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Abstract

We focus on the effect of site parameters, also called site proxies, on the variation of the amplification factor. This latter, named 

Fourier Amplification Factor (FAF) is defined as the ratio of the Fourier transform of the seismic motion at surface and at bedrock. For 

this study, the wave propagation theory is used limited to 1D linear viscoelastic domain. At this effect, a set of FAF, is established for a 

set of 858 real profiles. From there, the site parameters are also derived, it is necessary to mention that the FAF can be computed in 

independent manner of seismic signals which it is applicable only on linear domain.

In Nuclear Power Industry application, the FAF is mostly used and can be approximated by limited number of site proxies. As the usual 

code practice implies a lower number of site proxies (generally 1, sometimes 2) as UBC97 or EC8, a sensitivity analysis is conducted 

to identify the "best performing" site parameters. The results show that by far, using the six site proxies lead to a better prediction 

of FAF. However if we have to use one single site parameter, results show that the best one is the overall resonance frequency (f0). 

In the case when we intend to use two site parameters built from the average shear wave velocity over the upper 30 m (Vs30) and 

the resonance frequency (f0) which  are preferred and give an important variance reduction superior than 61%. In the result, a new 

formula has been established.
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1 Introduction
Seismic site effect is perhaps one of the most studied phe-
nomena during the last decades. Trifunac [1] states that 
"Investigations of the effects of local site conditions on the 
characteristics of strong earthquake ground motion are prob-
ably as old or even older than the discipline of Earthquake 
Engineering itself". Since the earlier works such as: the 
pointing work of Thomson [2] and Haskell [3], many works 
and papers have been published to describe the site effect. 
The most common approach used to assess site effect is to 
compare a seismic parameter (acceleration, velocity, etc.) 
obtained at free surface and at bedrock. For instance, pio-
neer work used the peak ground acceleration (PGA) as seis-
mic parameter. The amplification factor is hence defined as 
the ratio of PGA at free surface and at bedrock. 

However, it is admitted that the seismic action could 
not be captured by one scalar value, in addition to the peak 

value of the seismic motion, its frequency content could 
have great influence on site effect [4, 5]. In this study, the 
site effect is assessed through the Fourier transform of the 
seismic motion which is mostly used in Nuclear Power 
Industry (see for instance: EPRI [6]; The US Nuclear 
Regulatory Commission (USNRC) [7]; Ktenidou and 
Abrahamson [8]; Bard et al. [9]), in contrary to civil engi-
neering application which is based on the response spec-
tra (e. g: UBC97; EC8;…) [10, 11]. In a separate work of 
Boudghene Stambouli et al. [12], the response spectra has 
been used to assess the site effect. 

Many authors were interested in the evaluation of Fourier 
amplification ratio, for example the work of Andrews [13] 
in reference site approach which developed generalized 
inversion using Fourier spectra of observed motions where 
they use geometric spreading to evaluate source and site 
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terms simultaneously. The goal of this latter is to allow 
having an arbitrary frequency dependence and the site 
response terms are taken as relative to the network aver-
age [13] or relative to a single pre-determined "reference" 
site, which the site term is unity (e.g., Boatwright et al. 
[14]; Hartzell [15]). Another authors, like Sokolov [16] 
and Sokolov et al. [17] derive locally the attenuation func-
tions Fourier amplitude spectra to specific sedimentary 
basin. And for almost all recent ground-motion predic-
tion equations (GMPEs) developing empirical prediction 
equations for Fourier spectra on a particular duration esti-
mated of ground motion using random vibration theory 
application for seismic ground motion recorded in Europe 
(RESORCE-2012) (see for instance: Bora et al. [18–20]).

In this paper, the amplification factor is defined as the 
difference or the ratio of the Fourier transform of the seis-
mic motion between free surface and bedrock using wave 
propagation theory limited to linear domain which is inde-
pendent to the seismic loading. For this context, it is nec-
essary to mention that, the application of 1D linear visco-
elastic are limited to low seismicity areas which, the peak 
ground acceleration (PGA) in the bedrock do not exceed 
0.2 g (see for instance: O'Connell [21]). And more other 
authors are demonstrating this precise point, like Trifunac 
and Todorovska [22] which deduced that the 1D linear 
site response is satisfactory for the peak ground velocity 
(PGV) less than 30 gal (corresponding to PGA around to 
0.2 g) and also for more recent study is approved in a real 
case application for 1980 El-Asnam earthquake (see for 
instance: Cherid et al. [23]).

This amplification is named hereafter Fourier Ampli-
fication Factor (FAF).

Nowadays, many codes like SHAKE (Schnabel [24]), 
EERA (Bardet et al. [25]) or DEEPSOIL (Hashash et al. [26])  
provide the FAF in term of a transfer function in the lin-
ear and non-linear domain. The user of this software intro-
duces the mechanical and geometrical properties of the soil 
layer together with the seismic excitation at the basement. 
Although these codes allow the assessment of FAF, it is 
desirable to have a practical tool that gives an idea on how 
the soil properties shape the form of the FAF, which is mostly 
used in Nuclear power industry application. The main idea 
is to derive FAF from simple to use site parameters. From 
where do we derive these site parameters? This paper uses 
site parameters (called also site proxies) from the soil prop-
erties (both mechanical and geometrical).

