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Abstract

An accurate estimation of bridge pier scour has been considered as one of the important parameters in designing of bridges. However, 

due to the numerous involved parameters and convolution of this phenomenon, many existing approaches cannot predict scour 

depth with an acceptable accuracy. Obtained results from the empirical relationships show that these relationships have low accuracy 

in determining the maximum scour depth and they need a high safety factor for many cases, which leads to uneconomic designs of 

bridges. To cover these disadvantages, three new models are provided to estimate the bridge pier scour using an adaptive network-

based fuzzy inference system. The parameters of the system are optimized by using the colliding bodies optimization, enhanced 

colliding bodies optimization and vibrating particles system methods. To evaluate the efficiency of the proposed methods, their results 

were compared with those of simple adaptive network-based fuzzy inference system and its improved versions by using the particle 

swarm optimization and genetic algorithm as well as the empirical equations. Comparison of results showed that the new vibrating 

particles system based algorithm could find better results than other two ones. In addition, comparison of the results obtained by the 

proposed methods with those of the empirical relations confirmed the high performance of the new methods.
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1 Introduction
Nowadays in many countries due to the economic growth 
and development of societies, the traffic load increases, 
and therefore some structures such as bridges that have 
a significant influence on road and rail transportation 
have become more important. As a result, bridge fail-
ures should be studied in details. The reason is clear: 
every year, river floods destroy a large number of bridges. 
In addition to the issue of safety, bridge failures impose 
vast costs. Investigations carried out by many research-
ers have shown that the local scour is the main cause of 
bridge failures [1–3]. The local scour is a complex phe-
nomenon caused by bridge piers that obstruct the natu-
ral flow of the water in rivers. The erosive action of this 
abrupt makes change in flow filed and carries away sed-
iments from the bed around the piers. Prediction of the 
equilibrium depth of a local scour around bridge piers is 
an essential subject in the design of bridges. It is clear that 

using a low reliability factor may not guarantee the safety 
of the bridge, and vice versa, a design with a high degree 
of reliability leads to a non-economic project. Therefore, 
a precise method is required for determining the depth of 
scouring for designing efficient and economical bridges.

Until now, different methods have been proposed to 
estimate the depth of the bridge pier scour. Most of them 
are based on physical modeling and empirical relation-
ships extracted from laboratory data obtained by using 
only limited parameters. As a result, many important 
factors of scour have been consumedly or incorrectly 
assessed [4]. Muller et al. [5] showed that the depth of 
scouring obtained from empirical equations in some cases 
was several times greater than actual values as reported 
by experimental observations. Shepard et al. [4] examined 
the performance of different empirical equations for scour 
depth estimation and showed that some new equations 
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have better efficiency. However, they concluded that some 
of the previous equations estimate even negative values 
for scouring. This means that most of the empirical equa-
tions tend to work well only in specific experimental con-
ditions which limits their usefulness [6]. 

Due to the imperfections of empirical relationships, 
researchers have begun to use artificial intelligence (AI) 
methods to predict the scour depth. Using AI methods 
is a good alternative for physical models and empiri-
cal relationships [6]. Several studies have been carried 
out using AI techniques to estimate the maximum scour 
depth around bridge piers. Bateni et al. [6] modeled the 
bridge pier scour using laboratory data and neural net-
work. Their results showed that the developed neural net-
work predicted scour depth better than empirical relation-
ships. Kermani et al. [7] predicted the depth of scouring 
for pier groups using the back propagation algorithm and 
the radial base neural network. Their results showed that 
these methods had sufficient accuracy to estimate the 
scour depth around the bridge pier. Akib et al. [8] used 
the Adaptive Network-based Fuzzy Inference System 
(ANFIS) as a modeling tool to predict the scour depth in 
bridges. Comparison of results between ANFIS and clas-
sical linear regression (LR) showed that its results had a 
high and satisfactory accuracy. Ebtehaj et al. [9] predicted 
the scour depth around bridge piers by extreme learn-
ing machine (ELM). To predict scour depth, the effec-
tive dimensionless parameters were determined through 
dimensional analysis.  The results showed that the most 
important parameters affecting relative scour depth (ds/y) 
included ratio of pier width to flow depth (D/y) and ratio of 
pier length to flow depth (L/y). In addition, other research-
ers have performed a number of studies in this field as 
well, such as references [10–17].

Swarm intelligence-based optimization algorithms use 
casual elements to increase solution diversity during the 
search process. According to this, a number of researchers 
have used optimization methods in order to improve pre-
dictive accuracy of the classical AI models. Chou et al. [18] 
investigated the potential use of Genetic Algorithm (GA)-
based support vector regression (SVR) model to predict  
the bridge scour depth near piers and abutments. Results 
showed that their model performed more accurate than 
classic methods. In another study, Chou et al. [19] devel-
oped a hybrid artificial firefly colony algorithm based on 
SVR model for predicting bridge pier scour. Their model 
achieved better results compared to other predictive 
methods. 

