19336 90.96756 85.80628 90.96756 94.1934

8 45.67733 45.67733 45.67733 47.35474 45.67733 45.67733 45.6773

9 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

10 85.80628 81.29016 90.96756 84.51596 85.80628 84.51596 90.9676

11 45.67733 45.67733 45.67733 45.67733 45.67733 45.67733 45.6773

12 126.4514 126.4514 118.0643 128.3868 126.4514 128.3868 128.3868

13 140.6449 140.6449 136.1288 140.6449 140.6449 140.6449 128.3868

14 92.90304 92.90304 92.90304 92.90304 92.90304 92.90304 75.4837

15 140.6449 140.6449 146.4513 143.8707 140.6449 143.8707 118.0643

16 58.90311 58.90311 58.90311 58.90311 58.90311 58.90311 100.645

17 114.1933 114.1933 118.0643 115.4836 114.1933 115.4836 123.2256

18 45.67733 45.67733 45.67733 45.67733 45.67733 45.67733 45.6773

19 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

20 75.48372 75.48372 81.29016 81.29016 75.48372 75.48372 84.516

21 45.67733 45.67733 45.67733 45.67733 45.67733 45.67733 45.6773

22 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

23 41.87088 45.67733 47.35474 45.67733 41.87088 45.67733 45.6773

24 45.67733 45.67733 45.67733 47.35474 45.67733 45.67733 45.6773

25 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

26 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

27 45.67733 45.67733 45.67733 45.67733 45.67733 45.67733 45.6773

28 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

29 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

30 45.67733 45.67733 45.67733 45.67733 45.67733 45.67733 45.6773

31 39.74186 39.74186 39.74186 39.74186 39.74186 39.74186 39.7419

32 45.67733 45.67733 45.67733 45.67733 45.67733 45.67733 45.6773

Best weight (m3) 21.03264 21.03289 21.204 21.4155 21.03264 21.19361 21.599

Worst weight (m3) 26.87214 21.34015 21.97769 23.53377 21.19361 21.38257 23.58114

Mean weight (m3) 21.38674 21.17073 21.25325 21.6641 21.05411 21.21835 21.7845
Mean weight of the first quar-
ter of the best answers (m3) 21.03452 21.06625 21.0653 21.5781 21.03264 21.19418 21.6417
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Table 3  Results of seven algorithms with and without the effect of the MDM operator a for the 72-bar spatial truss

Element group Optimal design cross sections (cm2)

DE PSO GA VPS EVPS CBO HS

1 3.48171 3.66118 4.74713 3.30382 3.50739 3.52946 4.05312

2 7.98971 7.96971 7.52118 7.61671 8.02602 7.96004 7.96456

3 0.645 0.645142 0.645 0.765293 0.645 0.645 0.645

4 0.645 0.647933 0.645 0.735822 0.645 0.645 0.645

5 7.80517 8.01323 9.64392 7.41648 8.02012 8.23747 8.52025

6 7.88914 8.05452 8.32191 8.1082 7.91804 7.96806 7.98543

7 0.645 0.645012 0.645 0.657749 0.645 0.645 0.645

8 0.645 0.645 0.645 0.688567 0.645 0.645 0.645

9 12.95618 13.28061 10.64944 13.07056 12.93505 12.90876 11.4775

10 8.066 8.06162 7.97908 8.30767 8.08651 7.98602 8.42243

11 0.645 0.645804 0.645 0.689852 0.645 0.645 0.645

12 0.645 0.647075 0.645 0.669355 0.645 0.645 0.645

13 17.24166 16.56303 17.42695 17.76954 17.01553 16.809 17.66908

14 8.09083 7.94918 8.2568 8.03206 8.00434 8.12052 7.69537

15 0.645 0.645 0.645 0.697603 0.645 0.645 0.645

16 0.645 0.645884 0.645 0.709157 0.645 0.645 0.645

Best weight (kg) 326.8461 326.918 328.8411 328.5089 326.836 326.8382 327.4943

Worst weight (kg) 327.2173 327.7539 343.1666 332.8895 327.1547 327.2083 331.1311

Mean weight (kg) 326.9467 327.1117 332.8074 330.1385 326.9469 326.9932 328.9874

Mean weight of the first quarter
 of the best answers (kg) 326.8668 326.8995 329.629 328.8586 326.8399 326.8838 328.1162