Thus, this paper addresses the influence of these site 
proxies on the variation of FAF. 

For this purpose a total of 858 real soil profiles are con-
sidered(as using by Boudghene Stambouli et al. [12]) , 
and their linear visco-elastic response to vertically inci-
dent S waves is computed for any real input waveforms 
spanning a wide range of frequency contents. The soil pro-
file that belongs to this serie is named Real Profile (REP). 
For each site, FAF is derived from 200 values of frequency 
equally spaced between 0.01 Hz and 50 Hz on a loga-
rithmic axis and at the resonant frequency. It is import-
ant to note that the bedrock velocity for the 858 soil pro-
files is not the same and sometimes reaches the value of 
2 km/s. In order to have a uniform bedrock velocity we 
have established a second series of soil profile. Soil pro-
file that belongs to this serie is named Truncated Profile 
(TRP). In order to measure the effect of site proxies on 
FAF, a neural network called Generalized regression neu-
ral network (GRNN) has been used. The huge quantity 
of information has been used to feed the neural network. 
Through this strategy we will measure the influence of 
each site parameters on the variation of FAF. Finally, the 
Fourier amplification factor corresponding to resonance 
frequency for any sites has been established using simple 
site proxies describing by Vs30 and f0 in input.

2 Derivation of amplification factors FAF
2.1 Overall procedure
The goal of this section is to describe the procedure to 
obtain a set of FAF for all soil profiles. Basically, for a 
particular soil profile, the FAF is computed as the ratio 
between acceleration on soil surface and outcropping ref-
erence rock in Fourier domain. However in 1D linear vis-
co-elastic analysis, the FAF can be computed as the mod-
ule of the transfer function without prior information on 
time history acceleration (see for instance: Kramer [27]). 
Thus:

FAF f abs T f� � � � �� � , (1)

where T( f ) is the corresponding transfer function for a soil 
profile using 1D linear visco-elastic analysis and abs(*) is 
the absolute value operator.

In this study, we consider that the soil is composed of 
(n) horizontally layered soils deposit resting on substra-
tum and subjected to vertically shear waves (Fig. 1).

Each layer (m) is fully known by its shear modulus (Gm), 
thickness (hm), mass density (ρm) and damping ratio (ξm). 
The soil profile is subjected to a vertically shear wave 
which causes horizontal deformation governed by the fol-
lowing equation [2, 7]:
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The damping ratio is defined as follow:
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which the quality factor Qm is described by (Aki and 
Richards [28], Fukushima et al. [29], Boudghene Stambouli 
et al. [12]):

Q Vm m= /10 , (4)

hence

�m
mV

�
5

. (5)

For a particular point in layer (m), the solution of the 
wave equation could be obtained [27]:

u z f A e e B e em m m
i ft ik z

m
i ft ik zm m m m

,

* *

� � � �� � � � � � �� �2 2� � . (6)

The transfer function could be obtained as follow:

T f u z f u z fn n� � � �� � �� �� �1 1 1 1
0 0, / , . (7)

The FAF could be determined by using Eqs. (1)–(7). 
Although popular codes like DEEPSOIL [26] and 
EERA [25] provide transfer function, we developed our 
own code since the FAF will be calculated for hundred soil 
profiles. This code has been successfully checked against 
DEEPSOIL and EERA. For instance considering a single 
layer with a shear wave velocity of 200 m/s and thickness 
of 30 m resting on bedrock with shear velocity of 800 m/s. 

2.2 Soil profiles and determination of site parameters
2.2.1 Description of used soil profile 
In this study we will consider a database composed of 
nP soil profiles. Each soil profile is fully described by it 
mechanical and geometrical properties (Fig. 1). A total of 
858 real soil columns are considered about (600 Japanese 
KiK-net sites, more than 200 sites from the USA [12], and 
22 European sites measured during the NERIES project 
(Di Giulio et al. [30]).

Obviously the shear wave velocity at the substratum 
will not be the same for all soil profiles. This velocity 
could reach high values and will be somehow in contradic-
tion with regulation code which consider that the highest 
value of this velocity could not exceed a common value of 
800 m/s. For this purpose we will have two databases (a) the 
first one is composed of the initial soil profile and will be 
labeled Real profile (REP) (b) the second one is composed 
of Truncated profile (TRP) which is characterized by a 
common shear wave velocity at the substratum. How do 
we establish the TRP database from the REP database? 
Let consider a soil profile that belongs to the REP data-
base. Consider for instance that this soil profile consists of 
three layers resting on a bedrock: Layer 1 (V1 = 200 m/s, 
h1 = 5 m), Layer 2 (V2 = 600 m/s, h2 = 10 m/s), Layer 3 
(V3 = 800 m/s, h3 = 15 m) and Vbedrock = 1200 m/s, so the 
truncated soil profile will be composed of only two layers 
resting on a bedrock: Layer 1, (V1 = 200 m/s, h1 = 5 m), 
Layer 2 (V2 = 600 m/s, h2 = 10 m) and Vbedrock = 800 m/s. 

