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Abstract

Adequate computational models are crucial for a reliable representation of the mechanical behaviour of structural elements and, 

therefore, numerous investigations are oriented towards the modelling of cracked structures. 

This paper studies the behaviour of transversely cracked beams of rectangular cross-sections with linearly-varying widths. The governing 

differential equations of bending are analytically solved for various beams with different boundary conditions. These simplified 

model’s solutions are further validated by the results from corresponding 3D finite models of the considered structures. Furthermore, 

strain and kinetic energy, as well as the work done by an external axial compressive force P are evaluated from the computed 

transverse displacement functions. These values allowed for estimations of the first eigenfrequency as well as the buckling load. These 

structural’s parameters were additionally evaluated by implementing dedicated polynomial functions for some cases considered.

The results from the simplified model have exhibited very good agreement with the results from more detailed 3D FE models for all 

performed analyses. The simplified model thus yields an adequate, as well as accurate, approach for the modelling of cracked beams 

with a linear variation of width in engineering situations, where cracks have to be considered during analysis.
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1 Introduction
The occurrence of degenerative effects in structures 
during the utilisation changes their mechanical response 
by severely decreasing the stiffness and potentially lead-
ing to their failure. In view of this, several studies con-
sidering the detection and identification of stiffness 
reductions in engineering structures were conducted.  
The approaches for structural damages detection and char-
acterization are often based on measured response meth-
ods since the occurrence of damage alters the structures' 
response data. However, the efficiency of these approaches 
does not depend only on the quality of measured informa-
tion but also on the reliabilities of computational models 
implemented in modelling of mechanical behaviour. 

The genuine approach in fracture mechanics is to model 
the crack as an elliptical hole with the semi-minor axis tend-
ing to zero (Craciun [1]). However, when studying cracked 

structures' response appropriate meshes of 2D or 3D finite 
elements that allow for a detailed discretisation of the crack 
and its surroundings represent a widely used alternative.

Although such thorough meshes offer the finest descrip-
tion of a general structure, as well as of the cracks and their 
surroundings, simplified models requiring fewer data are 
usually implemented in structural health monitoring tech-
niques. The "discrete spring" model presented by Okamura 
et al. [2] is the model that has been implemented in numer-
ous research studies. As a crack in a structural member 
alters the local compliance, each crack in this mathemati-
cal representation is modelled as a massless rotational lin-
ear spring of appropriate stiffness. The neighbouring non-
cracked parts of the beam to the left and to the right of the 
crack are modelled as elastic elements, connected by the 
spring for which the linear moment-rotation constitutive 
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law is adopted. The first definition for rotational spring stiff-
ness was given by Okamura et al. for a rectangular cross- 
section. Afterwards, other researchers presented additional 
definitions [3–8]. 

Due to its simplicity (the only crack's parameters requ-
ired are its location and the depth), this simplified computa-
tional representation has been intensively applied in vibra-
tion analysis of cracked beams (Bakhtiari-Nejad et al. [9]),  
new various approaches for inverse identification of cracks 
[10–11], as well as in experimental inverse identifications 
of a crack (Cao et al. [12]) or a concentrated damage (Greco 
and Pau [13]).

The research consideration focused towards finite ele-
ments solution after the pioneering works by Tharp [14] 
and Gounaris & Dimarogonas [15] for a beam element with 
a single transverse crack. Afterwards, several papers were 
devoted to Euler–Bernoulli beam's finite element having an 
arbitrary number of transverse cracks differing in the prin-
ciples of mechanics applied to obtain closed-form solutions 
of the genuine governing differential equation for trans-
verse displacements. The static transverse displacements 
and various forms of stiffness matrix were thus obtained by 
implementing the Dirac delta function either in regard to the 
rigidity (Biondi and Caddemi [16]) or flexibility (Palmeri 
and Cicirello [17]), sequential solutions of coupled differ-
ential equations (Skrinar [18]), as well as the virtual work 
principle (Skrinar and Pliberšek [19]). 

