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Abstract

Bridges are among very important structures in engineering, due to their rather high cost, and this is why optimization of these 

structures is a challenging problem. In this paper, optimal design of steel-concrete composite I-girder bridges is performed. Three 

recently developed meta-heuristic algorithms consisting of Colliding Bodies Optimization (CBO), Enhanced Colliding Bodies Optimization 

(ECBO) and Vibration Particle System (VPS) are utilized for the first time in the optimal design of steel-concrete I-girder bridges. Both 

continuous and discrete variables are utilized in the process of optimization. Performance and the convergence histories of these 

algorithms are compared. In order to have a suitable comparison between these algorithms with previous algorithms, PSO is used 

and results are displayed. This paper focuses on cost optimization the bridges. Furthermore constraints include all of requirements 

of the code of practice for design. The comparative study has shown that VPS algorithm has better performance than CBO and ECBO. 

However, all three algorithms act in a way that the final optimized design does not need the addition of the longitudinal stiffener.
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1 Introduction
This paper presents, optimal design of a steel-concrete 
composite I-girder bridge using three newly developed 
meta-heuristic algorithms, colliding bodies optimization 
(CBO) [1], enhance colliding bodies optimization (ECBO) 
[2] and vibrating partial systems (VPS) [3]. Since bridges 
are among very important structures in engineering and 
their cost is rather high, the optimization of these struc-
tures is an important issue. 

In this paper the optimization of steel-concrete com-
posite I-girder bridges is also performed. The span of this 
bridge exceeds 6m and it is a part of a highway and can 
be placed on or under highway [4]. Composite bridges 
are lighter, and easier to construct compared to concrete 
bridges [5]. In these bridges, steel girders are placed under 
a concrete slab and in order to make sure that steel and con-
crete act together under the applied loading and deflection, 
some studs are utilized. These studs are welded from one 
edge on the upper flange of the girder and other edges are 
fixed in the concrete slab. A steel-concrete structure com-
bines the performance of steel and concrete and this is done 
by means of shear connectors. Thevendran et al. [6] has 
presented the advantages of the composite structures as: 

1.	 Saving in weight of the steel between 30 % and 50 %;
2.	On a static ultimate load basis, an increase in the 

overload capacity compared to the non-composite 
beam; 

3.	 For a given load, a reduction in construction depth 
with consequent reduction in embankment costs for 
bridges or storey height in buildings. 

In a composite floor system, the steel section is used 
primarily to resist tension and shear, while the concrete 
slab acts as a compression element [7]. Multi-action 
between steel and concrete is very important to increase 
the moment resistance. If the composite floor is placed on 
steel girder, it will have no connector to resist against lon-
gitudinal shear force, and the concrete floor cannot carry 
bending moment. Yang and Su [8] studied the effect of 
fatigue on the composite bridges. Kim et al. [9] investi-
gated the flexural behavior and corresponding load rating 
of the simply-supported steel I-girder bridges subjected to 
military truck loads. Barth and Wu [10] worked on field 
testing and analytical studies to predict natural frequen-
cies of steel stringer bridges. Razaqpur et al. [11] have 
studied the effects of concrete nonlinearity and cracking 
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and steel yielding on live load distribution in composite 
concrete slab steel beam bridges. Jagtap and Shahezad [12] 
presented a comparative study of the pre-stressed concrete 
girder and steel plate girder for roadway over bridge. 

Due to the limitations on material and high cost, struc-
tural optimization is important. This is why research-
ers have developed some methods for reducing the cost 
of the structures while maintaining strength and dura-
bility. Therefore, a topic as optimization evolved with its 
main purpose being the reduction of the costs and saving 
the safety requirements of the structures. Long et al. [13]  
developed a non-linear programming method based on 
optimization of cable-stayed bridges with composite super-
structures and proposed a cost objective function which 
contained the costs of concrete, structural steel, reinforce-
ments, cables and formwork. Kaveh and Massoudi [14] 
presented an ant colony system model for cost optimi-
zation of composite floor systems based on the load and 
resistance factor design (LRFD) specification of the AISC. 
Kaveh [15] performed the optimization of the compos-
ite floor systems by using the enhanced colliding bodies 
optimization (ECBO). Poitras et al. [16] utilized the par-
ticle swarm optimization (PSO) for design of compos-
ite and non-composite steel floor systems. Hendawi and  
Frangopol [17] studied on a practical and efficient reli-
ability-based optimization approach for the design of both 
unstiffened and stiffened composite hybrid plate girders 
for highway bridges. Luo et al. [18] presented a reliabili-
ty-based optimization design method of adhesive bonded 
steel–concrete composite beams with both probabilistic 
and non-probabilistic uncertainties. Kaveh et al. [19] opti-
mized the cost of bridge superstructures by using a mod-
ified version of CBO, denoted by MCBO and compared 
the PSO, CBO and MCBO. Pedro et al. [20] presented 
an efficient two-stage optimization approach for design 
of the steel-concrete composite I-girder bridges. Senouci 
and Al-Ansari [21] studied on a genetic algorithm model 
for the cost optimization of composite beams based on the 
load and resistance factor design (LRFD) specifications of 
the AISC. Khatri et al. [22] studied on comparison of the 
cost of different bridge designs using conventional mild  
steel Fe 410, high tensile steel Fe 590 and a combina-
tion of the two grades of steel. Kravanja et al. [23] pre-
sented a comparative study on optimal design of com-
posite steel and concrete floor structures based on the 
performed multi-parametric mixed-integer non-linear 
programming (MINLP) approach, and Eurocode spec-
ifications. De Munck et al. [24] demonstrated how the 

need for minimization of both cost and mass can be tack-
led by a multi-objective optimization. García-Segura and  
Yepes [25] presented a multi-objective optimization of 
post-tensioned concrete road bridges in terms of cost, CO2 
emissions, and overall safety factor. Hasan et al. [26] sum-
marized numerous researches on straight steel and steel–
concrete composite plate girders with emphasis on experi-
mental, theoretical, and numerical work. Linzell, et al. [27] 
studied the historical perspective on horizontally curved 
I-girder bridge design in the United States.