In this research, a new hybrid method is developed 
for estimation of the bridge pier scour by hybridizing the 
ANFIS with three new optimization algorithms. The used 
optimization methods are: Colliding Bodies Optimization 
(CBO) developed by Kaveh and Mahdavi [20], the 
Enhanced Colliding Bodies Optimization (ECBO) 
expanded by Kaveh and Ilchi Ghazaan [21], as well as 
Vibrating Particles System (VPS) presented by Kaveh 
and Ilchi Ghazaan [22]. These methods are new and 
effective algorithms in solving different optimization 
problems [23, 24]. Different applications of these meth-
ods can be found in Kaveh [25] Results these application 
have shown that CBO and ECBO provided a good balance 
between the exploration and the exploitation paradigms 
of the algorithm. Kaveh and Ilchi Ghazaan [26] employed 
VPS for structural optimization with frequency con-
straints. Results demonstrated the efficiency and robust-
ness of their method and its competitive performance to 
other algorithms for structural optimization problems. 
Rabiei et al. [27] evaluated the capability of CBO, ECBO 
and VPS methods for solving reservoir operation issues. 
Their results showed that the best solutions were obtained 
by the VPS, which could solve optimization problems with 
less computational efforts and a fast convergence rate.

In the new models proposed in this paper, the CBO, 
ECBO and VPS optimization methods optimized the 
parameters of the ANFIS and increased its efficiency and 
robustness. In order to develop the model, the US Federal 
Highway Administration (FHWA) Data was used to train 
and validate models. Finally, the performance of the mod-
els was compared to the standard ANFIS and empirical 
relationships reported by technical literature.

2 Utilized method
Despite the greater efficiency of Artificial Neural Network 
(ANN) methods than existing empirical relationships, it 
is still possible to achieve better results by optimizing the 
performance of the ANN-based methods. ANFIS, which 
is considered as the basic method in this research, is com-
posed of neural network and fuzzy system. To optimize 
the ANFIS model, the CBO, ECBO and VPS algorithms 
have been used. CBO algorithm is based on one-dimen-
sional collisions between bodies [20]. ECBO method con-
sists of a multi-agent algorithm inspired by a collision 
between two objects in one-dimension.. VPS algorithm is 
based on free vibration of single degree of freedom system 
with viscous damping. The following subsections describe 
the utilized methods in details.
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Fig. 1 General framework of the ANFIS

2.1 Adaptive neuro-fuzzy inference system
ANFIS is an artificial neural network developed based on 
the Takagi-Sugeno fuzzy inference system in 1990 [28]. 
In this method, the neural network and the fuzzy system 
are combined in a coordinated structure. This model can 
be introduced as neural network with a fuzzy parameter 
or a distributed learning fuzzy system. Fuzzy systems 
can reduce the dimensionality of the search space by dis-
tributing input information over the network and also find 
the optimum values of the control parameter for non-lin-
ear problems by using the back propagation behaviors of 
neural networks [29]. The architecture of this algorithm is 
generally composed of five layers as shown in Fig. 1.

To simplify the explanations, the fuzzy inference sys-
tem under consideration is assumed to have two inputs  
(x and y) and one output ( f ). For a first order of Sugeno 
fuzzy model.

A typical rule set with base fuzzy if-then rules can be 
expressed as following.

If x is equal to A1 and y is B1, the first rule is Eq. (1).

f p x q y r= + +
1 1 1

.  (1)

In addition, if x is equal to A2 and y is equal to B2, then 
the second rule is Eq. (2).

f p x q y r= + +
2 2 2

.  (2)

In these two rules, x and y are input variables, Ai and 
Bi are fuzzy conditions, f is output, and p, r, q are design 
parameters that should be determined during the learning 
process of the ANFIS. The application of different layers 
of this algorithm is as follows: 

In the first layer, each node i is represented by a mem-
bership function as Eqs. (4–5).

O i A xi1,
,= ( )σ  (3)

O i xBi1,
.= ( )σ  (4)

In Eq. (3), Ai is the linguistic variable, x is the input to 
node i and O1,i is the membership function of Ai. In this 
study, Gaussian membership functions are used as Eq. (5).

σ
σA xi

exp
x c

( ) = −
−( )











2

2
2

,  (5)

Where σ is the standard deviation and c is the center of 
the above Gaussian membership function. In the second 
layer, each node refers to the rules generated by the fuzzy 
logic inference system and the firing strength of a rule is 
determined by Eq. (6).

ω σ σi A x B xi i
i= × =( ) ( ) 1 2, .  (6)

In the third one, the firing strength of each rule is nor-
malized. This normalization is the ratio of the firing 
strength of the ith rule to the total of all firing strengths by 
using the Eq. (7).

ω
ω

ω ω
=

+
=i i

1 2

1 2, .  (7)

The set of fuzzy rules is calculated as follows in the 
fourth layer by Eq. (8).

ω ωi i i i i if p x q y r i= + +( ) =1 2, .  (8)

Finally, in the fifth layer, all the outputs of the fourth 
layer are combined Eq. (9).

∑ = =∑
∑

ω
ω

ωi i
i i i

i i

f
f

i 1 2, .  (9)

2.2 Colliding Bodies Optimization
Colliding Bodies Optimization (CBO), developed by Kaveh 
and Mahdavi [20], is based on one-dimensional collisions 
between bodies with each agent solution being considered 
as the massed object. After a collision of two moving bod-
ies with determined masses and velocities, these bodies are 
separated with new speeds. This collision pushes the agents 
toward better positions in the inquiry space. The laws of 
momentum and energy govern collisions between bodies. 
When in an isolated system collision happens, the total 
momentum of objects is protected as shown in Fig. 2. 