The majority of the research has been limited to ele-
ments with constant rectangular cross-sections. Skrinar and 
Imamović [20] presented a numerical study in which they 
studied bending of beams of various heights' variations along 
the length. In their investigation, they implemented a multi-
stepped multi-cracked beam finite element (Skrinar [21]) 
where the genuine continuous variation of height was mod-
elled by an adequate series of steps. This model offers ade-
quate, but approximate solutions for bending analyses only.

In this paper, the area of utilization of the simplified crack 
model is expanded by deriving at some closed-form solu-
tions for bending of beams with linearly-varying widths. 
Furthermore, additionally derived at model's polynomial 
displacement functions are implemented in the dynamic 
and buckling analysis.

2 Solutions of governing differential equations of bending
2.1 General solution 
The general governing differential equation of the elastic 
line for a slender beam subjected to bending in the plane 
of symmetry that relates transverse displacement v(x), the 

coordinate x, the geometrical and mechanical properties of 
the cross-section (flexural rigidity EI(x)), and the applied 
transverse load q(x), known also as Euler–Bernoulli equa-
tion is given as: 

d
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If the flexural rigidity EI(x) is not a constant value this 
relation yields a fourth-order ordinary differential-equa-
tion with non-constant coefficients.

When studying the beams with a linear variation of 
width the flexural rigidity also follows a linear distribu-
tion. The variation of flexural rigidity EI(x) within the 
beam is thus described as:

EI(x) = EIo + k · x , (2)

with
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where EIo and EIL represent flexural rigidities at the start 
and at the end of the beam, respectively. Although Eq. (3) 
can be introduced into Eq. (2) prior any further derivations 
this leads to logarithmic terms with negative arguments in 
the derived solutions causing numerical issues. However, 
these problems are completely avoided by introducing the 
coefficient k which further yields more abbreviate forms 
of the derived at expressions. Therefore, Eq. (1) obtains 
the form:
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The general solution of this differential equation is 
given in the following mathematical form:
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where C1, C2, C3 and C4 are constants of the integration 
obtained from boundary conditions, whilst the particular 
integral depends on the mathematical form of load q(x). 
It is instructive to note that this solution is not given in  
a form of simple polynomials as it is the case for the con-
stant flexural rigidity EI.



Skrinar
Period. Polytech. Civ. Eng., 63(2), pp. 423–431, 2019|425

For a frequent case when a uniform load q is distributed 
to the whole beam the particular integral obtains the fol-
lowing form:
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while for a linear distribution of the transverse load the 
particular integral already becomes significantly more 
complex.

2.2 Implementation of continuity conditions 
However, the crack, located arbitrarily within the beam 
(0 ≤ L1 ≤ L), separates the beam into two elastic parts, and 
the transverse displacements cannot be described by a sin-
gle function anymore. Therefore, two displacement func-
tions for the parts on the left (v1(x)) and right (v2(x)) side of 
the crack are required. These functions are obtained from 
two coupled differential equations that have to be solved 
simultaneously. Their solutions - functions (v1(x)) and 
(v2(x)) for the parts to the left and the right, respectively, 
contain eight unknown constants altogether:
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Four of them are determined from mechanical and kine-
matical continuity conditions at the crack-location (x = L1), 
where the presence of the crack causes a slope discontinu-
ity. These conditions are the equality of displacement, the 
condition for the discrete increase of rotations, the equal-
ity of bending moments, and the equality of shear forces.

Since the continuity conditions are the same regard-
less of the boundary conditions four out of eight unknown 
constants can be eliminated in advance. The introduction 
of Eqs. (7) and (8) and their derivatives into the continu-
ity conditions thus allow the coefficients of the second 
function to be determined. They are clearly presented in 
Appendix A, where EI1 denotes the flexural rigidity of the 
non-cracked cross-section at the crack location. The dis-
cussed approach can be also straightforwardly expanded 
to cover a situation with an arbitrary number of cracks. 
A generalisation of this process in which the number of 

unknowns is decreased by applying the continuity condi-
tions is in references known as Transfer matrix method, 
(first introduced by Pestel and Leckie [22]).

The remaining four coefficients of the first function are 
always determined from the actual boundary conditions 
of each considered example. With the solutions for the 
displacements of the beam being available, the bending 
moments and shear forces distributions within the beam 
can be calculated afterwards. The presented way allows 
the transverse displacements to be constructed in form of 
analytical solutions for some beams with simple boundary 
conditions and typical load situations.