2.2.2 Determination of site parameters 
Each soil profile (such as: REP or TRP) could be described 
by a set of simple parameters called hereafter "site param-
eters". This set of parameters has been fully described by 
Boudghene Stambouli et al. [12]. They are a total of 6: 
a total depth until bedrock (Depth), the average shear 
velocity (Vsm) over that Depth (subscript sm stands for shear 
wave velocity mean value), average shear wave velocity of 
the upper 30 m (Vs30), the shear wave velocity of the bed-
rock (Vbedrock), the ratio between shear wave velocity of the 
bedrock and shear wave velocity at the surface (Cv) and the 
fundamental frequency of soil profile ( f0). It is important 
to note that a TRP is characterized by only five parameters 
since the shear wave velocity of the bedrock is constant and 
equal to 800 m/s. The number of site parameters for TRP is 
R = 5 and for REP R = 6.

A set of nP = 858 soil profiles corresponding to real sites 
was considered in this work. The distribution of site param-
eters could be found in Boudghene Stambouli et al. [12].

 

 
Fig. 1 General description of a horizontally layered soil deposit
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3 Resulting set of FAF: main statistical characteristics 
3.1 General background
The FAF (Eq. (1)) has been calculated for soil profile that 
belongs to either REP or TRP database. They may be writ-
ten as FAF(Pk,θ, fi), where :

Pk (k = 1,…,nP) is introduced to identify the soil profile. 
Note that nP = 858.
θ = 1 for soil that are labeled 'REP' and θ = 2 for soil that 

are labeled 'TRP'.
fi is the ith frequency (i = 1,…, 200). Actually FAF is 

systematically computed for 200 values, equally spaced 
between 0.01 Hz and 50 Hz on a logarithmic frequency 
axis. For instance FAF(P20, 2, f20) stands for the FAF 
obtained at f20 for the truncated soil profile P20. As we have 
nP FAF we will derive a mean value and the variability of 
the nP FAF. Hence we have the:

• Average of FAF over all profiles, noted FAF(θ, fi) 
which it is computed from Fourier amplification 
FAF(Pk,θ, fi) for all profiles:

log , log , , .FAF f
n

FAF P fi
p

k i
k

np

� �� �� � � � �� ��
�

�
�

�
�1
1

 (8)

• Initial variability is the standard deviation of the site 
Fourier amplification factor over all profiles:

� � � �, log , , log , .f
n

FAF P f FAF fi
p

k i i
k

np
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�

�
�

�
�1

2

1

 (9)

• Maximum initial variability, defined as the maxi-
mum over frequencies of initial variability

� � � �
max

max ,� � � � ��� ��fi . (10)

• Overall initial variability, defined as the average 
over all frequencies of the initial variability σ(θ, fi):

� � � �m
f

i
i

n

n
f

f
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�
�1
1

, . (11)

Where  is the number of frequencies used, i.e., 200.

3.2 Variability of FAF
We have computed nP FAF for the REP and TRP, 
FAF(Pk,θ, fi), FAF(θ, fi) and σ(θ, fi). Fig. 2(a) exhibits the 
variation of the nP FAF(Pk, 1, fi) (continuous line) and 
FAF(1, fi) (dot line). Fig. 2(b) exhibits the variation of the 
FAF(Pk, 2, fi) (continuous line) and FAF(2, fi) (dot line). 
Careful examination of Fig. 2 shows that:

The peak frequency (i.e., the frequency with maximum 
amplification) covers a broad range, from 7 Hz to about 
10–12 Hz.

The corresponding peak value of FAF ranges from less 
than 1.5 up to 15. 

On the other hand we have measured the corresponding 
"initial variability" (Table 1). We found that it reaches its 
maximum at high frequency.

Fig. 2 Average FAF(Pk,θ, fi) for all soil profiles, together with their 
average FAF(θ, fi) (red line) for REP (top), and TRP (bottom)

Table 1 Initial variability values for the Fourier amplification factors 
for the REP and TRP profile sets

Initial variability θ = 1 θ = 2

σ(θ,f = 0.015 Hz) 0.0002 0.0001

σ(θ,f = 0.04 Hz) 0.0012 0.0007

σ(θ,f = 0.01 Hz) 0.0073 0.0041

σ(θ,f = 0.15 Hz) 0.0167 0.0088

σ(θ,f = 0.2 Hz) 0.0284 0.0138

σ(θ,f = 0.35 Hz) 0.0454 0.0317

σ(θ,f = 0.5 Hz) 0.0597 0.0537

σ(θ,f = 1 Hz) 0.109 0.1039

σ(θ,f = 5 Hz) 0.2045 0.1614

σ(θ,f = 10 Hz) 0.2203 0.1628

σ(θ,f = 15 Hz) 0.2349 0.1685

σ(θ,f = 20 Hz) 0.2575 0.1886

σ(θ,f = 30 Hz) 0.2862 0.2205

σ(θ,f = 40 Hz) 0.3334 0.2697

σ(θ,f = 50 Hz) 0.3827 0.323
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The database in terms of FAF, ie FAF(Pk,θ, fi), has been 
constituted for REP and TRP soil profiles. Note that as fi is 
not generally equal to f0 then we have constituted the data-
base in terms of FAF(Pk,θ, f0).