Su et al. [28] optimized the deck construction staging 
for multiple-span continuous steel girder bridges. In their 
study, the cracking of a typical multiple-span continuous 
bridge was investigated, and the construction staging was 
evaluated, and an optimized practice for deck construc-
tion staging was provided.

Optimization methods can be categorized into two gen-
eral types: gradient-based and meta-heuristic approaches. 
Gradient-based methods consider a starting point, opti-
mize the problem, present exact solutions, and converge 
quickly, however, in these methods the starting point is 
very important having high impact on the final solutions.

The word heuristic has its origin in the old Greek word, 
"heuriskein", which means the art of discovering new strat-
egies or rules for solving problems and the suffix meta, 
also a Greek prefix, has come to mean a higher level of 
abstraction in the English language and the term meta-heu-
ristic was introduced by Glover and Kochenberger [29]. 
Meta-heuristic methods do not need the gradient- infor-
mation and a good start point, while resulting in solutions 
that have acceptable accuracy. For complex structures, 
meta-heuristic methods are preferred to gradient-based 
methods. However, the results obtained from meta-heuris-
tic methods are not necessarily the best ones.

Ant Colony Optimization (ACO) [30], Particle Swarm 
Optimization (PSO) [31], Harmony Search (HS) [32], 
Genetic Algorithms (GA) [33], Grey Wolf Optimizer 
(GWO) [34], Charged System Search (CSS) algorithm [35],  
and Magnetic Charged System Search (MCSS) [36] are 
some of the meta-heuristic algorithms for optimization 
problems. Meta-heuristic algorithms are often inspired by 
natural phenomena.

After this introduction, Section 2 presents the model 
for loading. Section 3 introduces optimization. Section 4 
introduces penalty function. Sections 5, 6 and 7 briefly 
introduce the utilized algorithms, and Section 8 provides 
the results.
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Fig. 1 Geometry of the bridge

2 Bridge geometry and loading
In this study optimal design of steel-concrete composite 
I-girder bridges is conducted. The deck of this bridge pos-
sesses reinforced concrete slabs with sufficient shear studs 
welded on the upper flange. Free spans are considered as 
30 m, 40 m, and 50 m, having the width of 13 m. Guard-
road is 0.87 m in height. There are transverse diaphragms 
between girders. The distance and geometry of this bridge 
are illustrated in Fig. 1.

Dead load on the considered composite bridge is divided 
into two groups. Dead load group 1 affects non-composite 
section and it is applied before concrete treatment. Dead 
load group 2 affects composite section and is applied after 
concrete treatment. Dead load group 2 includes pavement 
weight, guard-road, and asphalt thickness. This paper con-
siders the weight of guard-road and 0.125 m thickness of 
the asphalt coating.

Dead load group 1 = weight of the girders + weight of 
the concrete slab.	

Dead load group 2 = weight of the guard-road + weight 
of the asphalt coating.

After specifying the dead loads, bending moments and 
shear forces can be calculated. In order to find the effect 
of live load on the bridge, influence line method is used. 
Using this method, the worst state pf traffic loading can 
be identified. Effective factors on determination of live 
load include the number of axles, weight of axles, and dis-
tance between axles. Here, live loading model NBR7188  
is used [37]. The weight of the track is 450 kN that has 
three axles with 1.5 m distances. The weight of each axle 
is 150 kN, and the weight of each tire is 75 kN. The dis-
tance between the tires is 2 m. A uniform load of 5 kN/m2 
also affects the bridge. Figs. 2 to 4 illustrate the considered 
loading. The impact factor is calculated as:

φ = 1.4 – 0.007 × L .	 (1)

In order to calculate the effective force on the internal 
and external girders according to AASHTO requirement 
and static rules, concrete slab sets on girders are consid-
ered as simply supported, and then the quantity of the sup-
port reaction is calculated. This reaction in the supports 
is equally applied on the girder. For design, first a section 
is considered and then stresses on concrete and steel are 
examined. These stresses must not exceed the permitted 
limit. This study uses AASHTO code [4] and the allow-
able stress method.

3 Optimization
Meta-heuristic algorithms are generally iterative 
approaches. These algorithms find the final result by 
applying changes in the design variables and this process 
is repeated until the best result is obtained. MATLAB 
software is used for programming.

Fig. 2 Loading on the bridge

Fig. 3 Model of the TB-45 vehicle
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3.1 Objective function
In optimization, the aim can be weight reduction, cost 
reduction, or both at the same time. It means that research-
ers can optimize their own structures based on reduction 
of weight or cost or both.  Here; the goal is to minimize 
the material cost. The objective function is expressed as:

min cost = ccon + cb + cdif + cl + cst + css + cstud + crein ,	 (2)

where cost is the total cost. Here, ccon , cb , cdif , cl , cst , css, 
crein and cstud are the concrete cost, girder cost, diaphragm 
cost, longitudinal stiffener cost, transversal stiffener cost, 
support stiffener cost, stud cost, and reinforcement cost, 
respectively. 

