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Abstract

Meta-models or surrogate models are convenient tools for reliability assessment of problems with time-consuming numerical models. 

Recently, an adaptive method called AK-MCS has been widely used for reliability analysis by combining Mont-Carlo simulation method 

and Kriging surrogate model. The AK-MCS method usually uses constant regression as a Kriging trend. However, other regression 

trends may have better performance for some problems. So, a method is proposed by combining multiple Kriging meta-models with 

various trends. The proposed method is based on the maximum entropy of predictions to select training samples.  Using multiple 

Kriging models can reduce the sensitivity to the regression trend. So, the propped method can have better performance for different 

problems. The proposed method is applied to some examples to show its efficiency.
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1 Introduction
The basic aim of reliability analysis methods is to esti-
mate the failure probability by taking into account dif-
ferent uncertainties in the properties of real engineering 
structures. The failure probability can be defined by the 
following integral [1]

Pf = P(G(X) ≤ 0) = ∫G(X) ≤ 0fX(x)dx , (1)

where X = [X1, …, Xn] denotes the vector of random vari-
ables, G(X) indicates the performance function, and fX is 
the joint probability density function. Moreover, G(X) ≤ 0 
denotes the failure region, and G(X) = 0 is called the limit 
state surface (LSF). 

Reliability methods can be classified into two groups [2]: 
moment methods and simulation approaches. FORM and 
SORM methods are popular moment methods, which use 
the linear and quadratic approximation of the LSF, respec-
tively [3]. The main difficulty of moment methods is related 
to the calculation of the gradient for problems with non-dif-
ferentiable or highly nonlinear LSFs. On the other hand, 
simulation methods are powerful tools to approximate the 
failure probability for each arbitrary LSF [4]. The high 
computational effort is the main drawback of the simulation 

methods, especially for implicit LSFs with computation-
ally expensive models. For instances, reliability analysis 
of a nonlinear finite element model (FEM) by simulation 
method may require several days or months. To overcome 
this drawback, some variance reduction methods have been 
proposed such as importance sampling [5, 6] and subset 
simulation [7, 8]. In spite of these improvements, simula-
tion methods may require high computation cost for expen-
sive-to-evaluate problems. 

Usually, meta-models or surrogate models are used 
instead of expensive-to-evaluate functions to reduce the 
computational cost in simulation methods [9–11]. Kriging 
is a popular surrogate model, which has been used widely 
for different applications [12]. The main feature of the 
Kriging model is to provide the variance of predictions. 
Therefore, samples with high variance can be selected 
sequentially as training samples. Defining training sam-
ples with sequential manner is called adaptive sampling or 
active learning methods. The AK-MCS is a recently devel-
oped method that combines Active learning method with 
the Kriging model and Monte Carlo Simulation for reli-
ability analysis [13]. In the AK-MCS method, the constant 
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regression has been used as a trend of the Kriging model. 
However, other regression trends may be a good choice for 
some problems. So, Kriging models with various regres-
sion trends can be built. The proposed method in this paper 
is based on the maximum entropy of predictions with mul-
tiple Kriging models. Indeed, a new learning function is 
introduced to select training samples from the MC popula-
tion using the maximum entropy of predictions. 

This paper is organized as follows: Section 2 introduces 
the AK-MCS method. Section 3 presents the proposed 
method for combining multiple Kriging models. Three 
examples are presented in Section 4 to show the efficiency 
of the proposed entropy-based method. Section 5 is the 
conclusion.

2 Reliability analysis using AK-MCS model
2.1 Kriging model
Kriging meta-model approximates the function as a com-
bination of regression terms and departures as [12]

G(x) = f(x)Tβ + Z(x) , (2)

where β = [β1, …, βp]T indicates the vector of regression 
coefficients, f(x) = [ f1(x),…, fp(x)]T represents the basic 
functions, and Z(x) denotes a Gaussian process [14, 15]. To 
construct a Kriging model, training samples or design of 
experiments (DoE) [x1,…, xk] with xi =  n, and response 
values Y with Yi = G(xi)   should be defined. 