The main issue now is to understand how the site param-
eters shape the value of FAF to different value of fre-
quency and for the fundamental soil frequency. To reach 
this goal, we have used a newly neural proposed network 
approach called Generalized Regression Neural Network 
(GRNN). Next section is dedicated to a short description 
of this GRNN approach and how we will implement it.

4 Short description of the neural network used
4.1 Description of Generalized Regression Neural 
Network (GRNN)
In 1991, Specht proposed a new version of neural net-
work named generalized regression neural network 
(GRNN) [31]. GRNN can construct a good approxima-
tion of any continuous function which is approximated 
by a linear combination of well-chosen Gaussian func-
tions. The GRNN is a variation of radial basis neural net-
works (RBF) (see for instance: Kim et al. [32]), It is based 
on kernel regression networks where it has been derived 
from statistics independently in the first by Nadaraya [33] 
and Watson [34] using mathematical foundation given by 
Parzen on kernel density estimation  (see for instance: 
Parzen [35]). One of the powerful of this method is in 
the training phase which we have only the width of the 
Gaussian to adjust in contrary of Multi-Layer Perceptron 
(MLP) which is used a procedure as back propagation net-
works (see for instance: Benahmed et al. [36]).

The topology or the architecture of GRNN consist on 
4 layer (see for instance: Fig. 3), it is described as: input, 
pattern, summation and output layer.

• The input layer consists of the values of the site 
parameters taken (xk) (in this study are 6 (k = 6) for 
real profiles (REP) and are 5 (k = 5) for truncated 
profiles (TRP)).

• The pattern layer is the processing unit which is 
composed of neurons, each of these neurons pos-
sesses an activation function described by the 
Gaussian (exp(–b2(Dt)

2)).In this layer the weight is 
computed by the Euclidian distance (Dt) between 
the input (site parameters taking (xk)) and the train-
ing set (IWt,k) generally adjusted by bias (b) (see for 
instance: Wasserman [37]). The result of this layer is 
described by Eq. (12):

w et
Dist bt� �� �*

.

2

 (12)

With: Dist IW x IW xt
k

R

t k k� � � �� �
�
�
1

2

,

The number of neurons in this layer is equal to numbers 
of profiles submitted to the learning phase.

• The third layer is the summation layer consisting of 
two neurons corresponding to two types of summa-
tion S and D.
- S summation neuron does the matrix multiplica-
tion between the matrix weight y and the output 
of pattern layer (w), the following equation can be 
expressed such as: S = y' * w.
- y the matrix weight between pattern and sum-
mation layer which is determined automatically in 
training phase,
- ' indicating the transpose of the matrix weight, w is 
the vector output of pattern layer, the symbol * indi-
cate the matrix multiplication.
- D summation neurons perform the sum of the result 

come from pattern layer D w
t

Q

t�
�
�

1

.

• The output or the exit layer consists to perform the 
division of S by D (see for instance: Specht [32]; Jang 
et al. [41]), the equation can be described such as:

result � �

��
y w

wtt

n
*

1

. (13)

- n: is the number of neurones in pattern layers.
- xk: the kth component of the input x vector of dimen-
sion R, for which the output is seeked. For our case 
this vector contains the 6 site parameters defined in 
the section above (R = 6 for REP, or R =5 for TRP). 
Thus for soil that belongs to REP.

X x x x x x x

Depth V V C f V

T T

sm s v bedrock
T

� � � � �
� � �

1 2 3 4 5 6

30 0

 (14)

Fig. 3 General architecture of a neural network in the GRNN approach
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Note that for soil that belong to TRP, the last input 
x6 = Vbedrock is not included

yt is the weight of the connection between the tth 
neuron of the pattern layer (= tth learning site) and the 
S-summation neuron.

xtk the learning vector between the tth neuron of the hid-
den layer and the entry vector of the K line, corresponding 
to the value of the kth site parameter for the learning site t, 

b the bias between input and pattern layer which it is 
function on Gaussian width. 

n is the number of vectors submitted to the learning.
R is the size of the input vector which is the number of 

site parameters to be used as an input. 

4.2 Use of the implementation
As we have two set of soil profile namely REP and TRP, 
the implementation will be done separately. For each case, 
the initial set of data to feed the neural network is con-
stituted by a subset of a combination of the site param-
eters (6 for the REP, and 5 for TRP) on one hand, and 
on the other hand the corresponding amplification factors 
FAF(Pk,θ, fi) or FAF(Pk,θ, f0). It is obvious that we can have 
many combinations in terms of the number and type of site 
parameters. For instance, if we consider only one param-
eter then for REP we will have six possibilities whereas 
for TRP we will have only five. Let consider the case of 
two parameters. For soil that belongs to REP, we thus have 
fifteen combinations (see for instance: Table 2). Again 
let consider a soil that belongs to REP, if we consider six 
parameters then we will have only one combination.