Fig. 2 Collision of bodies
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In this algorithm, there are no external forces on the 
bodies and total momentum of the system before and after 
the collision is constant. This process can be expressed by 
the following equation:

m v m v m mv v
1 1 2 2 1 21 2
+ = + .  (10)

Similar to the momentum energy, the kinetic energy is 
constant and can be expressed as:

1

2

1

2

1

2

1

2
1 1

2

2 2

2

1 21

2

2

2m v m v m m Qv v+ = + + .  (11)

Where m1 is the mass of the first object, v1 is the initial 
velocity of the first object before impact and v1 is the final 
velocity of the first object after impact. In addition, mv is 
the mass of the second object, v2 is the initial velocity of 
the second object before impact and v2 is the final velocity 
of the second object after impact and Q is the loss of the 
kinetic energy due to the impact. The equations for the 
velocities after a one-dimensional collision are:

v
m m v m m v

m m
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m m v m m v

m m
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22

.

 (12)

Where ε is the Coefficient of Restitution (COR) of the 
two colliding bodies defined as the ratio of relative veloc-
ity of separation to relative velocity of approach:

ε =
−
−

=
v v
v v v

v2 1

2 1

.  (13)

Based on the coefficient of restitution value in each 
collision, two modes are possible. If there is no kinetic 
energy dissipation when encountering two bodies (Q = 0 
and ε = 1), it can be considered as an elastic collision. In 
this case, after collision the velocity of separation is high. 
However if some part of the kinetic energy is converted to 
other types of energy (Q ≠ 0 and ε ≤ 1) during encounter, 
this kind of collision is called non-elastic, which has less 
separation velocity than the elastic one. For the most real 
objects, the value of ε is between zero and one.

In this algorithm, each solution candidate Xi contain-
ing a number of variables is considered as collision body 
(CB). The massed bodies are composed of two main equal 
groups, i.e., stationary and moving ones. When moving 
bodies move to follow stationary bodies, a collision occurs 
between pairs of bodies, which will improve the moving 
bodies positions and push stationary bodies toward better 

positions. After collision of bodies, their new positions 
and velocities are updated based on Eqs. (10–13).

The pseudo-code for CBO algorithm can be expressed 
as follows:

1. The initial positions of CBs are determined with ran-
dom initialization of a population of individuals in the 
search area as Eq. (14).

x x rand x x i ni min max min
0

1 2 3= + −( ) = …, , , , , ,  (14)

where, xi
0 determines the initial value vector of the ith CB. 

xmax and xmin are the maximum and minimum allowable 
value vectors of variables; rand is a random number in the 
interval (0, 1); and n is the number of CBs.

2. The mass of each CB is defined by Eq. (15).

m
fit k

fit i

k nk

i

n
=

( )

( )

= …

=∑

1

1
1 2 3

1

, , , , , ,  (15)

where fit(i) represents the objective function value of the 
agent i and n is the population size. As can be seen, CBs 
with higher values are more massive than others.

3. The arrangement of the CBs objective function val-
ues is performed in ascending order (Fig. 3). The sorted 
CBs are equally divided into two groups. The lower half of 
CBs  are good agents which are stationary and the veloc-
ity of these bodies before collision is zero and The upper 
half of CBs move toward the lower half. Then the better 
and worse CBs, i.e. agents with upper objective function 
value, of each group will crash together. The change of 
the bodies position represents the velocity of these bodies 
before collision as:

Fig. 3 Arrangement of the CBs objective function (a) CBs sorted in 
increasing order; (b) colliding object pairs (Kaveh [22])

'

'
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v i n
i = = …0 1 2

2
, , , , ,  (16)

v x x i n n ni i i n
= − = + + …

−
2

2
1
2
2, , , , ,  (17)

where, vi and xi are the velocity and position vector of the 
ith CB in this group, respectively; x

i n−
2

 is the ith CB pair 
position of xi in the previous group.

4. After collision, velocity of the bodies in each group 
is obtained using Eqs. (16) and (17). The velocity of each 
moving CB after the collision is calculated by Eq. (18).

v
m m v

m m
i n n ni

i i n i
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The velocity of each stationary CB after the collision is 
also calculated by Eq. (19).
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Where vi is the velocity of the ith moving CB before 
the collision, vi n+

2
 is the velocities of the ith moving CB 

pair before the collision, vi is the velocity of the ith mov-
ing CB after the collision. In addition mi is mass of the ith 
CB, xi n−

2
is mass of the ith CB pair and ε is the Coefficient 

of Restitution (COR), which is defined as the ratio of the 
separation velocity of two bodies after collision to the 
approach velocity of two bodies before collision. For most 
of the real objects, it is between 0 and 1. Therefore, to con-
trol exploration and exploitation rates, COR decreases lin-
early from unity to zero and is defined as Eq. (20).

ε = −1
iter
itermax

.  (20)

5. The new position of each CB is obtained using the 
new velocity of the moving bodies after collision with 
constant bodies using the following equation:

x x rand v i n n ni
new

i n i= + ( ) = + + …
−
2

2
1
2
2. , , , ,  (21)

x x rand v i n
i
new

i i= + ( ) = …. , , , ,1 2
2

 (22)

where xi
new is the new position of the moving bodies and 

stationary bodies in Eqs. (21) and (22), respectively. In 
addition, rand is a random vector uniformly distributed in 
the range (1, –1). 

Fig. 4 Flowchart of the CBO algorithm

6. In this step, the optimization is repeated from step 
2 until termination criteria is achieved such as reaching 
maximum iteration number. The general flowchart of this 
algorithm is shown in Fig. 4.