In the Kriging model, the mean and variance of predic-
tion by can be expressed as
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x x x
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where R denotes the correlation between training samples, 
and Fij = fj(xi), i = 1, …, k, j = 1, …, p shows the informa-
tion matrix. Moreover, u = FTR–1r0 – f(x0), σ2 is the vari-
ance of the process, and r0 denotes the correlation between 
the sample point x0 and training samples x1, …, xk. 

The coefficients of regression and the variance can be 
computed as [16]

β = (FTR–1F)–1FTR–1Y , (5)

σ2 11
= −( ) −( )−

k
Y F R Y FTββ ββ . (6)

In the current study, the implementation of the Kriging 
model in Matlab toolbox DACE [15] is used to construct 
Kriging models.

2.2 AK-MCS method
The AK-MCS [13] combines Monte Carlo simulation and 
adaptive Kriging model for reliability as follows:

1. Generate Monte Carlo population according to joint 
probability density function.

2. Define an initial design of experiments (DoE), and 
evaluate these points on the original performance 
function (G).

3. Construct a Kriging model using the training sam-
ples and corresponding response values.

4. Predict the MC population (S) by the Kriging model 
and then estimate Pf as

P
n
N

f
f

 =
MC

,  (7)

where nf is the number of samples with failed status (G(X) 
≤ 0), and NMC is the size of the MC population.

5. Identify the best training sample by minimizing the 
learning function as

U x x x( ) = ( ) ( )µ σ
G G 

/ .  (8)

This means that the sample with the minimum value 
of learning function is considered as the best training 
sample. 

6. Check the stopping criterion by

min U Sx x( )  ≥ ∀2  . (9)

7. If the stopping criterion is not satisfied, update the 
previous DoE with the best sample and call the orig-
inal performance function. Then, repeat stages 3 to 
7 until the stopping condition in Eq. (9) is satisfied.

8. Compute the coefficient of variation as

COV P
N PP

f

MC f
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



=
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.
.  (10)

9. If C.O.VPf > 0.05, more samples should be added to 
MC population. Then go back to stage 4.

10. End AK-MCS. 
According to Eqs. (3) and (4), the computation time for 

prediction of mean value and variance depends on the size 
of the MC population (NMC), the dimension of the prob-
lem (n), the number of regression coefficients (p) and size 
of DoE (k). Moreover, according to steps 9 and 10 of the 
AK-MCS algorithm, the required size of MC population 
(NMC) will be increased for problems with a very low prob-
ability of failure to satisfy the criterion of C.O.VPf > 0.05. 
Furthermore, the dimension of the problem (n) will be 
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increased in high dimensional problems. So for problems 
with a very low probability of failure and high dimensions, 
the computation cost will be increased.

The stopping criterion according to Eq. (9) is conserva-
tive [17]. So, in the present study, another stopping crite-
rion is used instead of Eq. (9) as [17]:

P P

P

f f

f
P f

 
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+ −
−

≤∈
0

,  (11)

where P f
+

 and P f
−

 indicates the upper and lower bounds 
of failure probabilities, respectively. Moreover, P f

0
 is fail-

ure probability using the mean values of predictions, and  
∈ =
P f

5 % indicates the acceptable threshold error. The 
mean failure probability and the bounds of failure proba-
bilities can be defined as
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The initial DoE has been defined by the random selec-
tion from the MC population in the AK-MCS method [13]. 
In the current study, the initial training samples are cre-
ated by Latin Hypercube Sampling method in the region 
between the upper and lower bounds of variables [18]. 

3 Entropy-based proposed method
In this section, a new method for reliability analysis of 
structures is presented based on the combination of multi-
ple Kriging models. As mentioned in section 1, the constant 
regression trend has been used in the AK-MCS method. 
Using other regression tends can reduce the number of eval-
uations on the original performance function. The basic aim 
of the current study is to combine multiple Kriging mod-
els, because using multiple Kriging models can reduce the 
sensitivity to the regression trend. In the proposed entro-
py-based method, the disagreement between multiple sur-
rogate models is used to define training samples. 

The prediction of the Kriging model follows a normal dis-
tribution as G� � �x
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where Φ(.) indicates the cumulative density function for 
the normal distribution. 