2.3 Cantilever beam 
The coefficients for a cantilever beam clamped at the right 
end are presented in Appendix B. They were obtained 
from two mechanical conditions at the free end and two 
kinematical conditions at the clamped end.

2.4 Simply supported beam 
When considering a simply supported beam a kinematical 
plus a mechanical condition are available at each beam's 
end and the corresponding coefficients can be found in 
Appendix C.

2.5 Propped cantilever
For the beam, clamped at the left end the corresponding 
coefficients obtained from a single mechanical and three 
kinematical boundary conditions are written in a partially 
mutually related form (see Appendix D).

2.6 Beam clamped at both ends 
Appendix E represents the coefficients C3 in C4 for the 
last type of the considered beams, where all the coeffi-
cients are obtained exclusively from kinematical bound-
ary conditions. The expressions for the coefficients C1 in 
C2 are identical as for the propped cantilever, Eqs. (D.1) 
and (D.2).

3 Eigenfrequency and buckling analyses implementing 
the energy method
For the situation where the breathing of the crack is not 
considered i.e. the crack remains open, an adequate esti-
mation of the first eigenfrequency can be established also 
by the Rayleigh energy method (also known as the energy 
method), Koloušek [23]. The "strain" energy (the poten-
tial energy stored as elastic deformation of the structure 
including crack) is approximated as:
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(9)

In Eq. (9) functions v1(x) and v2(x) are functions that rep-
resent the transverse displacements and must satisfy the 
most important kinematical boundary conditions, such as 
displacement and rotation. In the absence of an exact solu-
tion of the differential equation, approximate functions are 
applied, where static deflection functions represent a wide 
group of suitable functions since they automatically sat-
isfy the required kinematic boundary conditions. Despite 
this, these assumed functions are usually constructed from 
a dedicated polynomial solution, primarily due to ease of 
their integration. Among the results obtained from var-
ious assumed displacement functions, the smallest value 
yields an upper limit of the true fundamental frequency. 
Therefore, the already discussed transverse displacements 
function due to bending, Eqs. (7) and (8), allow for very 
straightforward implementation. 

To obtain the first eigenfrequency estimation the beam's 
kinetic energy is approximated as

 (10)

Afterwards, the first in-plane vibrations eigenfrequency 
estimate is obtained from the total mechanical energy con-
servation law:

Ustrain = Ukin . (11)

The results from these functions v(x) can be improved 
by evaluating new upgraded displacement functions due 
to a transverse load, given as q(x) = m(x) · ω2 · v(x).

Additionally, the same transverse displacements func-
tions can be further implemented to evaluate the work (i.e. 
"applied" energy) done on the system by an external axial 
compressive force P:
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Since the energy is not dissipated as heat the energy 
conservation law states that energy added to the column 
by the applied external forces is equal to the stored strain 
energy, yielding the relation:

Ustrain = Uapp , (13)

from which the estimate of the buckling load Pcrit can be 
evaluated. Strategies for the improvement of initial solu-
tions can be found in [24].

4 Numerical validations 
Four cracked basic beam-structures were analyzed in order 
to investigate the presented expressions and to verify the 
quality of the results. For all four structures that differed 
only in boundary conditions, the length L was 10 m and the 
Young modulus was 30 GPa with Poisson's ratio 0.3. The 
cross-section was a rectangle with height h = 0.2 m where 
the width b was linearly increasing from 0.1 m at the left-
end to 0.2 m at the right-end. All considered structures were 
loaded by a downward vertical uniform load q = 2000 N/m 
along the complete structure. A single transverse crack of 
the depth of 0.1 m was located at the mid-span to maximise 
its impact on the results for the majority of the examples, 
and the definition given by Okamura was selected. 

To obtain the first eigenfrequency and the buckling load 
estimations, basic polynomial functions were constructed con-
sidering general boundary conditions only. These functions 
were further introduced into Eqs. (9–13). Afterwards, these 
functions were upgraded accordingly to the specific problem.