2.3 Enhanced Colliding Bodies Optimization
Enhanced Colliding Bodies Optimization (ECBO) is an 
improved version of the CBO algorithm, which improves 
the response of CBO. The main advantage of this method 
in comparison with CBO is the ability to utilize system 
memory better and thus increase its convergence speed. 
In addition, changes in some of the CBs parameters have 
increased the systems reliability and help ECBO to escape 
from the local optima. In short, ECBO increases the con-
vergence speed by keeping some of the best CBs in mem-
ory and randomly changes some of the bodies features to 
prevent premature convergence [21]. In addition to the 
steps mentioned in the CBO section, this algorithm has 
two more steps as following:

1. First step involves storing some CB vectors that his-
torically had best values and saves their related mass and 
objective function values. This step will reduce the com-
putational time and increase the efficiency of the algo-
rithm and is done after the second step of the CBO algo-
rithm. Then, by creating Colliding Memory (CM), the best 
answers in population are stored and some of the worst 
answers are omitted. Finally, CBs are sorted according to 
their masses in a decreasing order.

2. This step is put after the fifth step of the CBO algorithm 
and in fact, this is the main difference between this algo-
rithm and the original CBO. In this step, a parameter like 
Pro within (0, 1) is introduced and it is specified to deter-
mine whether a component of each CB must be changed or 
not. For each CB, Pro is compared with rni(i = 1, 2, …, n)  

'
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which is a random number uniformly distributed within  
(0, 1). If rni < Pro, one dimension of the ith CB is selected 
randomly and its value is reproduced by Eq. (23).

x x random x xi j j min j max j min, , , ,
. ,= + −( )  (23)

where xi, j is the jth variable of the ith CB. xj,min and xj,max are 
the lower and upper limits of the jth variable respectively. 
In order to protect the structures of CBs, only one dimen-
sion is changed. This step helps all CBs navigate across 
the entire search space and help the algorithm escape from 
local optima.

2.4 Vibrating particles system algorithm
Vibrating Particles System (VPS) is based on the damped 
free vibration of Single Degree Of Freedom (SDOF) sys-
tem. Fig. 5 shows a typical representation of a SDOF oscil-
lator. The mass (m) is attached to the spring (stiffness k) 
and the damper (damping c). The system is forced by the 
random vibration function (F) in the y-direction only. In 
this algorithm, each candidate solution is considered as 
a particle that wants to approach its equilibrium position 
[22].The particles are initialized randomly in a n-dimen-
sional search space and gradually approach to their equi-
librium positions. The VPS steps are introduced as follows: 

1. The parameters of the VPS are determined, and then 
the initial location of all particles in an n-dimensional 
search space is randomly selected.

2. The objective function value is calculated for each 
particle.

3. For each particle, three equilibrium positions are con-
sidered with different weights that the particle tends to 
approach.

a) Best position achieved in the entire population 
(HB).

b) A good particle (GP). 
c) A bad particle (BP). 

Fig. 5 A system with a single degree of freedom

In order to select the GP and BP for each candidate 
solution, the current population is sorted according to 
their objective function values in an increasing order, and 
then GP is chosen from the first half and BP is chosen 
from the second half randomly. 

In order to model the damping level in the vibration in 
the optimization algorithm, a descending function is used 
(Eq. (24)).

D iteration
iterationmax

=










−α

.  (24)

Where iteration is the current iteration number and 
iterationmax is the total number of iterations in the optimi-
zation process and α is a constant value. Based on men-
tioned points, location of each particle is updated using 
Eq. (25–27).

x w D A Rand HB w D ARand GP

w D ARand

j
i j j= +  + + 

+

1 2

3

1 2

3

. . . . . .

. . . ++ BP j
.

 
(25)

A w HB x w GP x w BP xj
i
j j

i
j j

i
j= −( )  + −( )  + −( ) 1 2 3

. . . . (26)

w w w
1 2 3

1+ + = ,  (27)

where xi
j is the jth variable of particle i; w1, w2, and w3 

are three parameters to measure the relative importance 
of HB, GP, and BP, respectively; and Rand1, Rand2 and 
Rand3 are random numbers uniformly distributed in the 
range of (0, 1).

A parameter such as p is defined in the range of (0, 1) to 
determine whether BP affects the position of the particle 
in each position updating or not. So, for each particle, the 
value of p is compared with the value of the rand parameter 
and if p < Rand, then w3 = 0 and w2 = 1 – w1. In this algo-
rithm, three essential concepts consisting of self-adapta-
tion, cooperation, and competition are considered. Self-
adaptation is provided by moving particles toward HB and 
each particle can affect other particles positions, so coop-
eration between the particles is also supplied. Because of 
the p parameter, the influence of GP is more than BP, and 
therefore the competition is provided.

1. Particles are moving in the search space to find the 
best possible position, but sometimes may move out of the 
boundaries of the search space, so they must be controlled 
and regenerated by harmony search-based side constraint 
handling approach [30]. In this technique, there is a pos-
sibility like HMCR (harmony memory considering rate) 
that specifies violating component should be regenerated 
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considering the corresponding component with histori-
cally best position of a random particle, or it should be 
determined randomly in the search space. Moreover, if the 
component of a historically best position is selected, there 
is a possibility like PAR (pitch adjusting rate) that speci-
fies whether this value should be changed with the neigh-
boring value or not.

2. The second to fourth steps are repeated until reach-
ing specified iteration number. Additional stopping crite-
ria can also be considered according to the nature of the 
optimization problem. In this study, the optimization pro-
cess is terminated after a fixed number of iterations. The 
general flowchart of this algorithm is shown in Fig. 6.

2.5 Genetic Algorithm
The Genetic Algorithm (GA) is a random-based classical 
evolutionary algorithm which is based on Darwin theory 
of evolution [31]. GA is a method for solving both con-
strained and unconstrained optimization problems based 
on a natural selection process that mimics biological evo-
lution. This algorithm repeatedly modifies a population of 
individual solutions slowly. At each step, GA randomly 
selects individuals from the current population and uses 
them as parents to produce the children for the next gener-
ation. Over successive generations, the population evolves 
toward an optimal solution.