The output consists of the calculated FAF for a given 
frequency (200 values). There is one GRNN model for 
each frequency, i.e., 200 scalar models for FAF(Pk,θ, fi).  
This output FAF depends on the combination of site 
parameters and will be referred to as FAF(Pk,θ, fi, x1,…,xR),  
where 

x x x x x x

Depth V V C f V

T

sm s v bedrock
T

1 2 3 4 5 6

30 0

� �
� � �

 (15)

For instance let consider the soil profile P200 that belongs 
to the REP, then the computed FAF is FAF(P200, 1, fi). 
Consider that we will introduce two site parameters (let 
say x4 = Cv and x6 = Vbedrock). Then the initial set of data 
to feed the neural network is constituted of AF(P200, 1, fi) 
and the pair (Cv, Vbedrock). The output will be then  
FAF(P200,1, fi, x4, x6) which is considered as the FAF 
deduced from the GRNN model.

The neural networks are trained by dividing the data-
set into two datasets, a training set (50 %) and a testing 
set (50 %), the elements of which are randomly swapped 
from one set to another until obtaining the width of the 
Gaussian.

The performance of the GRNN model through various 
non-independent indicators such as the coefficient of cor-
relation, the standard deviation of residuals, the reduction 
of standard deviation and variance reduction with respect 
to the initial variability.

5 Results and discussion
5.1 Comparisons between FAF deduced from GRNN 
and analytical model
The goal is to test the ability of the GRNN models using 
the site parameters to predict the FAF. Globally we intend 
to compare FAF(Pk,θ, fi) and FAF(Pk,θ, fi, x1,…, xR).

To achieve the above mentioned comparison, we 
derived a large models of GRNN using all possibilities of 
combinations as input parameters, and we analyzed the 
evolution of the standard deviation of residuals (predicted 
value–actual values), also comparing it with the initial and 
the overall variability defined above.

Considering the various sets of site parameters as listed 
in Table 2 a total of 188 GRNN models was thus obtained 
(For all frequencies, and FAF which correspond to reso-
nance frequency) and their performance are analyzed in 
a systematic way through the values of residuals. Fig. 4 
gives the FAF predicted by a few GRNN models to the 
actual FAF (computed from the full 1D soil column) for 
two soil profiles (see Table 3). The first one corresponds to 

Table 2 List of all considered GRNN models

Set of 
Profiles

Set of 
explanatory 

variables (Site 
parameters)

Type of 
combination

Number of 
combination

Total 
number of 

combination

REP
6 : Depth, f0, 
Cv, Vsm, Vs30, 

Vbedrock

1-parameter 6

63

2-parameter 15

3-parameter 20

4-parameter 15

5-parameter 6

6-parameter 1

TRP 5 : Depth, f0, 
Cv, Vsm, Vs30

1-parameter 5

31

2-parameter 10

3-parameter 10

4-parameter 5

5-parameter 1
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one of the REP  sites, the other corresponds to TRP but not 
one of the TRP used in the training phase. Site parameters 
of both soil profiles are depicted in Tables 3 and 4. 

We show results for only few GRNN models since  we 
have an important number of combinations (for instance 
for REP we have 63 combinations) and our goal is to show 
that by increasing the number of site parameters the FAF 
predicted by GRNN model is close to the FAF deduced 
from analytical one. For the sake of explanation, we will 
hereafter define the corresponding function of curves in 
let say Fig. 4 (top): Target outputs = FAF(P100, 1, fi)

GRNN outputs (Inputs all parameters) =
FAF(P100, 1, fi, x1, x2, x3, x4, x5, x6)
GRNN outputs (Input Cv, Vs30, f0) =
Along the same explanation it is possible to define the 

corresponding function of the remaining curves.
Careful examination of Fig. 4 shows that values of the 

predicted FAF (i. e, derived from a GRNN model) are obvi-
ously different from the exact ones (Labeled Target out-
puts), especially when only a few numbers of site parame-
ters are considered. Note that using all site parameters will 
give values of the FAF close to the analytical FAF (see for 
instance Fig. 4 (top) for REP).

Obviously the differences between predicted and actual 
FAF vary from one soil profile to another. That is why it is 
important to analyze some statistic entity as the standard 
deviation of residuals, correlation coefficient, …, which the 
goal is to obtain a statistically meaningful insight in the 
relative performances of each of the considered site proxies 
which control  Fourier amplification factors (FAF).

We will not compare FAF(Pk,θ, f0) and FAF(Pk,θ, f0, 
x1,…, xR) since value of f0 will be surely close to one of the 
values of fi.

5.2 Analysis of statistic entity
The error between prediction and actual values obtained 
with analytical model has been estimated with the follow-
ing quantities where the goal is compared with the initial 
variabilities compiled by Eqs. (9–11) the new variabilities 
are defined by Eqs. (16–18).

• For each frequency and each GRNN model, a fre-
quency dependent error can be defined as follow:

� �

� �

, ,

log , , , log , ,

f x x
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i R
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k i R k
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1

1

1

1

�� � �
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� ffi� �� ��

�
�
�
2

. (16)

• The maximum error is computed as the maximum 
over all frequencies of this frequency dependent 
error term

� � � �
max

, max , ,x x f x xR i R1 1
�� � � �� ��� �� . (17)

Table 3 Velocity structure for the two example soil profiles SP1 (part of 
the REP set) and SP2 (outside TRP set).