3.2 Constraints
Different types of constraints are considered in this 
section.

3.2.1 Reinforcement
Reinforcement constraints consist of the following:
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As is the area of the reinforcement section; fy is the yield 
strength of steel; d is the distance from compression face 
to centroid of tension reinforcement; NA is the neutral axis 

of the section, and M is the maximum bending moment on 
the slab. If concrete slab is placed on three or more sup-
ports, moment due to live load is multiplied by 0.8. Al is 
the longitudinal reinforcement.

3.2.2 Girders
For girders the constraints are expressed as:
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fbt is the maximum stress on the top flange; fbb is the 
maximum stress on the bottom flange; fv, fc, and fc' are the 
maximum stresses on the beam web, slab, and the 28-day 
compressive concrete strength, respectively.

3.2.3 Deflection
For deflection, the constraint is expressed as:
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L is the span length, and ∆ is the maximum deflection.

Fig. 4 Reaction of the girders
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3.2.4 Studs
For studs, we should have:
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hstud , dstud , and tt are the height of the stud, diameter 
of the stud, and top flange thickness, respectively. Due to 
many deformation cycles, studs are determined based on 
fatigue considerations. 

3.2.5 Support stiffener 
For support stiffeners we should have:
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bt and Fss are the beam top flange width and the stiff-
ener allowable stress, respectively. V is the design shear 
force on the support. bss , tss , and tw are the width and thick-
ness of the support stiffener and the beam web thickness, 
respectively.

3.2.6 Transversal stiffener 
For the following equations to be satisfied, using transver-
sal stiffeners is necessary.
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hv is the beam web height; Fv is the allowable shear 
stress on the beam web, and Fve is the shear force on the 
transversal stiffener. When using transversal stiffeners, 
we should have: 
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bst , tst , Ast , Ast.min , Ist , and Ist.min are the width, thickness, 
section area, minimum section area, inertia, and mini-
mum inertia of the stiffener, respectively. Here, B and c 
are coefficients that are 1 for pair transversal stiffener on 
both sides of the web. dst is the distance between transver-
sal stiffeners.

3.2.7 Longitudinal stiffener
For the following equations to be satisfied, using transver-
sal stiffeners is necessary.
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When using transversal stiffeners we should have:
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bsl , tsl , Isl , and Isl.min are the width, thickness, inertia, and 
minimum inertia of the longitudinal stiffener, respectively.

3.2.8 Diaphragm
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ndif , rdif , and s are the number of diaphragms, the radius 
of gyration of the diaphragm, and the width between gird-
ers, respectively. g1 to g27 are constraints of this problem.

4 Penalty function
When the constraints are not satisfied, in iterations, the pen-
alty function must be applied to the problem. If gi > 0, i = 1, 
2, ..., 27, it means that a constraint is not satisfied. Therefore, 
a penalty function is introduced as follows:

P x p xT i
i
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1
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e ,	 (33) 

p x g x ii i( )= ( )( ) = …max , , , , ,0 1 2 27 .	 (34)

PT(x) is the penalty function and ε1 is the penalty param-
eter that is considered as 10 to reject those designs that 
do not meet the safety conditions or make the search too 
time consuming. The objective function stated in Eq. (2) is 
penalized by this penalty function.

5 Colliding Bodies Optimization Algorithm
This algorithm was developed by Kaveh and Mahdavi [1]. 
The main idea of this algorithm is based on the rules of 
momentum and one dimensional collision of bodies from 
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Physics. The colliding bodies optimization is based on 
momentum and energy conservation law for one-dimen-
sional collision. This algorithm is used for both discrete 
and continuous variable problems.

In colliding bodies' algorithm, each agent is modeled as 
a body that has self-specific mass and velocity. Collision 
between bodies and moving them to the minimum level 
energy is the main purpose in the procedure of this algo-
rithm. If on a system, external force is not applied and this 
system is isolated, the momentum of all bodies after col-
lision will be equal to the momentum of all bodies before 
collision. The colliding bodies' algorithm, at first, consid-
ers a set of colliding bodies (CB). Each body can be con-
sidered as a solution illustrated by Xi. The magnitude of 
the body mass for each CB is defined as: 

m
fit k

fit k

k nk

i

n
=

( )

( )

= …

=∑

1

1
1 2 2

1

, , , .	 (35)

fit(i) represents the objective function value of the agent 
i; n is the population size. In the first iteration, an initial 
population is created randomly. Then, CBs are sorted 
according to their objective function and in a descending 
order. CBs are divided into two groups of stationary bod-
ies and moving bodies. Moving bodies move toward sta-
tionary bodies and create collision. This is done for two 
purposes: 1. to improve the positions of moving bodies 
and 2. to push stationary bodies towards better positions. 
New positions of these bodies, are updated according to 
their new velocities. Colliding bodies and their procedure 
are illustrated in Fig. 5. The velocity of stationary and 
moving bodies before collision is calculated as: 

Vi = 0, i = 1,2,…,n	 (36)

Vi = xi–n – xi, i = n + 1, n + 2,…,2n	 (37)