The genetic algorithm consists of five steps: Initialization, 
Fitness assignment, selection, crossover and mutation. This 
algorithm works on a population consisting of some solu-
tions where the population size is the number of solutions. 
Each solution is called individual and each individual solu-
tion has a chromosome, which is represented as a set of 
parameters that included a set of genes. Similar to natural
selection, the central concept of GA selection is fitness.

Fig. 6 Flowchart of VPS

Fig. 7 Flowchart of GA

The chromosomes that are more fit have a better chance for 
survival. Fitness is a function that measures the quality of 
the solution represented by the chromosome. In essence, 
each chromosome within the population represents the 
input parameters. General flow chart of the GA is illus-
trated in Fig. 7.

2.6 Particle swarm optimization
Particle swarm optimization (PSO) is a population based 
stochastic optimization technique developed by Eberhart 
and Kennedy inspired by social behavior of bird flocking or 
fish schooling [32]. Similar to other metaheuristic methods. 

PSO is initialized with a population of random designs, 
named particles that are updated in each generation to 
search the optimum. In this method, each particle rep-
resents a candidate solution and has a location and velocity 
vector that changes during optimization. In each genera-
tion, each particle updates its speed and position accord-
ing to its and the total population best position. This pro-
cess is repeated until the evolution of the entire society 
converges to the best position of the search space. The 
PSO algorithm uses simple moving rules for particle char-
acteristics (Eq. (28–29)).

X X Vi
k

i
k

i
k+ += +1 1
,  (28)

V V c r P X c r P Xi
k

i
k

i
k

i
k

g
k

i
k+ = + −( ) + −( )1

1 1 2 2
ω .  (29)
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The new particle position Xi
k+1 is achieved by adding a 

new speed Vi
k+1 to the current position Xi

k. Vi
k, Pi

k and Pg
k are 

previous velocity, the best position obtained by each parti-
cle and the best solution that any particle has found so far, 
respectively. ω is a fixed weight to control the effect of the 
previous velocity. r1 and r2 are two random numbers uni-
formly distributed in the range of (0, 1), and c1 and c2 are 
two learning factors which control the influence of the cog-
nitive and social components. General flow chart of PSO 
algorithm is shown in Fig. 8.

2.7 Proposed models
In the adaptive neural-fuzzy inference system, least square 
error (LSE) and steep descend error (SDE) determines the 
primary and secondary parameters. One of the disadvan-
tages of gradient-based methods is the possibility of being 
trapped in local optimal areas. For this reason, the use of 
meta-heuristic methods such as CBO, ECBO and VPS are 
used as an alternative and useful method for the referred 
approaches. In this study, initial parameters ωi, σi, ci in Eq. 
(5) which are related to the membership function are opti-
mized using the mentioned three algorithms. Each of these 
parameters contains n particles, which are equal to the 
number of membership functions. The obtained parame-
ters pi, qi, ri in Eq. (8) can also be trained during the optimi-
zation algorithm. At last, to estimate the maximum scour 
depth near the bridge pier using CBO, ECBO and VPS 
algorithms, the weight parameter ωi is determined.

Fig. 8 Flowchart of PSO

Fig. 9 Flowchart of the proposed models

To fulfill this aim, at first a random search space is gen-
erated for ANFIS parameters. Then, these parameters 
should be updated by using the utilized optimization algo-
rithm. This process should be repeated until a stopping cri-
teria is satisfied. Fig. 9 summarizes the proposed model 
using an optimization algorithm (CBO, ECBO or VPS). 
The aim is to minimize one of the goodness functions 
such as Root Mean Square Error (RMSE), Coefficient of 
Determination (R2), Mean Absolute Error (MAE) or Mean 
Absolute Percentage Error (MAPE). These functions are 
described briefly in Section 3.1. Afterwards, the error value 
between ANFIS and the target value is determined that is 
used as an index to be optimized by the utilized optimiza-
tion methods. This means that the searching process should 
be continued until a good error value is obtained. 

The main limitation of using different algorithms is that 
special parameters (i.e., algorithm-specific parameters) are 
required for a good working of these algorithms. Proper 
tuning of these parameters is essential for the searching 
of the optimum solution by these algorithms. A change in 
the algorithm-specific parameters changes the effective-
ness of the algorithm. Therefore in this study the ANFIS 
parameters were automatically found using the optimiza-
tion algorithms. Therefore, control parameters of the final 
algorithm are just limited to the number of iteration and 
optimization algorithm parameters. This helps the user 
utilize ANFIS directly without the need for tuning some 
special parameters.

2.8 Utilized data
In the present study, due to the simplifications carried out 
in most laboratory works and complexities of the local 
scouring phenomenon, the FHWA dataset were used [19]. 
This dataset consisted of 439 measurement at 79 bridge in 
17 states [5]. In this paper, 237 of 439 measurements were 
used, and the rest were omitted for the following reasons. 
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The data related to scouring in cohesive soils was removed 
because the time required to reach the maximum scour 
depth was so longer compared to granular soils [33]. The 
data related to bridges with large accumulation of debris 
from past floods was also removed due to the high scour-
ing caused by them. In addition, the data related to the 
pier group due to differences in the nature of the pier lay-
outs and all data with zero or indeterminate scour depths, 
as well as data with unknown bed material was removed. 
Similar to Pal et al. [34] and based on the above points, 
the present study consists of seven input parameters: pier 
shape (Sh), depth of flow (h), flow velocity (V), pier width 
(W), pier angle with flow (Sk), grain size of bed material 
(d50) and gradation of bed material (g) that were used to 
determine the scour depth (hs) at bridge pier. The speci-
fication of the used data in this study is shown in Table 1.