Layer 
#

Soil profile 1 (SP1) Soil profile 2 (SP2)

Thickness
hi (m)

S-wave velocity 
Vi (m/s)

Thickness
hi (m)

S-wave velocity 
Vi (m/s)

1 5 431 2.5 252

2 Bedrock 2253 2.5 91

3 17.5 195

4 Bedrock 800

Table 4 Site parameters for the two example soil profiles SP1 (part of 
the REP set) and SP2 (outside TRP set).

Soil 
profile

Depth 
(m)

f0 
(Hz)

Vsm 
(m/s) Cv Vs30 

(m/s)
Vbedrock 
(m/s)

SP1 5  27.43 431 5.22 431 2253

SP2 22.5 2.30 177 8.79 177 800

(b)
Fig. 4 Comparison between the actual FAF from analytical model and 

the corresponding GRNN predictions for a) a soil profile corresponding 
to one of the 858 to the real profiles REP (top), and b) one of the soil 

profiles to truncated profiles TRP (bottom)

(a)
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• Finally, a total of overall error is defined as the aver-
age over all frequencies of the error term 

� � � �m R
f i

n

i Rx x
n

f x x
f

, , , , ,, ,
1

1

1

1
�� � � �� �

�
� . (18)

Examples of the frequency dependent error 
ε(θ, fi, x1,…, xR), called also Standard deviation of resid-
uals, are displayed in Fig. 5 (top) and Fig. 5 (bottom) for 
the real profiles (REP) and truncated profiles (TRP) respec-
tively, together with the initial standard deviation (Eq. (10)) 
of the FAF. In the former case, the few considered GRNN 
models are the same as those considered for Fig. 4, i.e., the 
pairs (Cv, f0) and (f0, Vs30) the triplet (Cv, f0, Vs30) and the "all 
parameter" case, adding the case of a one parameter GRNN. 

These plots exhibit several noticeable features:
f0 alone allows a significant explanation of the FAF 

(i.e., ε(θ, fi, x5) is significantly smaller than σ(θ, fi)) . When 
considering two site parameters, the pair ( f0, Vs30) is very 
good for truncated profiles and real profiles. But some-
times the pair ( f0, Cv) is slightly reliable at low to interme-
diate frequency range for real profiles REP. This result is 
logical because the contrast of velocity is very important 
for REP then for TRP.

The three parameter GRNN model is very powerful 
to predict actual FAF, while the "all parameter" GRNN 
model leads to the lowest value of ε(θ, fi, x1, x2, x3, x4, x5, x6)  
and which are also lower to the initial variability σ(θ, fi).
ε(θ, fi, x1,…, xR) are maximum in the intermediate to 

high frequency range for the real profiles REP and TRP.
The widely used parameter Vs30 is more efficient for 

TRP, i.e. when the reference bedrock velocity is the same 
for all profiles.

However, these results are only partial as only 6 out of 
the many possible models (for instance up to 63 for REP). 
Considering the large number of possible combinations 
(Table 3) we analyzed the respective performances of each 
proxy by evaluating, for a given number of site proxies, the 
average value of εm(θ, x1,…, xR) for all the proxy combina-
tions that involve a given proxy. For instance let consider 
the case of two site parameters. We want to assess the per-
formance of the site parameter x1. The combinations that 
involve this site parameters are {(x1, x2);...(x1, xR)}. Thus we 
have the following value of the {εm (θ, x1, x2);...εm (θ, x1, xR)}  
that will be reduced to one value which is the average  
φm(θ, x1, 2) defined by:
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This average value will be compared to the overall ini-
tial variability through the quantity RSm(θ, x1, 2) which is 
called the Reduction of standard deviation

RS x
x

m
m

m
�

� �
� �

, ,
, ,

1

1
2 1

2� � � �
� �
� �

. (20)

In the case where we intend to measure the performance 
of the site parameters x1 but with three site parameters 
then the average value will be φm(θ, x1,3). Thus Eq. (21) 
will be written:

RS x
x

m
m

m
�

� �
� �

, ,
, ,

1

1
3 1

3� � � �
� �
� �

. (21)

This approach could be generalized when we intend 
to measure the performance of a given site parameters 
xl; {l = 1,…,R} if we consider NPR site parameters (with 
{NPR = 2,…,R}). Thus the Reduction of standard devia-
tion will be:

RS x NPR
x NPR

m l
m l

m
�

� �
� �

, ,
, ,� � � �

� �
� �

1 . (22)

For the case of NPR = 1, the Reduction of standard devi-
ation is written:

(b)
Fig. 5 Standard deviation of residuals of FAF predicted by GRNN 

compared to analytical model for a) REP (top) and b) TRP (bottom)

(a)
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Globally, if RSm(θ, xl, NPR) tends to zero then the site 
paramaters xl do not perform very well.

Another entity can be used, it defined as the variance 
reduction, the following equation can be expressed such as:

R x NPR
x NPR

m l
m l

m
var , ,

, ,
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2
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Fig. 6 displays the evolution of RSm(θ, xl, NPR) with NPR 
for a given site parameters xl. While it clearly decreases 
with an increasing number of explanatory site proxies, 
it also exhibits a significant scatter for a given number of 
explanatory site proxies: this indicates that some site prox-
ies perform better than other in controlling the FAF.