Vi and xi are the velocity and position vector of the ith 
CB in this group, respectively. 2n is the population size. 
The velocity of the stationary and moving bodies after col-
lision is calculated as:

V
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e= −1
iter
iter

max

.	 (40)

ε is the coefficient of restitution (COR). The coefficient 
of restitution (COR) is used to control the exploration and 
exploitation rates. When COR is considered as unity, the 
CBs investigate the entire search space to discover a favor-
ite space (global search) and the algorithm converges very 
slow. On the other hand, when COR is selected as zero, the 
movements of the CBs are confined to very small space in 
order to provide exploitation (local search) and the algo-
rithm converges very fast. In order to avoid these problems, 
we used COR = ε. In this way a good balance between the 
global search and local search is achieved. Here, iter is the 
current iteration number, and itermax is the total number of 
iterations for the optimization process. The new position of 
bodies after collision is determined as:

X X rand V i ni
new

i i= + = … ', 1 2, , , ,	 (41)

Fig. 5 The collision between two bodies
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X X rand V i n n ni
new

i n i= + = + + …−  ', 1 2 2, , , .	 (42)

Xi
new and Vi' are the new position and the new velocity 

after the collision of the ith CB, respectively. Here, rand 
is a random vector uniformly distributed in the range of 
[0, 1]. The sign "○" denotes an element-by-element mul-
tiplication. The flowchart of the CBO algorithm is shown 
in Fig. 6. While stopping criterion is not satisfied, the iter-
ations continue. This stopping criterion can be an objec-
tive-related condition or can be considered as a pre-defined 
number of iterations. Ultimately, the procedure summary 
is provided in the following:

Step 1: Initialize and create the initial population; 
Step 2: Calculate the objective functions;
Step 3: Sort the bodies according to their objective 

function;
Step 4: Divide the bodies to stationary and moving 

groups and calculate their velocity;
Step 5: Collision between bodies;
Step 6: Calculate the new velocity of stationary and 

moving bodies by Eq. (38) and Eq. (39);
Step 7: Calculate the new position of stationary and 

moving bodies by Eq. (41) and Eq. (42);
Step 8: Check the stopping criterion;

Step 9: If the stopping criterion is satisfied, go to the 
next step; otherwise, return to Step 2, considering new 
amounts; 

Step 10: Present the best results from total iterations.

6 Enhanced Colliding Bodies Optimization
This algorithm was first introduced by Kaveh and Ilchi 
Ghazaan [2]. High performance of this algorithm is shown 
by different applications Kaveh and Ilch Ghazaan [38]. 
ECBO is similar to CBO, both being based on the rule 
of one-dimensional collision of bodies, and the differ-
ence between these algorithms is due to the addition of a 
memory in ECBO. Addition of such a memory increases 
the convergence speed, and makes the algorithm able to 
escape local optima. From physics the momentum can be 
written as:

P = mv,	 (43)

where m is the mass, and v is the velocity. In an isolate 
system that does not exchange any matter with its sur-
roundings, and is not acted on by external forces, the 
total momentum is constant. The law of conservation of 
momentum is illustrated in Fig. 7. Both objects in this  
figure have the same mass.

Fig. 6 Flowchart of the CBO
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Fig. 7 The law of momentum

The collision between the bodies changes the velocity 
and position of the stationary and moving bodies. Initial 
position of bodies is determined randomly as follows:

X X rand X X i ni
0

1 2 3 2= + +( ) = …
min max min

. , , , , , .	 (44)

Xi
0 is the initial solution vector of the ith CB. Xmin is the 

minimum allowable limits vector, and Xmax is the maximum 
allowable limits vector. A collision memory (CM) is used to 
save the best previous answers. In each iteration, solution 
vectors saved in CB are added to the population, and the 
same number of the worst colliding bodies (CB) is removed. 
The flowchart of the ECBO algorithm is shown in Fig. 8. 
The procedure summary is provided in the following:

Step 1: Initialize and create the initial population; 
Step 2: Calculate the objective function;
Step 3: Save some historically best CB vectors and their 

related mass, and objective function values in CM and add 
solution vectors saved in CM to the population, delete the 
same number of current worst CBs in each iteration and 
the same number of current worst CBs is deleted in each 
iteration

Step 4: Sort the bodies according to their objective 
function

Step 5: Divide the bodies to stationary and moving 
group and calculate their velocity by Eq. (36) and Eq. (37).

Step 6: Collision between bodies;
Step 7: Calculate the new velocity of stationary and 

moving bodies by Eq. (38) and Eq. (39);
Step 8: Calculate the new position of stationary and 

moving bodies by Eq. (41) and Eq. (42);
Step 9: Introduce a parameter like Pro within (0, 1) 

which specifies whether a component of each CB must be 
changed or not;

Step 10: Check the stopping criterion;
Step 11: If the stopping criterion is satisfied, go to the next  

step; otherwise, return to Step 2 considering new amounts;
Step 12: Present the best results from total iterations.

Fig. 8 Flowchart of the ECBO
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7 Vibrating Particles System
Vibrating particles system (VPS) was developed by Kaveh 
and Ilchi Ghazaan [3]. This algorithm simulates the free 
vibration of single degree of freedom systems with vis-
cous damping. Kaveh and Ilch Ghazaan [38] illustrated 
the high performance of this algorithm for large scale and 
complex structures in their studies. A new enhanced ver-
sion of the VPS is presented in the recent book [38]. In this 
algorithm, some particles are considered as variables of 
the problem. These particles are initialized randomly, and 
then they gradually approach their equilibrium positions. 
Initial position of each particle is created randomly in an 
n-dimensional search space.