3 Numerical results
3.1 Evaluation functions
In this study, five evaluation functions are used including  
Root Mean Square Error (RMSE), Coefficient of Deter-
mination (R2), Mean Absolute Error (MAE) and Mean 
Absolute Percentage Error (MAPE). These functions are 
described as follows:

RMSE is the difference between the predicted value of 
the model and the real value and it is good tool for eval-
uating prediction ability of the model. In this method 
because of the errors are squared before they are aver-
aged, the RMSE gives a relatively high weight to large 
errors. Therefore, RMSE is more useful when large errors 
are especially undesirable (Eq. (30)).

RMSE
x y
ni

n
i i=
−( )

=
∑
1

2

.  (30)

Coefficient of determination represents the correla-
tion of real data with predicted values and shows math-
ematically how much predicted data is close to the fitted 

regression line. R2 values indicate the degree of adapta-
tion between predicted data and actual values. The values 
close to one represent the high accuracy of the model and 
greater coverage of the dependent variable by the indepen-
dent variables (Eq. (31)).
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MAE measures the average magnitude of the errors 
without considering their direction and all the differences 
between predicted values and real ones are considered 
with the same weight (Eq. (32)).

MAE
x y
n

i

n
i i=
−( )

=∑ 1 .  (32)

MAPE is a tool for evaluating prediction accuracy of 
forecasting models and expresses accuracy of model as 
a percentage. This method is scale sensitive and when 
working with low-volume data, answers are unreliable. 
MAPE functions best when there are no extremes to the 
data (including zeros). It should be considered with zeros 
or near-zeros, MAPE can give a distorted picture of error. 
The error on a near-zero item can be infinitely high, caus-
ing a distortion to the overall error rate when it is averaged 
in (Eq. (33)).

MAPE
n

x y
xi

n
i i= ×
−( )

=
∑100

1

.  (33)

3.2 k-fold cross validation
To evaluate the models efficiency, 80 percent of existing 
data was used for training and 20 percent was used for 
test of the model. As a result, from 237 available data, 
190 were used for model training and 47 were used for 
testing of the models. In order to investigate the model’s 
dependence on selected data, k-fold cross validation was 
employed for two times to limit problems like overfitting 

Fig. 10 5-fold cross validation
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and give an insight on how the model will generalize to 
an independent dataset as illustrated in Fig. 10. By using 
k-fold cross validation method and RMSE, R2, MAE and 
MAPE evaluation functions, efficiency and applicability 
of the proposed models were examined and the results 
were presented in Tables 2–4. 

3.3 Results of the new models
Tables 2–4 shows that the A-VPS model has better results 
than the other models. The A-ECBO model takes the second 
place while the A-CBO model is the worst one. Comparison 
of the obtained results shows that the A-VPS model, in con-
trast to the other two models, obtained identical results for 