Let analyze the results obtained for the case of one site 
parameter i.e RSm(θ, xl, 1). Fig. 6 shows that there is one 
parameter which performs systematically better than the 
others to predict the FAF: The resonant frequency ( f0) 
that controls the actual Fourier amplification. The remain-
ing parameters perform almost similarly. To some extent 
the average shear wave velocity of the upper 30 m (Vs30) 
has a better performance for REP (Fig. 6 (top)), while  
the site parameter Depth is somehow better for TRP 
(Fig. 6 (bottom)). 

Consider now the case of two site parameters. Careful 
examination of Fig. 6 show that again the resonant fre-
quency ( f0) performs better than the other site parameters. 
However, for both REP and TRP it is clear that the other 
site parameters exhibit similar value of the Reduction 
Standard Deviation.

The question that arises here: what is the optimal 
choice? Careful examination of Table 5 indicates an error 
reasonable for the pair ( f0, Vs30). This results are very inter-
esting for REP and TRP (see Table 5) these cases that indi-
cate clearly the variance reduction is 61 % for REP and 

(b)
Fig. 6 Illustration of  reduction of the standard deviation of residuals 

between GRNN models and actual FAF with the number of site proxies 
considered model for a) REP (top) and b) TRP (bottom)

(a)

Table 5 Standard deviation of model residuals for various GRNN models implying the initial, actual frequency Fourier amplification factors (REP, 
TRP cases, last two columns) for various combinations of site parameters

Number of parameters Considered site parameters Standard deviation for real 
profiles(REP)

Standard deviation for truncated 
profiles (TRP)

All (6) for REP All(5) for TRP Depth + f0 + Vsm + Cv + Vs30 + Vbedrock 0.0828 0.0841

4(best quadruplet) Depth + f0 + Cv + Vs30 0.1083 0.0883

3 (best triplet) f0 + Cv + Vs30 0.1306 0.0993

2 (best pair) For TRP f0 + Cv 0.1775 0.1251

2 (convenient pair) f0 + Vs30 0.1740 0.1262

2 (best pair) for REP f0 + Vsm 0.1717 0.1321

1 Cv 0.2532 0.1955

1 (usual) Vs30 0.2181 0.2026

1 (best) f0 0.2137 0.1581

Overall Initial variability term σm(θ) 0.2788 0.2189
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67 % for TRP but that indicate 41 % for REP and 48 % for 
TRP when considering f0 directly as an input parameter 
(best parameters). The latter procedure is however simple, 
and allows to have less complex prediction formula.

It desirable also to derive a relationship between the 
FAF derived from the GRNN and some site proxies. As 
the FAF depends on the frequency, we will focus only on 
the resonant frequency. 

5.3 Variation of FAF at resonance frequency using 
GRNN
In this section, we will focus on the establishment of a rela-
tionship between the FAF at a resonance frequency and a 
number of site parameters through the GRNN. From an 
engineering point of view, TRP are more interesting than 
REP since for this latter the velocity at bedrock exceeds 
largely 800 m/s which is the most accepted value. For this 
purpose the relationship between FAF and site parameters 
will be established only for TRP. However, we can easily 
establish this relationship for REP. Regarding the number 
of site parameters, the best situation is to establish a rela-
tionship between FAF and all site parameters because this 
situation will give a good prediction of the FAF (see for 
instance Fig. 4 and Fig. 6). However from an engineering 
point of view this situation is not desirable. Along this idea 
it is more suitable to use one or at least two site parameters. 

Which site parameters have to be used? The best 
approach to choose the site parameters is to compute the 
overall error of the FAF (see Eq. (19)). Note that this over-
all error does not depends on the frequency since this latter 
is equal to f0.

Table 6 provides values for different cases. Evidently the 
case of all site parameters (6 for REP and 5 for TRP) leads 
to the lowest value of the standard deviation. Alternatively 
the highest values of the standard deviation are obtained 
when we introduce only one site parameter. 

Note that for TRP the best site parameter is Vsm, while 
for REP Cv is the best one. In the case of two site param-
eters, results show that for TRP the best pair is ( f0, Vsm) 
while for REP the best pair is (Depth, Cv). These results 
show that for Cv is predominant for REP and Vsm is pre-
dominant for TRP. Both site parameters are however very 
hard to obtain in real situation. The best convenient pair is 
( f0, Vs30) especially for TRP. 

On the other hand, this relationship has been estab-
lished for soil profile that has values of site parameters 
( f0, Vs30) within the distribution of site parameters (see for 
instance: Boudghene Stambouli et al. [12]).

With these assumptions the FAF will be written 
FAF( f0, Vs30). 