X X rand X Xi
j = + −( )

min max min
. .	 (45)

Xi
j, Xmin, and Xmax are, respectively, the jth variable of 

particle i, the minimum allowable variable bound vector, 
and the maximum allowable variable bound vector. 

VPS considers each solution candidate as a particle. 
For each particle, three equilibrium positions are consid-
ered with different masses in the process of each itera-
tion: 1. The historically best position of the entire popula-
tion (HB); 2. A bad particle (BP); and 3. A good particle 
(GP). In each iteration, the objective function is calculated 
for all particles. Particles are sorted incrementally. These 
particles are divided into two equal groups. The GP is 
selected from the first group and the BP is selected from 
the second group, randomly. In order to update the new 
position of particles, this equation is used:
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1 2 3

1+ + = .	 (49)

iter and itermax are the current iteration number and the 
total number of iterations for the optimization process, 
respectively. α is a constant. The effect of α is illustrated 
in Fig. 9. w1, w2, and w3 are three parameters to measure 
the relative importance of HB, GP, and BP, respectively. 
rand1, rand2, and rand3 are random numbers uniformly 

distributed in the range of [0, 1]. A parameter like p within 
(0, 1) is defined for each particle. If p < rand, w3 = 0, and 
w2 = 1 – w1, then the effect of BP is ignored in updating 
the position formula. The flowchart of the VPS algorithm 
is shown in Fig. 10. The procedure of the algorithm is as 
follows:

Step 1: Parameters of the problem are considered, and 
the positions of the particles are determined randomly.

Step 2: Objective function of particles are calculated. 
Step 3: Positions of particles are updated by Eq. (46). 
Step 4: Constraints are checked.
Step 5: Stopping criterion is checked.
Step 6: If the stopping criterion is satisfied, it goes to 

next step; otherwise, it returns to step 2 considering new 
amounts.

Step 7: It presents the best results from total iterations. 

8. Numerical studies
In this section, first the variables are defined and then the 
numerical results are presented. Here, according to search 
space and observations from preliminary optimization 
runs, the number of iterations is determined to be 2000. 
The parameters utilized for each optimization algorithm 
are shown in Table 1. In order to have a better comparison 
between our new algorithms and one of excellent previ-
ous algorithm, Particle swarm optimization (PSO) is used. 
PSO is a population-based stochastic optimization algo-
rithm that has been successfully used to solve many opti-
mization problems [39]. Though the PSO has been widely 
utilized to address various complicated engineering prob-
lems, it is likely to suffer lack of diversity and ineffective-
ness of balance between the global search ability and the 
local search ability in the search process [40]. The flow-
chart of PSO is shown in Fig 11. [41]

Fig. 9 The influence of α on the D function
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Fig. 10 Flowchart of the VPS

Table 1 Algorithms Parameters

CBO ECBO VPS PSO

Pop.size = 30–32
maxIt = 2000
Inf = 1e100

Pop.size = 30–32
maxIt = 2000

cMs = 4
pro = 0.2–0.3–0.4

Pop.size = 30–32
maxIt = 2000

alfa1 = 1
beta1 = 0.05

C1 = 0.3
C2 = 0.3

stoch = 0.7
par = 0.1

cmcr = 0.95
neighboring = 0.1

Pop.size = 30–32
maxIt = 2000
phi1 = 2.05
phi2 = 2.05
wdamp = 1

8.1. Design variables
Variables of the present optimization problem are divided 
into two groups consisting of continuous variables and dis-
crete variables. In this study, continuous variables are con-
sidered for reinforcements, and discrete variables are used as 
the distance between girders, dimensions of girders, dimen-
sion of stiffeners, dimension of stud connectors, and the type 
of concrete and steel. This problem has 26 variables; three 
variables are continuous, and 23 variables are discrete. All 
variables are presented in Table 2. These variables are illus-
trated in Fig. 12. Some parameters of this problem are taken 

as constant in the process of optimization such as the width 
of the bridge (13 m), its length (30, 40 and 50 m), and geom-
etry of the bridge which are not considered as variables. 

Group 1: Increases from lower bound to upper bound at 
increments of 25 cm.

Group 2: Increases from lower bound to upper bound at 
1 cm increments.

Group 3: Intermediate values are imposed by the indus-
try catalogue between the lower bound and upper bound

Group 4: Increases from the lower bound to upper 
bound at 1 unit increments.
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Fig. 11 Flowchart of the PSO

nb and ndiaf are the number of girders and diaphragms, 
respectively. The industrial values between the lower 
and upper bounds are given in Table 3. These prices are 
obtained by IBGE (Brazilian Institute of Statistics and 
Geography) every month in Brazil along with a survey of 
costs of civil construction conducted by Caixa (Federal 
Economic Fund) [42]. The data (from June, 2015) are pro-
vided in Table 4. The prices are converted to dollars with 
the exchange rate of 19 November 2015, which has been 
R$3.75 [20].