The obtained results were further compared with 
the values from a commercial finite element program 
COSMOS/M where corresponding 3D finite models of the 
considered structures were established and analyzed. The 
computational model consisted of 48,000 3D solid finite 
elements with almost 75,000 nodal points. In each node, 
three degrees of freedom were taken into account – vertical 
and two horizontal displacements. The model's vertical and 
horizontal displacements were obtained in discrete points 
by solving more than 220,000 linear equations. Since this 
model allows for a realistic description of the crack those 
results further served as the reference values.

For all the considered structures the results for bending 
analyses are presented also for the non-cracked cases. By pre-
senting these results the impact of the crack to the magnitude, 
as well as, the quality of the results become more apparent. 

4.1 Cantilever, clamped at the right end 
After inserting the corresponding numerical values the fol-
lowing transverse displacements' functions were obtained:
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(15)

The transverse displacement at the free end was 
–0.7275 m, whilst the rotation's value was 0.1019 rad.

The obtained functions allowed for the computation of 
bending moments' and shear forces' functions which were 
identical to those obtained from the basic static equilib-
rium analysis. Further, discrete vertical reaction force 
and bending moment at the clamped-end were evaluated. 
These two reaction values perfectly matched the exact val-
ues which can be simply verified by elementary equilib-
rium conditions.

Finally, the structure was also analysed by implement-
ing the COSMOS/M commercial finite element program. 
This model produced the free end's vertical displacement 
of –0.7272 m. This value confirms excellent result from 
the simplified model which has produced a value with  
a rather small discrepancy (0.032 %). However, it is inter-
esting to note that the discrepancy at the crack location is 
slightly higher (0.142 %). Nevertheless, the general match-
ing of the results between the two models is actually very 
good for all the point along the cantilever, Fig. 1, where 
continuous displacements' functions (in black) from the 
GDE's solutions visually completely coincide with the 
discrete nodal values from the 3D model (in black). The 
over-all matching of the results between the two models 
was very good also for the non-cracked case (presented in 
grey), Fig.1, where the free end's discrepancy was 0.069 %.

The example was additionally analysed with differ-
ent ratios EI0/EIL between 0.1 and 10, utilising the already 
presented models where the values for the free end's dis-
placement were scrutinised. It emerged from the results that

Fig. 1 Comparison of transverse displacements from both applied 
models

the discrepancies between the models increased simultane-
ously with the increase of cantilever's width i.e. with the 
transformation of a beam-type structure into a plate-type 
structure. Furthermore, it became clear that the increase of 
the width at the clamped side (where it has more impact on 
structure's stiffness and free end's displacement) influences 
the discrepancies more than the increase of the width at the 
free end. Nevertheless, the error was still smaller than 1 % 
which again confirmed the quality of the results.

To obtain the first eigenfrequency estimation from  
Eqs. (9–11) polynomial functions were generated by imple- 
menting basic general boundary conditions. This resulted 
in the value ω1 = 8.529 rad/s for the first eigenfrequency 
estimation. On the other hand, the 3D FE model produced 
the value of 8.495 rad/s again confirming good qual-
ity result from the simplified model as the discrepancy 
between the two models' results is 0.408 %.

Further, the buckling load Pcrit was approximated from 
Eqs. (12) and (13) by implementing the same basic polyno-
mial functions. The buckling load estimation was 81818.4 N. 
Alternatively, the 3D FE model produced the value of 
76724.8 N showing that the simplified model produced the 
results with a rather high discrepancy of 6.64 %.

Afterwards, the upgrade of basic polynomial functions 
was performed separately for first eigenfrequency estima-
tion as well as for buckling. The newly derived at upgraded 
polynomial approximations for the first eigenfrequency 
estimation produced the value ω1 = 8.493 rad/s, which 
has a rather low discrepancy (–0.022 %) against the 3D 
model value. However, it should be noted that the obtained 
value underestimates the value from the 3D model. This 
is a consequence of the computational model and not of 
the method, as the approximate method is being applied to  
a simplified model.