Element group Optimal design cross sections (cm2) using MDM operator

DE PSO GA VPS EVPS CBO HS

1 3.36539 3.46408 3.52378 3.96725 3.51423 3.47224 3.39257

2 7.9879 7.98384 7.5751 8.02878 8.0201 7.91655 7.56433

3 0.645 0.645 0.645 0.645 0.645 0.645 0.64517

4 0.645 0.645 0.645 0.645729 0.645 0.645 0.645007

5 8.03408 7.96783 8.26757 7.44775 8.23507 7.85295 7.92135

6 7.97055 8.00214 7.9479 8.08984 7.92286 7.96018 8.40782

7 0.645 0.645004 0.645 0.645 0.645 0.645 0.645

8 0.645 0.645 0.645 0.645 0.645 0.645 0.645011

9 12.70564 12.94365 11.99745 14.92544 12.68772 12.84103 12.69244

10 8.03294 8.1152 8.38802 7.91379 8.02236 8.10305 8.15031

11 0.645 0.645001 0.645 0.645326 0.645 0.645002 0.645051

12 0.645 0.645 0.645 0.645 0.645 0.645 0.645038

13 17.3718 17.10232 17.75176 15.6739 17.04146 17.31419 17.47851

14 8.04145 7.93454 8.16132 8.00375 8.06917 8.05503 7.95521

15 0.645 0.645 0.645 0.645754 0.645 0.645 0.645068

16 0.645 0.645 0.645 0.645 0.645 0.645 0.645

Best weight (kg) 326.8426 326.8351 327.2173 327.7539 326.831 326.8322 327.1657

Worst weight (kg) 327.1956 327.4619 339.7943 331.8207 327.012 327.1118 330.124

Mean weight (kg) 326.909 327.094 331.9036 329.4437 326.865 326.9341 328.889

Mean weight of the first quarter
 of the best answers (kg) 326.8505 326.8551 329.103 328.3882 326.8367 326.8617 327.959
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Fig. 4 Convergence curves of the seven algorithms with and without the effect of the MDM operator for the best optimal design and average answer 
for the 582-bar tower truss

(a) (b)

(c) (d)

(e) (f)

(g)
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Fig. 5  Schematic of the 72-bar spatial truss.

5 Discussion
As mentioned in section 4, the number of independent 
runs, population size and the number of iterations are 
assumed to be large enough, so that we can expect suitable 
values for all algorithms and problems. However accord-
ing to the tables and figures the following results can be 
obtained:

The optimum designs for all the problems are improved 
using the effect of the MDM operator. Also, mean weight 
and mean weight of the first quarter of the best answers are 
enhanced.

The quantity of the effect of the MDM operator is dif-
ferent for each problem and algorithms. The quality of 
the optimum design of each algorithm is one of the most 
important factors.

The best optimum result of all algorithm with the effect 
of this operator is almost near to the best-achieved answer. 
In other words, the difference between all optimum results 
with the effect of the MDM operator, have not great val-
ues. In Figs. 7, 8 and 9, the weight difference of each best, 
mean and mean of the first the first quarter of the best 
answers relative to the case without the effect of MDM 
operator are presented for all 3 problems and all utilized 
algorithms. Figure 10 is similar to Figs. 7, 8 and 9, with a 
different that in this figure the population size and itera-
tion number are considered as 30 and 500, respectively. 

It can be observed that when the population size and iter-
ation number have lower values, the effect of the MDM 
operator becomes more tangible.

These figures show the efficiency of the MDM operator 
for the best, mean and mean weight of the first quarter of 
the best answers for all the considered methods. These fig-
ures illustrate that all results are improved. Also, the results 
show that this operator improved the behavior of all the 
algorithms for all three problems. In another word, accord-
ing to figures and tables, this operator causes to reach more 
reliable answers for all algorithms and problems.

All problems and algorithms were performed in 30 inde-
pendent runs and the number of populations and iterations 
were taken 60 and 1000, respectively. Thus, with respect 
to these cases, each algorithm is expected to provide a 
very satisfactory answer. Therefore, the mean weight, 
mean weight of the first quarter of the best answers and 
the worst answers were presented for better comparison. 
Some of the results, with and without the MDM operator, 
were not significantly different, which can be attributed 
to the suitable performances of the algorithm for a spe-
cific problem and also the correct tuning of the algorithm’s 
parameters. When an algorithm presents a suitable answer, 
it is clear that the performance of the MDM operator will 
not very tangible. When an algorithm does not present a 
suitable answer for a specific problem the effect of using 
the operator will more apparent. The operator’s impact is 
quite obvious for the following problems:

• PSO, GA, VPS and CBO algorithms in the first 
problem.

• VPS and HS algorithms in the second problem.
• GA and VPS in the last problem.

6 Conclusions
In this study, the MDM operator is used to improve the 
behavior of seven algorithms consisting of DE, PSO, GA, 
VPS, EVPS, CBO and HS algorithms. The MDM operator 
does not cause any change in the main steps of the meta-
heuristic algorithms and controls the population disper-
sion and enhances the searchability of the algorithms and 
for the most of the problems, this operator improves the 
speed of convergence. The results show the efficiency of 
this operator for three optimization problems consisting of 
two trusses and one frame structures. All of the considered 
problems are well-known problems in structural optimiza-
tion literature. Almost all of the results are for the best opti-
mal design, mean weight and mean weight of the first quar-
ter of the best answers are improved in comparison to the 
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Fig. 6 Convergence curves of the seven algorithms with and without the effect of the MDM operator for the best optimal design and average answer 
for the 72-bar spatial truss
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Fig. 7 Comparison of the results according to weight differences for the first problem.

Fig. 8 Comparison of the results according to weight difference for second problem.

Fig. 9 Comparison of the results according to weight difference for last problem.

Fig. 10 Comparison of the results according to weight differences for 3rd example with lower population size and iteration.
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results of the algorithms without the effect of this operator. 
Another achievement of this operator, the results show that 
this operator reduces the dependency of the algorithms to 
their parameter tuning and the types of the problems.  In 
each iteration, the population within the pre-defined range 
must be certain. This value (Eq. (1)) will ascend in each 
iteration, so with the increases in iterations, the population 
(for each variable) within this range will increase. Thus, 
the balance between exploration and exploitation will be 
established. In fact, this balance will be improved by con-
trolling the population within the pre-defined range. 

Finally, the authors recommend the use of this operator 
for other metaheuristic algorithms and for other types of 
optimization problems.
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