8.2 Results for 4-girders
In this section, the results of optimal design of four girders 
are presented. In order to compare the results of this study 
with those of the manual design [20], four girders are used. 
The results are provided in Table 5, where it is shown that 
the calculated cost of VPS algorithm is less than those of 
the CBO and ECBO. Moment and shear on each girder form 
these results, as given in Table 6, indicating that optimal 
design from ECBO has moment and shear values less than 
those corresponding to the other optimal designs. In Table 
6, there are two costs. One of these is the cost in dollars 
and the other cost is in Brazilian Reals. Here, the distances 
between the four girders are considered as 3.5 m, and the 

Fig. 12 Details of the bridge
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Table 2 Optimization variables and their boundary conditions

Type Group Variable Unit Lower bound Upper bound

Continuous
-
-
-

Long. Positive Reinf
Long. Negative Reinf
Transv. Positive Reinf

cm2

cm2

cm2

0.1
0.1
0.1

20
20
20

1 s m 2 4

Discrete

2
2
2
2
2
2
2
2
2
2

hc

bt

hv

bb

hstud

bss

bst

dss

dst

bsl

cm
cm
cm
cm
cm
cm
cm
cm
cm
cm

20
30
100
30
1
10
10
10
10
10

25
100
200
100
15
50
100
300
300
100

3
3
3
3
3
3
3
3
3

conrete
tt

tw

tb

dstud

tss

tst

tsl

diaf

-
cm
cm
cm
cm
cm
cm
cm
mm

C-20
0.95
0.95
0.95
1.9

0.95
0.95
0.95

101*101*6.35

C-35
10.16
10.16
10.16
2.5

10.16
10.16
10.16

152*152*19.05

4
4

nb
ndiaf

-
-

3
1

6
30

- steel - A36 A572 Gr50

Table 3 The industrial values

Variable Values between lower and upper bound

Concrete C-20 ; C-25 ; C-30 ; C-35

Thickness
0.95 ; 1.11 ; 1.27 ; 1.43 ; 1.59 ; 1.75 ; 1.9 ; 2.06 ; 2.22 ; 2.38 ; 2.54 ; 2.86 ; 3.18 ; 3.49 ; 3.81 ; 4.12 ; 4.44 ; 4.76 ; 5.08 ; 5.4 ; 5.71 ; 6.03 ; 

6.35 ; 6.66 ; 6.98 ; 7.3 ; 7.62 ; 10.16(cm)

Diaphragm
L101.6×6.35 ; L101.6×7.93 ; L101.6×9.52 ; L101.6×11.11 ; L101.6×12.7; L127×6.35 ; L127×7.94 ; L127×9.52 ; L127×12.7 ; L127×15.88 ; 

L127×11.11; L152.4×9.52 ; L152.4×12.7 ; L152.4×15.88 ; L152.4×19.05 (mm)

width of the cantilevered section is considered as 1.25 m. 
Results of 36 runs are illustrated in Table 7. In this study, 
all of algorithms are run 36 times and according to the 
corresponding results, Table 7 is formed. The convergence 
curves of all the algorithms are demonstrated in Fig. 13.  
This figure shows a better performance for the VPS algo-
rithm. Results of 36 independent runs with their best solu-
tions for the considered girders are depicted in Fig. 14. 
Normal distribution curves are shown in Fig. 15. 69 % of 
results of CBO, 67 % of results of ECBO and 69 % of 
results of VPS are located between 140,000–150,000 (U$). 
Since the curve for the VPS has higher elongation, there-
fore the results of 36 runs of this algorithm have higher 

distribution and non-normal distribution curve is shown 
in Fig. 16. This figure illustrates the data distribution of 36 
runs of each algorithm.   

8.3 Results of general state
This section presents the results of the optimization with-
out considering the constraints of Section 8.2. Results of 
optimal design are provided in Table 8. This table shows 
that VPS decreases the cost of the structures consider-
ably. Reduction of the number of girders can be effective 
in decreasing the cost. In this table, there are two costs. 
One is the cost in dollars and the other cost is in Brazilian 
Reals. Moment and shear on each girder are provided in
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Table 4 List of the prices

Items Unit Price (U$) Price (R$)

Steel ASTM A36
Steel ASTM A572 Gr.50
Reinforcement steel
Concrete C-20
Concrete C-25
Concrete C-30
Concrete C-35

kg
kg
kg
m3
m3
m3
m3

1.09
1.21
1.66
93.65
97.07
99.92
103.06

4.08
4.54
6.22

351.20
364.03
374.71
386.46

Fig. 13 Convergence curves of the 4-girders

Fig. 14 Optimum cost of 36 independent runs of the 4-girders

Fig. 15 Normal distributions curves of 36 runs of the 4-girders
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Table 5 Numerical results of the 4-girders