The upgrade of initial polynomial functions was exe-
cuted also for the buckling problem. A new set of trans-
verse displacements functions were derived at by realising 
that in buckling the transverse displacements are a sole 
function of axial compressive force Pcrit . Therefore, the 
bending moments' functions were expressed as functions 
of applied axial force and transverse displacements. The 
considered problem's specific relation was Mz(x) = Pcrit × 
(v(0) – v(x). With these two new functions for the rotations 
the "strain" energy, Eq. (9), as well as the "applied" energy, 
Eq. (12), were re-evaluated. Finally, Eq. (13) yielded the 
improved value for the buckling load of Pcrit = 76856.7 N 
with a small discrepancy of 0.172 %.
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Fig. 2 Comparison of transverse displacements from both applied 
models

Fig. 3 Comparison of transverse displacements from both applied 
models

4.2 Simply supported beam
Comparison of transverse displacements along the whole 
structure from GDE's solutions (continuous function), as 
well as from 3D FE model (discrete nodal values) is given 
in Fig. 2 (in black). It emerges from the figure that the 
results from both models appear almost as a unique solu-
tion. A similar situation is evident also for the non-cracked 
case (presented in grey).

Some representative example's values are given in 
Table 1, wherefrom it can be observed that the displace-
ment discrepancy at the crack location is now slightly 
higher (0.343 %), but still very low (the discrepancy at 
the same location for the non-cracked case is 0.0245 %). 

The basic polynomial displacement functions pro-
duced a value of the first eigenfrequency with a discrep-
ancy of 0.885 %, while the upgraded functions yielded 
even lower discrepancy (–0.099 %). The same basic poly-
nomial displacement functions were also implemented in 
the buckling load analysis already producing an accept-
able discrepancy (0.991 %). However, the agreement of the 
results was further improved with the upgrading of the ini-
tial polynomial functions when the buckling force error 
decreased to 0.356 %.

Table 1 Comparison of some values for the simply supported beam

Parameter model value

v1(5 m) GDEs –0.1013 m

v1(5 m) 3D FE model –0.1009 m

ω1 basic polynomials 18.6983 rad/s

ω1 polynomials upgrade 18.5159 rad/s 

ω1 3D FE model 18.5343 rad/s

Pcrit basic polynomials 259238 N

Pcrit polynomials upgrade 257607 N

Pcrit 3D FE model 256693 N

Table 2 Comparison of some values for the propped cantilever

Parameter model value

v1(5 m) GDEs -0.04272 m

v1(5 m) 3D FE model -0.04262 m

VA GDEs 12332.3 N

VA 3D FE model 12329.7 N

MA GDEs 23322.6 Nm

MA 3D FE model 23290.9 Nm

VB GDEs 7667.7 N

VB 3D FE model 7672.0 N 

ω1 basic polynomials 29.0211 rad/s

ω1 polynomials upgrade 27.9477 rad/s

ω1 3D FE model 27.9544 rad/s

Pcrit basic polynomials 588154.4 N

Pcrit polynomials upgrade 537350.8 N

Pcrit 3D FE model 530869.9 N

4.3 Propped cantilever 
Transverse displacements along the whole structure 

obtained from GDE's solutions are presented in Fig. 3 as 
continuous functions, together with the discrete nodal 
values from the 3D FE model (discrete dots). The results 
from both models exhibit excellent agreement, either for 
the cracked case (in black) as well as for the non-cracked 
case (in grey). 

Table 2 presents some representative example's values. 
The discrepancy of transverse displacement at the crack 
location is 0.231 % (and –0.0299 % for the non-cracked 
case). Since this beam was statically indeterminate the 
reactions could not be evaluated from the simple static 
analysis anymore. However, comparison of the values 
from the derivatives of transverse displacements functions 
shows that the discrepancies against the 3D model's values 
are moderate (up to 0.1360 %).

The discrepancy (–0.024 %) was even lower when the 
value of the first eigenfrequency was obtained from the 
upgraded polynomials. However, the buckling load analy-
sis produced slightly higher discrepancy (–1.221 %).
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4.4 Clamped-clamped beam
Also for this type where the displacement functions' coef-
ficients have the more complex form the results from both 
models exhibit overall first-rate agreement, Fig. 4. This is 
valid for the cracked case (in black) and also for the non-
cracked case (in grey).