Table 1 Input data

Notation Parameters Minimum Maximum Average Standard deviation

Pier width (m) W x1 0.3 5.5 1.555 1.179

Flow velocity (m/s) V x2 0 5.4 1.529 0.819

Depth of flow (m) h x3 0.2 22.5 4.313 3.899

Pier shape Sh x4 0.7 1.3 0.980 0.204

Pier angle with flow (Deg) Sk x5 0 85 9.274 18.360

Grain size of bed material d50 x6 0.12 95 17.968 25.132

Gradation of bed material g x7 1.2 21.8 3.728 3.139

Scour depth (m) hs y 0.1 7.7 1.124 1.326

Table 2 Results of the A-CBO model for 10 independent runs

1 2 3 4 5 6 7 8 9 10 Average Standard deviation

Train R2 0.846 0.836 0.836 0.874 0.820 0.822 0.843 0.863 0.779 0.881 0.840 0.028

MAPE 56.5 39.0 17.0 42.7 67.9 68.3 64.5 61.0 68.1 44.2 52.9 16.022

RMSE 0.493 0.559 0.741 0.493 0.564 0.605 0.536 0.502 0.596 0.418 0.551 0.083

MAE 0.320 0.295 0.350 0.249 0.372 0.421 0.352 0.337 0.422 0.291 0.341 0.053

Test R2 0.666 0.645 0.645 0.665 0.830 0.689 0.766 0.708 0.781 0.753 0.715 0.061

MAPE 56.7 69.6 69.6 54.7 49.9 73.9 82.7 55.8 65.1 50.1 62.8 10.469

RMSE 0.892 0.705 0.705 0.687 0.552 0.607 0.820 0.702 0.684 0.788 0.714 0.094

MAE 0.489 0.466 0.466 0.422 0.379 0.450 0.589 0.456 0.487 0.503 0.471 0.052

Table 3 Results of the A-ECBO model for 10 independent runs

1 2 3 4 5 6 7 8 9 10 Average Standard deviation

Train R2 0.883 0.862 0.873 0.853 0.863 0.883 0.834 0.842 0.870 0.765 0.853 0.033

MAPE 49.6 54.6 24.2 59.8 61.0 49.6 59.0 66.1 41.6 61.4 52.7 11.735

RMSE 0.458 0.519 0.395 0.461 0.502 0.458 0.526 0.490 0.458 0.663 0.493 0.067

MAE 0.299 0.365 0.303 0.329 0.337 0.299 0.345 0.357 0.254 0.390 0.328 0.038

Test R2 0.796 0.760 0.895 0.821 0.708 0.758 0.759 0.804 0.839 0.746 0.789 0.051

MAPE 47.7 76.5 61.9 55.6 55.8 47.7 53.8 65.2 66.1 65.2 59.6 8.603

RMSE 0.484 0.585 0.612 0.660 0.702 0.637 0.786 0.676 0.580 0.671 0.639 0.077

MAE 0.331 0.427 0.353 0.411 0.456 0.381 0.462 0.511 0.389 0.442 0.416 0.052

Table 4 Results of the A-VPS model for 10 independent runs

1 2 3 4 5 6 7 8 9 10 Average Standard deviation

Train R2 0.866 0.836 0.882 0.859 0.857 0.888 0.796 0.897 0.871 0.890 0.864 0.029

MAPE 47.6 48.2 24.3 16.9 53.5 50.1 59.2 51.8 53.0 46.2 45.1 12.837

RMSE 0.491 0.531 0.427 0.483 0.515 0.454 0.599 0.402 0.492 0.438 0.483 0.054

MAE 0.278 0.318 0.281 0.331 0.319 0.299 0.397 0.284 0.327 0.270 0.310 0.036

Test R2 0.917 0.893 0.899 0.801 0.885 0.816 0.812 0.929 0.788 0.872 0.861 0.049

MAPE 45.6 63.0 48.9 59.8 52.3 58.2 66.9 54.1 58.8 48.4 55.6 6.522

RMSE 0.474 0.491 0.405 0.518 0.425 0.545 0.621 0.395 0.559 0.509 0.494 0.068

MAE 0.342 0.353 0.286 0.371 0.308 0.363 0.456 0.312 0.384 0.319 0.349 0.046
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teaching and testing data sets, which indicates the models 
power in predicting the maximum scour depth and its sta-
bility and reliability. The values obtained by the A-VPS 
model for the coefficient of determination and its standard 
deviation are 0.861 and 0.049, respectively which indi-
cate that predicted values are very close to the actual ones. 
Figs. 11–13 shows a comparison of the actual and predicted 
values obtained by the A-CBO, A-ECBO and A-VPS mod-
els for the best testing fold. As shown in Fig. 14, although 
there is no significant difference between the models in the 
training data set but in the testing data set, proposed models 
obtain good results. Fig. 15 shows how the number of iter-
ations affects the models accuracy. As shown in the Fig. 15 
A-VPS has the highest convergence rate and A-ECBO has 
the second highest convergence rate. Convergence history 

of the methods shows that almost after the 550th iteration, 
changes are very small in all models, but for accurate inves-
tigating of the model performance iteration continued until 
1000. The optimal training times for the A-CBO, A-ECBO 
and A-VPS models were 92, 61, and 27 s, respectively.

A statistical analysis of the obtained results by the 
A-ECBO model in comparison to the A-CBO model shows 
that the performance of the A-ECBO model is improved. 
For example, when comparing the values of MAPE, R2 and 
RMSE obtained by these two models, MAPE decreased by 
5 %, coefficient of determination (R2) increased by 10 % 
and RMSE decreased by 10.5 % for the ECBO method. In 
addition, comparing the obtained values by the A-ECBO 
model for training and testing data sets shows that it is 
more consistent than the A-CBO model.

Fig. 11 Actual and predicted values obtained by A-CBO model for the best testing fold

Fig. 12 Actual and predicted values obtained by A-ECBO model for the best testing fold
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3.4 Comparison of results with the standard and 
modified ANFIS
To evaluate the performance of the proposed models and 
the effect of used optimization methods, the results of the 
proposed models are compared with results of the stan-
dard and modified versions of ANFIS using GA and PSO 
(Table 5). Since modeling process is similar for modified 
models, the dependence of the results on the type of data 
selection or creating the model is eliminated and models 

can be compared in the same conditions. Values of RMSE, 
MAE, MAPE and R2 for all three models for the train-
ing and validation, were used to rank models according 
to accuracy (5–1, from best to worst score for each statis-
tic), and the ranks were summed to obtain an overall accu-
racy score for each model. In general, the best values of 
RMSE, MAE, MAPE and R2 were found for the A-VPS 
model. Comparing the results shows that the combination 
of all three optimization methods with ANFIS increases its 

Fig. 13 Actual and predicted values obtained by A-VPS model for the best testing fold 

Fig. 14 Average evaluation function values
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Fig. 15 Convergence history for the best testing fold

efficiency. Obtained results for MAPE and RMSE show 
that using VPS method reduced MAPE and RMSE about 
42 % and 46 % respectively compared to standard ANFIS. 
The standard ANFIS shows good performance in the train-
ing step; however, it is unable to work well in the field of 
validation with new data. Results of modified versions of 
ANFIS show that A-VPS and A-CBO have the best and 
worst results, respectively. Even though GA and PSO 
improve ANFIS performance, ECBO and VPS obtain bet-
ter results when considering determination coefficient and 
RMSE as benchmarks. For instance, VPS obtains 49 % bet-
ter result than GA and 23 % than PSO considering RMSE. 
However, A-VPS model yields similar results in both data 
sets and this is due to the high power of the model in pre-
dicting the maximum scour depth. Therefore, the new 
methods are effective, since the model errors in both train-
ing and testing data sets are decreased and the reliability of 
the model is increased. Moreover, the average optimized 
results and standard deviation on averages results obtained 
by A-VPS are competitive with the other optimization 
methods. The convergence speed comparisons also reveal 
the fast converging feature of the A-VPS model.