Variable Manual [22]
New algorithms

CBO ECBO VPS

s 3.5 m 3.5 m 3.5 m 3.5 m

s1 1.25 m 1.25 m 1.25 m 1.25 m

concrete C-25 C-35 C-25 C-30

steel A572 Gr.50 A572 Gr.50 A572 Gr.50 A572 Gr.50

nb 4 4 4 4

Long. Positive Reinf 8.00 cm2 8.1cm2 11.3 cm2 17.5 cm2

Long. Negative Reinf 13.00 cm2 9.4 cm2 12.5 cm2 8.5 cm2

Transv. Positive Reinf 5.00 cm2 4.5 cm2 5.6 cm2 5.8 cm2

hc 23 cm 23 cm 21 cm 20 cm

bt 50 cm 98 cm 59 cm 64 cm

hv 193 cm 196cm 196 cm 196 cm

bb 67 cm 60 cm 90 cm 53 cm

hstud 15 cm 15 cm 11 cm 11 cm

bss 20 cm 13 cm 16 cm 18 cm

bst 17 cm 25 cm 16 cm 17 cm

bsl 17 cm - - -

tt 2.54 cm 0.95 cm 1.75 cm 1.59 cm

tw 0.95 cm 1.43 cm 1.43 cm 1.43 cm

tb 5.08 cm 4.76 cm 3.18 cm 5.4 cm

dstud 2.2 cm 2.2 cm 2.2 cm 2.2 cm

tss 2.22 cm 1.9 cm 1.75 cm 1.9 cm

tst 1.27 cm 1.59 cm 1.11 cm 1.11 cm

tsl 1.27 cm - - -

diaf 127 × 127 × 9.52 mm 101.6 × 101.6 × 6.35 mm 101.6 × 101.6 × 7.93 mm 101.6 × 101.6 × 6.35 mm

ndiaf 7 7 7 7

Cost (U$) 128,700.35 124,985.88 122,744.37 121,201.17

Cost (R$) 482,626.31 468,697.05 460291.38 454,504.38

reduction 0 % 2.88 % 4.62 % 5.82 %

Table 6 Maximum actions on the girder

Actions CBO ECBO VPS

Moment 13011.55 kN.m 13104.21 kN.m 12894.24 kN.m

Shear 1325.55 kN 1335.25 kN 1313.90 kN

Table 9, which illustrate that optimal design from ECBO has 
moment and shear values less than other designs. Results of 
the 36 runs are given in Table 10. The convergence histories 
of all the utilized algorithms are demonstrated in Fig. 17. 
Results presented are those of the best solutions from the 
36 runs. These results reveal that ECBO has a better perfor-
mance compared to CBO and VPS. Results of the 36 inde-
pendent runs are illustrated in Fig. 18. Normal distribution 
curves are shown in Fig. 19. 48 % of the results of the CBO 
are located between 140000 and 150000 (U$), for ECBO 
this amount is 35 %, and 49 % of the results of the VPS are 

located in this area. This figure shows that the results of the 
36 runs of the VPS have higher distribution than CBO, and 
ECBO has non-normal distribution as shown in Fig. 20.

Table 11 shows that cost of the construction according 
to different length spans. In this table, two population sizes 
(Pop. size) are considered (pop30 and pop32). A compara-
tive study is performed for three spans (30 m, 40 m,50 m) 
with two different populations sizes. Fig. 21 illustrates the 
convergence curves related to three spans (30 m, 40 m,50 m)  
with population size equal 30, and Fig. 22 shows that same 
convergence curves related to three spans (30 m, 40 m, 50 m)  
but with a population size of 32. It should also be noted  
that the result is improved for ECBO with population size 
equal 32 for span 50 m. Amounts of population sizes are 
decided based on experience. All the algorithms are run 36 
times to find the best amount of population sizes. 
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Table 7 Results for 36 runs of the 4-girders

Item N Minimum (U$) Maximum (U$) Median (U$) Std. Deviation

CBO 36 124985.88 161680.70 146412.82 7014.75

ECBO 36 122744.37 163500.96 146223.37 7922.39

VPS 36 121201.17 152280.54 141151.83 10430.20

Table 8 Numerical results of the general state

Variable Manual [22] PSO
New algorithms

CBO ECBO VPS

s 3.5 m 3.25 m 3.25 m 3.5 m 4 m

s1 1.25 m 1.625 m 1.625 m 1.25 m 2.5 m

concrete C-25 C-25 C-35 C-25 C-35

steel A572 Gr.50 A36 A36 A572 Gr.50 A572 Gr.50

nb 4 4 4 4 3

Long. Positive Reinf 8.00 cm2 6.6 cm2 7.4 cm2 7.7 cm2 11.8 cm2

Long. Negative Reinf 13.00 cm2 6.6 cm2 7.4 cm2 7.7 cm2 13.9 cm2

Transv. Positive Reinf 5.00 cm2 3.1 cm2 4.3 cm2 3.3 cm2 5.4 cm2

hc 23 cm 22 cm 20 cm 20 cm 21 cm

bt 50 cm 59 cm 58 cm 79 cm 46 cm

hv 193 cm 176 cm 197 cm 195 cm 196 cm

bb 67 cm 63 cm 47 cm 74 cm 62 cm

hstud 15 cm 8 cm 9 cm 8 cm 14 cm

bss 20 cm 16 cm 10 cm 11 cm 14 cm

bst 17 cm 15 cm 15 cm 20 cm 12 cm

bsl 17 cm - - - -

tt 2.54 cm 2.38 cm 1.43 cm 1.27 cm 3.49 cm

tw 0.95 cm 1.27 cm 1.59 cm 1.43 cm 1.43 cm

tb 5.08 cm 5.4 cm 6.03 cm 3.81 cm 6.03 cm

dstud 2.2 cm 1.9 cm 2.2 cm 1.9 cm 2.2 cm

tss 2.22 cm 1.75 cm 5.71 cm 2.22 cm 2.86 cm

tst 1.27 cm 0.95 cm 0.95 cm 1.27 cm 1.43 cm

tsl 1.27 cm - - - -

diaf 127 × 127 × 9.52 mm 152.4×152.4×7.9 mm 101.6×101.6×6.35 mm 101.6×101.6×6.35 mm 101.6×101.6×9.52 mm