Through the GRNN method the following relationship 
has been established

Table 6 Standard deviation of model residuals for various GRNN models for Fourier amplification factor at resonance frequency (REP, TRP cases, 
last two columns) for various combinations of site parameters

Number of 
parameters Considered site parameter

Standard deviation for 
real profiles (REP) at 

FAF( f0)

Correlation 
Coefficient

(R²)

Standard deviation 
for truncated profiles 

(TRP) at FAF( f0)

Correlation 
Coefficient

(R²)

All (6) for REP  
All (5) for TRP Depth + f0 + Vsm + Cv + Vs30 + Vbedrock 0.0824 0.93 0.041 0.96

4 (best quadruplet) Depth + f0 + Cv + Vs30 0.0884 0.92 0.0454 0.95

3 (best triplet) f0 + Cv + Vs30 0.1072 0.87 0.0567 0.93

2 f0 + Cv 0.1509 0.72 0.1064 0.68

2 (convenient pair) f0 + Vs30 0.1686 0.65 0.0765 0.86

2 (best pair) For TRP f0 + Vsm 0.1888 0.51 0.0705 0.88

2 (best pair) for REP Depth + Cv 0.1357 0.78 0.0927 0.77

1 (best)for REP Cv 0.1641 0.66 0.1178 0.58

1 (usual) Vs30 0.2154 0.18 0.1032 0.71

1 f0 0.2060 0.33 0.1368 0.33

1 (best)for TRP Vsm 0.2137 0.22 0.0869 0.81

Overall Initial variability term 0.2187 0.1453
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where {IWt,1} and {IWt,2} are vectors of size nP consisting 
of the fundamental frequencies f0 and Vs30 values of the nP 

sample profiles, while {y} is the weight between the hid-
den and output layers.

The optimal b (bias) value is determined in training 
phase, and found to be equal to 9.25.

This equation should be used with caution with respect 
of soil parameters range (for more information see 
Boudghene Stambouli et al. [12]).

As indicated above, we have computed the Fourier 
amplification factor FAF( f0) for the GRNN model based 
the pair of site proxies ( f0, Vs30) which prove to be effi-
cient. Fig. 7 display the dependence of these 2 factors as 
a function of Vs30 and f0. For all cases, this dependence 
is considered within the 5 %–90 % fractile range of con-
sidered explanatory parameter: the [0.9, 22 Hz] interval 
is considered for f0 and for Vs30 with fracile 10 %, 50 %, 
75 % and 90 % corresponding at 200, 330 420 and 510 m/s 
respectively.

Fourier amplification factor is found to reach the highest 
values basically for soft soil with low shear wave velocity 
upper 30 m. But for soft soil when f0 increases the ampli-
fication decreases. This result is interesting, it correspond 
to a thin layer with low shear wave velocity overcome bed-
rock, situation that is quite frequent in practice. For stiff 
soil the amplification is less important and decreases with 
a lower degree sometimes.

6 Conclusions
In Nuclear power industry application, the Fourier Ampli-
fication Factor (FAF) is mostly used from this, the goal of 
this study is essentially to identify the key parameters con-
trolling Fourier Amplification Factor (FAF) using wave 
propagation theory and a neural network method called 

GRNN. First, we have derived a set of FAF in linear vis-
cous elastic domain for 858 real sites. The Fourier ampli-
fication factor were derived from the module of transfer 
function, both in terms of frequency dependent Fourier 
amplification factors FAF( f ), and of "summary" FAF( f0) 
which is correspondent to the amplification factors at reso-
nance frequency. Second, GRNN (Generalized Regression 
Neural Network) models were used to investigate the rela-
tionship between these amplification factors and several 
"usual" site proxies, i.e., Vs30, f0, sediment thickness, the 
maximum velocity contrast and bedrock velocity, the cor-
responding harmonic average sediment velocity. 

The 858 real site profile (named REP), exhibit a large 
site-to-site variability of the bedrock velocity. Thus we 
derived from the REP a new set of soil profile, named 
Truncated soil profile (TRP) for which we consider that 
the shear wave velocity at bedrock do not exceed 800 m/s. 
This assumption is in accordance with many regulation 
codes. Many GRNN models were considered in each case, 
with all possible combinations of site proxies, from one 
single proxy to all of them considered together, which 
allow comparing the respective performances of every 
proxy to explain (and predict) site Fourier amplification.

The results show that by far, using the six site proxies 
lead to a better prediction of FAF. However, from a prac-
tical view it is desirable to have only one or at least site 
proxies to use for the assessment of the FAF. The results 
show that the best performing single site parameter is 
the overall resonance frequency f0. This site parameters 
is easy to assess through, for instance, through the H/V 
method developed by Nakamura [38]. However one sin-
gle site parameter is not insufficient to predict the Fourier 
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amplification. Other more convenient parameters are pre-
ferred, among which the couple (Vs30, f0) which is shown to 
allow reducing the variance of residuals by at least 61 % 
for REP and 67 % for (TRP). This result is very useful for 
the application in Nuclear Power Industry.

In a code perspective, equation for Fourier amplifica-
tion factor corresponding at resonance frequency for any 
sites has been established.

The main result of this paper are very interesting for 
evaluation where proxies give the best result on Fourier 
amplification ratio and can be used  for low seismic-
ity areas respecting the use of the1D linear viscoelastic 
(i.e. for PGA inferior at 0.2 g) (see for instance: Trifunac 
and Todorovska [22] among others) which explains the 
limitation of the 1D linear visco-elastic.

However an important next step will be to consider for 
computing a new Fourier amplification factor using non-
linear site response method. Where the characteristics of 
different layers of each soil profile are different. However 
they use a degradation curve for each layer such a curve 
developed by Darendeli [39]. In this step the Fourier 
amplification factor become dependent on seismic signal 
in contrary to linear approach.
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