3.5 Comparison of results with empirical relationships
One of the common methods for estimating the scour depth 
near bridge pier is the use of empirical relationships. A lot 
of research has been done by researchers in this field that 
has led to a variety of empirical relationships [11, 35–41]. 
The results of scour depth estimation with the empirical 
relationships are compared with the results of the pro-
posed models (Table 6). Analysis of the results shows that 
the empirical relationships indicate a poor performance in 
scour depth estimation. Empirical equations in terms of 

coefficient of determination and RMSE do not reach good 
values. The negative values obtained for coefficient of 
determination indicate the weakness of Laursen and Toch, 
Mississippi and HEC-18 approaches because the negative 
values show that the model does not follow the trend of 
the data. Comparison between the results shows that the 
Froehlich has a better performance than other ones, how-
ever it has a higher RMSE (lower coefficient of determina-
tion as well) than the proposed models. The A-VPS model 
compared to the Froehlich relationship has 58 % higher R2 
and 45 % lower RMSE value.

3.6 Sensitivity analysis
In order to determine the relative influence of the input 
parameters on the pier scour depth, 10 tests were per-
formed for each parameter and the average value was cal-
culated. The A-VPS model, known as the best among pro-
posed models, was selected to be used in this section. To 
evaluate relative significance of the input parameters, they 
were eliminated in turn, and the effect of removing each 
one on the models was determined by using the evaluation 
functions. Table 7 summarizes the results of all tests per-
formed with different inputs of the model. Comparison of 
the results shows that the width of the pier had the major 
influence on predicting the scour depth and gradation of bed 
materials had the least effect. Other effective parameters on 
scour depth ranking from higher to lower values include the 
depth of the flow, flow velocity, pier shape, pier angle with 
flow, grain size of bed material (d50) and gradation of bed 
material. The comparison of the results shows that width of 
the pier has a significant effect on the prediction of scour 
depth because its removal has increased RMSE by 159 % 
and reduces determination coefficient by 33 %.
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4 Conclusions
In this study, three hybrid models were developed to pre-
dict bridge scours. The proposed models operate auto-
matically without human intervention, and enhances the 
ANFIS accuracy in predicting the scour depth under 
various natural conditions. The proposed models were 
based on ANFIS and CBO, ECBO or VPS algorithms. 
To develop the model, the United State Federal Highway 
Administration scour data set were used to train and 
validate the model. In order to investigate the models 
dependence on selected data, 5-fold cross validation was 
employed and finally the results of the proposed models 
were compared with standard and modified ANFIS as well 
as empirical equations.

Comparing the results showed that applied optimi-
zations on the standard ANFIS were very effective and 
increase the model capability and reliability. The A-VPS 
model had better results than the other two proposed 

models and the A-ECBO model showed better performance 
than A-CBO model. For instance, using VPS method 
reduced MAPE and RMSE about 42 % and 46 % respec-
tively and increased the determination coefficient by 33 % 
compared to standard ANFIS. Comparison of the perfor-
mance of used optimization methods showed that although 
GA and PSO improved ANFIS, VPS and ECBO algorithm 
can obtain better results. A-VPS model obtained identical 
results for teaching and testing data sets, which indicates 
the models power in predicting the maximum scour depth 
and its reliability. In addition, comparison of the results of 
the proposed models with the results of empirical relations 
showed that all of the three proposed models could find 
better results. Results of empirical equations showed that 
some of the formulas are not suitable for estimating local 
scour due to the high value of errors. While proposed mod-
els showed good performance and they can estimate bridge 
pier scour with good accuracy.

Table 5 Results of the modified and standard ANFIS-based methods

Model
Train Test

R2 MAPE RMSE MAE R2 MAPE RMSE MAE

ANFIS 0.814 63.3 0.588 0.407 0.651 95.8 0.910 0.560

A-GA 0.818 51.2 0.451 0.305 0.799 40.9 0.966 0.517

A-PSO 0.833 54.2 0.549 0.362 0.742 55.1 0.645 0.415

A-CBO 0.840 52.9 0.551 0.341 0.715 62.8 0.714 0.471

A-ECBO 0.853 52.7 0.493 0.328 0.789 59.6 0.639 0.416

A-VPS 0.864 45.1 0.483 0.310 0.861 55.6 0.494 0.349

Table 6 Comparison of the modified models with the empirical equations

A-CBO A-ECBO A-VPS Mississippi HEC-18 Froehlich Laursen and Toch

R2 0.715 0.789 0.864 –2.24 –3.620 0.547 –1.52

RMSE 0.714 0.639 0.493 2.383 2.840 0.890 2.101

Table 7 Results of the sensitivity analysis

Pier Shape Pier Width Skew Velocity Depth D50 gradation

Train

R2 0.863 0.899 0.880 0.851 0.932 0.882 0.856

MAPE 47.0 54.2 47.3 43.4 42.2 42.0 59.4

RMSE 0.455 0.402 0.469 0.515 0.323 0.471 0.501

MAE 0.286 0.272 0.300 0.322 0.246 0.289 0.338

Test

R2 0.696 0.577 0.766 0.687 0.659 0.795 0.815

MAPE 67.7 73.5 79.8 77.0 57.7 59.0 53.2

RMSE 0.898 1.277 0.582 0.751 0.967 0.546 0.576

MAE 0.514 0.687 0.414 0.461 0.558 0.343 0.383
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