Some representative example's values are summarized in 
Table 3. The discrepancy of transverse displacement at the 
crack location is again very low (0.1704 %). Very small dis-
crepancies were also observed for the evaluated reactions 
which could not be evaluated from the simple static analy-
sis. The maximal discrepancy when comparing the values 
from the derivatives of transverse displacements functions 
against the 3D model's values appeared for the bending 
moment at the left support (0.1154 %), while the discrepan-
cies for the other reactions were considerably smaller.

Fig. 4 Comparison of transverse displacements from both applied 
models

Table 3 Comparisons of some values for the clamped-clampedbeam

Parameter model value

v1(5 m) GDEs -0.01985 m

v1(5 m) 3D FE model -0.01981 m

VA GDEs 9508.8 N

VA 3D FE model 9506.8 N

MA GDEs 14709.5 Nm 

MA 3D FE model 14692.6 Nm

VB GDEs 10491.2 N

VB 3D FE model 10492.9 Nm

MB GDEs 19621.2 Nm

MB 3D FE model 19610.9 Nm

ω1 basic polynomials 43.5453 rad/s

ω1 polynomials upgrade 42.5610 rad/s

ω1 3D FE model 42.5604 rad/s

Pcrit basic polynomials 1082479 N

Pcrit polynomials upgrade 1030595 N

Pcrit 3D FE model 1044774 N

The value of the first eigenfrequency was evaluated 
almost without any discrepancy (0.0015 %).

On the other hand, the discrepancy was evidently higher 
(–1.357 %) when the buckling load analysis was com-
pleted. Nevertheless, the discrepancy evidently decreased 
(0.710 %) when basic polynomial functions were replaced 
by dedicated polynomial functions.

5 Conclusions
Simplified computational model of cracked beams was 
implemented for evaluating transverse displacements and 
inner forces due to the static bending, first eigenfrequency as 
well as buckling load for several transversely-cracked slender 
beams with a linear variation of width. Transverse displace-
ments' functions due to transverse load were firstly evalu-
ated from solutions of coupled differential equations, whilst 
the implementation of well-known relationships from the 
Euler–Bernoulli beam theory further allowed for the bend-
ing-moments' and shear-forces' functions to be computed. 

The results obtained with the discussed approach 
were afterwards compared to the results obtained from 
the pure numerical approach implementing 3D finite ele-
ments within the framework of the finite element method. 
Despite the clear differences in the mathematical form 
and computational efforts between both approaches con-
sidered, the considered examples showed that the applica-
tion of the simplified model produces adequately match-
ing results as no major differences are noticeable in GDEs 
transverse displacements solutions against 3D FE solu-
tions. When considering the transverse displacements the 
maximum discrepancy of 0.343 % from all considered 
examples appeared for the simply supported beam which 
represents excellent matching of the results. However, it 
should be noted that the matching of the results is greatly 
influenced by the value of rotational spring stiffness, for 
which many definitions given by many authors are avail-
able. Furthermore, even the same definition can be differ-
ently successful in providing a good agreement for dif-
ferent crack's depth and/or element's boundary conditions.

However, although bending displacements functions 
could be implemented in first eigenfrequency analysis, 
basic polynomial solutions were used instead. These func-
tions were afterwards upgraded, providing good match-
ing of the results. This indirectly associates that by apply-
ing appropriate transverse displacement functions even 
higher eigenfrequencies could be evaluated. It can be thus 
concluded that the model is suitable also for free vibration 
analyses with non-breathing crack.
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Basic polynomial solutions and their upgraded versions 
were used also in buckling load analyses, providing good 
results from the engineering point of view.

Nevertheless, it is reasonable to expect that by imple-
menting more dedicated computational methods for eigen-
frequency analysis as well as for buckling analysis this 
would also reflect in better results from the simplified model.

The Okamura's computational model has thus proved 
itself to be usable for beams with linear variations of 
widths for various types of analyses. Furthermore, the 
transverse bending displacement solutions obtained 
from differential equations are given in analytical form 

for various combinations of boundary conditions, which 
allows for straightforward further analysis of bending 
moments and shear forces. The proposed solutions thus 
yield an adequate, as well as accurate enough approach 
for the modelling of cracked beam structures in engineer-
ing situations, where cracks have to be considered during 
analysis.
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