Reliability analysis can be considered as a classification 
problem, because the limit state surface separates the MC 
population into two groups of failed or safe. So, the label 
of samples (yi) can be assumed equal to 1 or 0 for sam-
ples located in the failure or safety region, respectively. The 
probability of classification using Kriging model θ can be 
rewritten for each sample x according to Eqs. (14) and (15) as
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where the value of yi varies between all possible labeling, 
and Pθ(y | x) is the probability of labeling y for a sample of 
x by the Kriging model θ.

If the number of Kriging models is equal to C, the aver-
age probability of classification using multiple Kriging 
models can be defined as 

P y
C

P yC i
C

i| | ,x x( ) = ( )
∈
∑1
θ

θ  (18)

where PC(yi | x) indicates the average probability that yi 
is the exact label for sample x. The entropy of probability 
distribution of PC can be defined as [19]

H(X) = –∑ yPC(yi | x)logPC(yi | x) . (19)

According to the maximum entropy principle, a sample 
with the largest value of entropy is the most informative 
sample [20]

xH
* = argmax – ∑ yPC(yi | x)logPC(yi | x) . (20)

So the above equation can be considered as the learning 
function for adaptive multiple Kriging methods.

In the current study, Kriging models are defined using 
different regression trends. The regression term of Kriging 
model can be defined in the form of f(x)Tβ. Hence, four 
regression trends can be expressed as 

Constant Regression (p = 1): 

f(x)Tβ = β0 (21)

Linear Regression (p = n + 1): 

f x( )Τ ββ = +
=∑β β

0 1 i ii

n x  (22)
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Quadratic Regression (p = 2n + 1):
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n
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where p is the number of terms in the regression trend, and 
n indicates the number of random variables (i.e., dimen-
sion of the problem). The coefficients βi can be computed 
using Eq. (5). The number of regression coefficients (βi) is 
equal to p. So, to compute β using Eq. (5), the size of DoE 
shall not be less than p.

Based on the proposed learning function and above 
multiple Kriging models, a method is presented for struc-
tural reliability analysis. Fig. 1 illustrates the flowchart of 
the proposed method. Differences of the proposed entro-
py-based method with the original AK-MCS method are 
shown with different colors. These differences can be sum-
marized as follows:

1) The number of Kriging models is defined according 
to the size of DoE and the number of random variables, 
whereas the number of Kriging models is equal to one in 
the AK-MCS method.

2) Kriging models are constructed with different regres-
sion trends. 

Fig. 1 Flowchart of the proposed method
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3) Multiple Kriging models provide multiple predictions 
for each sample, but only one prediction is required. So, the 
presented method in Ref. [21] is employed in the current 
study to use the results of multiple Kriging models. U(x) in 
Eq. (8) shows the reliability index of misclassification [13]. 
So, for each sample, a Kriging model with the maximum 
value of learning function can be considered as the most 
reliable local model. After the prediction of the response 
of all samples, the probability of failure can be computed 
using Eq. (7). If the number of Kriging models is equal 
to one, the prediction will be the same as the AK-MCS 
method with the corresponding regression trend.

4) It is important to remove inaccurate Kriging model 
from the set of Kriging models. So, the presented method 
in Ref. [21] is employed to filter out inaccurate Kriging 
models. According to the stopping criterion in Eq. (9), 
samples with U(x) < 2 doesn't provide exact predictions. 
Thus, an error measurement criterion for comparing the 
accuracy of Kriging models can be expressed as

E
N
Ni
U

MC

= ( )<x 2
,  (25)

where Ei indicates the prediction error of surrogate i, and 
NU(x)<2 indicates the number of samples with U(x) < 2. 
So, the average error of multiple surrogates (Ēms) can be 
defined as 

E
E

Nms
i

N
i

k

k

= =∑ 1 ,  (26)

where Nk denotes the number of Kriging meta-models. 
The relative error of surrogate i to the average error can 
be defined as

RE E
Ei
i

ms

= .  (27)

If REi becomes less than the predefined value of 1.2, 
the surrogate i maybe not exact enough. So, this surrogate 
model can be removed.

5) If the number of Kriging models is greater than one, 
Eq. (20) is used as the learning function to select the best 
point. In the case of using one Kriging model, the best 
point can be selected by Eq. (8). 

6) If the size of DoE is equal to the minimum required 
to construct the Kriging model by linear, quadratic or full 
quadratic regression trends, the corresponding Kriging 
model will be added to the set of surrogate models.