ndiaf 7 7 7 7 7

Cost (U$) 128,700.35 128,142.95(U$) 122,408.96 120,148.61 112,832.89

Cost (R$) 482,626.31 480,536.06 459,033.60 450,557.28 423,123.33

reduction 0 % 0.43 % 4.88 % 6.64 % 12.32 %

Table 9 Maximum Actions on the girder of the general state

Actions CBO ECBO VPS PSO

Moment 13039.72 kN.m 12737.33 kN.m 16419.20 kN.m 13355.05 KN.m

Shear 1328.51 kN 1297.85 kN 1672.66 kN 1360.52 KN

Table 10 Results for 36 runs of the general state

Item N Minimum (U$) Maximum (U$) Median (U$) Std. Deviation

CBO 36 122408.96 174110.00 143793.16 10105.64

ECBO 36 120148.61 168800.00 139901.91 11181.61

VPS 36 112822.89 154374.43 140095.87 12291.13

PSO 36 127753.87 179375.64 149628.55 8267.14
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Fig. 16 Non-normal distributions of 36 runs of the 4-girders

Table 12 contains the cost of the bridges with span 
lengths of 30 m, 40 m and 50 m obtained by ECBO. Here, 
three Pro coefficients are considered (Pro = 0.4, Pro = 
0.3, Pro = 0.2) and the minimum cost is obtained. The 
standard deviation and median of 36 runs, are also illus-
trated in this table. Pro is a parameter to save the best 
results from previous iterations. Therefore, if this param-
eter is selected law or high, it can have unfavorable effect 
on the process of the ECBO algorithm. Here, by con-
sidering three values for the Pro, its best value is deter-
mined. To achieve this goal, ECBO with each selected 
Pro, is run 36 times and the spans are considered as 30 
m, 40 m and 50 m. When Pro was 0.3, the cost of this 
state is the best solution and the amounts of median of 
this state was less than other states. The convergence 
curves for the ECBO in this state are illustrated in Fig. 23.

Fig. 17 Convergence curves of the general state

Fig. 18 The optimum cost of 36 independent runs of the general state

9 Concluions
This study presents the optimization of steel-concrete 
I-girder bridges using CBO, ECBO, and VPS. First, three 
algorithms CBO, ECBO, and VPS were introduced, and 
then the variables were presented. In this paper, a compar- 

Table 11 Cost of different spans

Length of span (m) Pop. size CBO ECBO VPS PSO

30
30 63,856.58(U$) 60,067.89(U$) 55,356.81(U$) 79,741.46(U$)

32 69,131.15(U$) 68,056.22(U$) 58,376.99(U$) 72,590.56(U$)

40
30 122,408.96(U$) 120,148.61(U$) 112,832.89(U$) 128,142.95(U$)

32 124,990.43(U$) 122,852.01(U$) 120,045.78(U$) 127,477.47(U$)

50
30 209,911.96(U$) 208,228.36(U$) 195,398.20(U$) 240,342.48(U$)

32 213,715.06(U$) 192,683.07(U$) 200,722.64(U$) 216,317.13(U$)

Table 12 Cost of the ECBO according to different Pro coefficients with pop. size = 30

Span (m) Pro Cost (U$) Std. Deviation Median (U$)

30

0.2 68,509.59 9115.94 78527.07

0.3 60,067.89 6291.83 71251.75

0.4 64,479.12 7482.60 77474.18

40
0.2 131,180.24 10914.75 147459.17

0.3 120,148.61 11181.61 139901.91

0.4 122,327.40 10703.25 143563.32

50

0.2 208,329.86 15318.28 242978.55

0.3 208,228.36 13500.15 235601.75

0.4 215,251.19 14223.19 238462.57
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ative study is carried out using three new meta-heuristic  
algorithms. Ultimately, the numerical results indicate the 
following:

In 4-girder state, CBO, ECBO and VPS decrease cost 
2.88 %, 4.62 % and 5.82 % respectively. In this state, 
moment and shear on girder from optimal design of VPS 
are 0.9 % and 1.6 % less than moment on girder form opti-
mal design of CBO and ECBO, respectively.

In general state, CBO, ECBO, and VPS decrease cost 
by 4.88 %, 6.64 %, and 12.32 %, respectively. In this state,  
moment and shear on girder from optimal design of ECBO 
are 2.31 % and 22.42 % less than moment on girder form 
optimal design of CBO and VPS, respectively.

In 4-girder state, the VPS shows better performance 
than CBO and ECBO. While in general state, VPS has 
better performance than CBO and ECBO. In this state the 
reduction of the number of girders in VPS has a sound 
impact on decreasing the cost of the optimized design. 
In both states, the algorithms perform such that the opti-
mized design does not need longitudinal stiffeners.

Fig. 20 Non-normal distributions of 36 runs of the general state

In 4-girder and general states, distribution of data from 
36 runs, for VPS is higher than CBO and ECBO. For all 
three spans considered in this paper, VPS has better perfor-
mance than ECBO and CBO. The best amount of Pro and 
population size are shown to be 0.3 and 30, respectively. 

Fig. 19 Normal distributions curves of 36 runs of the general state
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Fig. 21 Convergence curves of the algorithms with pop size = 30

Fig. 22 Convergence curves of the algorithms with pop size = 32

a) span 30 m b) span 40 m

c) span 50 m

a) span 30 m b) span 40 m

c) span 50 m
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Fig. 23 Convergence curves of the ECBO for three different values of the coefficient values of Pro
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