Table 1 Example 1- Random variables of  the cantilever tube

Variable Distribution Parameter 1* Parameter 2*

t (mm) Normal 5 0.1

d (mm) Normal 42 0.5

L1 (mm) Uniform 119.75 120.25

L2 (mm) Uniform 59.75 60.25

F1 (N) Normal 3000 300

F2 (N) Normal 3000 300

P (N) Gumbel 12,000 1200

T (N.mm) Normal 90,000 9000

Sy (MPa) Normal 220 22
* Parameters 1 and 2 are the lower and upper bounds for uniform distri-
bution, and the mean and standard deviation for normal and  Gumbel 
distributions.

4 Application examples
In this section, three analytical examples are presented 
to compare the proposed entropy-based method with the 
AK-MCS method. In the studied examples, Eq. (11) is 
considered as the stopping criterion, and the size of initial 
DoE is assumed to be equal to 12. The initial training sam-
ples are defined by LHS method.

In the examples, the relative error (ÎPf) is computed as 
follows 

∈ ( ) =
−

P

f f MC

f MC
f

P P

P
%

*
,

,

 100
, (28)

where P f  is the predicted failure probability, and Pf,MC is 
calculated by the original performance function for the 
same MC population.

The reduction of computational cost in problems 
with expensive-to-evaluate functions is compared using 
the number of calls to the performance function (Ncall). 
Therefore, the reduction in Ncall will decrease the time of 
calling the performance function. The studied examples 
have explicit performance function for comparison with 
benchmark results, so the time of calling the performance 
function is negligible. In real engineering problems with 
implicit performance function, the time of calling the 
performance function is considerable, so the reduction 
in the number of calls to the performance function is so 
important.  

4.1 Example 1: Cantilever tube problem
This example includes a cantilever tube [22, 23], as shown 
in Fig. 2. External forces F1, F2, and P, and torsion T are 
applied to the tube. The performance function is defined 
based on the yield strength Sy and the maximum stress σmax 
as follows 
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G = Sy – σmax , (29)

where σmax is the maximum stress of the tube given by

σ σ τmax x zx= +2 2
3 ,  (30)

where σx and τzx are the normal stress and torsional stress, 
respectively which can be calculated by

σ
θ θ

τx zx
P F F
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=
+ +

+ =1 1 2 2

2 2

sin sin
, ,  (31)

where A is the cross-sectional area, I is the moment of 
inertia, and M indicates the bending moment which can be 
respectively expressed by

A d d t
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where θ1 = 5̊ and θ2 = 10 ̊ are constants. The nine inde-
pendent random variables of the problem are presented in 
Table 1.

The obtained results including the number of evalua-
tions on the original performance function (Ncall), the failure 
probability (Pf), and the relative errors of failure probability 
(ÎPf) are provided in Table 2. The results show the signifi-
cant deprecating of Ncall by the proposed method. The error 
of prediction with the proposed method is negligible, and it 
is less than the acceptable threshold of ÎP̂f = 5 % in Eq. (11). 

Fig. 2 Cantilever tube

Table 2 Results for Example 1: Cantilever tube problem

Method Ncall Pf ÎPf (%)

MCS 3 × 106 1.780 × 10–4 -

AK-MCS 12 + 215 = 227 1.780 × 10–4 0

Proposed method 12 + 29 = 41 1.777 × 10–4 0.1685

(a) AK-MCS method

(b) Proposed method
Fig. 3 Convergence histories of failure probabilities for the cantilever 

tube problem

Fig. 4 10-bar truss  structure

Convergence histories with two methods are compared in 
Fig. 3. As can be seen, the proposed entropy-based method 
stops with less iteration. The shading area shows 95 % of 
confidence interval (CI) for prediction based on the upper 
and lower bounds of failure (P̂ f

+ and P̂ f
–) using Eq. (13). It is 

seen, the shading area is greater with the AK-MCS method. 
So, more iteration is needed to satisfy the stopping condi-
tion. It should be noted that the results are normalized to the 
exact prediction (i.e., Pf,MC in Eq. (28)).
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Table 3 Example 2- Random variables of the 10-bar truss  structure

Random 
variables

Ai L E P1 P2 P3

Mean 0.001 m2 1 m 100G Pa 80 kN 10 kN 10 kN

Coefficient  
of variation

0.05 0.05 0.05 0.05 0.05 0.05

Table 4 Results for Example 2: the 10-bar truss structure

Method Ncall Pf ÎPf (%)
MCS 104 0.0694 -

AK-MCS 12 + 807 = 819 0.0695 0.1441

Proposed method 12 + 209 = 221 0.0694 0

Table 5 Example 3- Random variables of  the 23-bar truss structure

Variable Distribution Mean Standard deviation

E1, E2, (Pa) Lognormal 2.1 × 1011 2.1 × 1010

A1(m2) Lognormal 2.0 × 10–3 2.0 × 10–4

A2(m2) Lognormal 1.0 × 10–3 1.0 × 10–4

P1, ..., P6 (N) Gumbel 5.0 × 104 7.5 × 103

Table 6 Results for Example 3: 23-bar truss

Method Ncall Pf ÎPf (%)
MCS 105 8.91 × 10–3 -

AK-MCS 12+241=253 8.91 × 10–3 0

Proposed method 12+135=147 8.91 × 10–3 0

4.2 Example 2: Ten bar truss structure
The second example is a ten-bar truss structure taken from 
[24], which is illustrated in Fig. 4. The length of horizontal 
and vertical bars is denoted as L. 

The section area and elastic modulus of bars are Ai(i = 
1, 2,…, 10) and E, respectively. Moreover, P1, P2 and P3 are 
the point loads. The fifteen random variables are indepen-
dent with normal distribution, and their mean value and 
coefficient of variation are given in Table 3.

The deflection of the truss is a function of random vari-
ables, and can be computed by a finite-element model. The 
vertical displacement of the node 3 needs to be less than 
0.0035 m. So, the performance function of the structure 
can be written as

G = 0.0035 – ∆y , (33)

where ∆y is the vertical displacement of node 3.
The results of AK-MCS and proposed methods are 

given in Table 4. It is seen that Ncall is 819 in the AK-MCS 
method, whereas it reduces to 221 by the proposed method. 
Fig. 5 compares convergence histories of the AK-MCS and 
proposed methods. As can be seen, the proposed entropy-

(a) AK-MCS method

(b) Proposed method
Fig. 5 Convergence histories of  failure probabilities for 10-bar truss 

problem

Fig. 6 Two-dimensional 23-bar truss

based method converges faster than the original method. 
Moreover, the difference between the upper and lower 
bounds of failure probabilities is greater with the AK-MCS 
method. So, more iteration is needed to satisfy the stopping 
condition. This means that Pf converges in less iteration by 
the proposed method.

4.3 Example 3: Two-dimensional 23-bar truss
The last example deals with a two-dimensional 23-bar 
truss [25] as shown in Fig. 6. It consists of ten independent 
random variables (E1, E2, A1, A2, P1, P2, P3, P4, P5, P6).

The distributional properties of these random variables 
are listed in Table 5. The performance function is defined 
based on the mid-span deflection as

G = 0.11 – V1 , (34)

where V1 denotes the vertical displacement of the mid-
span of the truss.
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(a) AK-MCS method

(b) Proposed method
Fig. 7 Convergence histories of failure probabilities for the 23-bar truss 

problem

The obtained results are summarized in Table 6. The 
results show the proposed method predicts the probabil-
ity of failure with Ncall of 147, whereas the required Ncall 
is equal to 253 with the AK-MCS method. Moreover, the 
error of prediction is equal to zero for both methods.

Comparing convergence histories of failure probability 
by the AK-MCS and proposed methods in Fig. 7 shows 
that the 95 % confident interval (CI) is narrower with the 
proposed method. So, the proposed method satisfies the 
stopping criterion (Eq. (11)) with less iteration.

5 Conclusions
An approach to combine multiple Kriging models has been 
proposed for reliability assessment of structures. The pre-
sented method is based on the maximum entropy of pre-
dictions which provided by multiple Kriging models. The 
efficiency of the proposed entropy-based method has been 
shown with three examples.

Although the proposed method can reduce the num-
ber of evaluations on the original performance function, 
it may require considerable computation cost for problems 
with a very low probability of failure and high dimension. 
So, the combination of the proposed method with variance 
reduction methods and dimension reduction approaches 
can be effective for such problems.
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